292 research outputs found

    The Correlation Problem in Sensor Fusion in a Possibilistic Framework

    Get PDF
    International audienceThis paper addresses the correlation problem which is central in sensor fusion, from the viewpoint of possibility theory. This problem aims at separating pieces of information pertaining to different objects and to gather those which are likely to pertain to the same object. We present two different views of the problem, one based on similarity relations, while the other discusses the problem in a logical framework

    Quality-based Multimodal Classification Using Tree-Structured Sparsity

    Full text link
    Recent studies have demonstrated advantages of information fusion based on sparsity models for multimodal classification. Among several sparsity models, tree-structured sparsity provides a flexible framework for extraction of cross-correlated information from different sources and for enforcing group sparsity at multiple granularities. However, the existing algorithm only solves an approximated version of the cost functional and the resulting solution is not necessarily sparse at group levels. This paper reformulates the tree-structured sparse model for multimodal classification task. An accelerated proximal algorithm is proposed to solve the optimization problem, which is an efficient tool for feature-level fusion among either homogeneous or heterogeneous sources of information. In addition, a (fuzzy-set-theoretic) possibilistic scheme is proposed to weight the available modalities, based on their respective reliability, in a joint optimization problem for finding the sparsity codes. This approach provides a general framework for quality-based fusion that offers added robustness to several sparsity-based multimodal classification algorithms. To demonstrate their efficacy, the proposed methods are evaluated on three different applications - multiview face recognition, multimodal face recognition, and target classification.Comment: To Appear in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014

    Context dependent spectral unmixing.

    Get PDF
    A hyperspectral unmixing algorithm that finds multiple sets of endmembers is proposed. The algorithm, called Context Dependent Spectral Unmixing (CDSU), is a local approach that adapts the unmixing to different regions of the spectral space. It is based on a novel function that combines context identification and unmixing. This joint objective function models contexts as compact clusters and uses the linear mixing model as the basis for unmixing. Several variations of the CDSU, that provide additional desirable features, are also proposed. First, the Context Dependent Spectral unmixing using the Mahalanobis Distance (CDSUM) offers the advantage of identifying non-spherical clusters in the high dimensional spectral space. Second, the Cluster and Proportion Constrained Multi-Model Unmixing (CC-MMU and PC-MMU) algorithms use partial supervision information, in the form of cluster or proportion constraints, to guide the search process and narrow the space of possible solutions. The supervision information could be provided by an expert, generated by analyzing the consensus of multiple unmixing algorithms, or extracted from co-located data from a different sensor. Third, the Robust Context Dependent Spectral Unmixing (RCDSU) introduces possibilistic memberships into the objective function to reduce the effect of noise and outliers in the data. Finally, the Unsupervised Robust Context Dependent Spectral Unmixing (U-RCDSU) algorithm learns the optimal number of contexts in an unsupervised way. The performance of each algorithm is evaluated using synthetic and real data. We show that the proposed methods can identify meaningful and coherent contexts, and appropriate endmembers within each context. The second main contribution of this thesis is consensus unmixing. This approach exploits the diversity and similarity of the large number of existing unmixing algorithms to identify an accurate and consistent set of endmembers in the data. We run multiple unmixing algorithms using different parameters, and combine the resulting unmixing ensemble using consensus analysis. The extracted endmembers will be the ones that have a consensus among the multiple runs. The third main contribution consists of developing subpixel target detectors that rely on the proposed CDSU algorithms to adapt target detection algorithms to different contexts. A local detection statistic is computed for each context and then all scores are combined to yield a final detection score. The context dependent unmixing provides a better background description and limits target leakage, which are two essential properties for target detection algorithms

    Clustering of multiple instance data.

    Get PDF
    An emergent area of research in machine learning that aims to develop tools to analyze data where objects have multiple representations is Multiple Instance Learning (MIL). In MIL, each object is represented by a bag that includes a collection of feature vectors called instances. A bag is positive if it contains at least one positive instance, and negative if no instances are positive. One of the main objectives in MIL is to identify a region in the instance feature space with high correlation to instances from positive bags and low correlation to instances from negative bags -- this region is referred to as a target concept (TC). Existing methods either only identify a single target concept, do not provide a mechanism for selecting the appropriate number of target concepts, or do not provide a flexible representation for target concept memberships. Thus, they are not suitable to handle data with large intra-class variation. In this dissertation we propose new algorithms that learn multiple target concepts simultaneously. The proposed algorithms combine concepts from data clustering and multiple instance learning. In particular, we propose crisp, fuzzy, and possibilistic variations of the Multi-target concept Diverse Density (MDD) metric, along with three algorithms to optimize them. Each algorithm relies on an alternating optimization strategy that iteratively refines concept assignments, locations, and scales until it converges to an optimal set of target concepts. We also demonstrate how the possibilistic MDD metric can be used to select the appropriate number of target concepts for a dataset. Lastly, we propose the construction of classifiers based on embedded feature space theory to use our target concepts to predict the label of prospective MIL data. The proposed algorithms are implemented, tested, and validated through the analysis of multiple synthetic and real-world data. We first demonstrate that our algorithms can detect multiple target concepts reliably, and are robust to many generative data parameters. We then demonstrate how our approach can be used in the application of Buried Explosive Object (BEO) detection to locate distinct target concepts corresponding to signatures of varying BEO types. We also demonstrate that our classifier strategies can perform competitively with other well-established embedded space approaches in classification of Benchmark MIL data
    • …
    corecore