651 research outputs found

    Robust Stabilization and Disturbance Rejection for Autonomous Helicopter

    Get PDF

    Evolution of Neural Networks for Helicopter Control: Why Modularity Matters

    Get PDF
    The problem of the automatic development of controllers for vehicles for which the exact characteristics are not known is considered in the context of miniature helicopter flocking. A methodology is proposed in which neural network based controllers are evolved in a simulation using a dynamic model qualitatively similar to the physical helicopter. Several network architectures and evolutionary sequences are investigated, and two approaches are found that can evolve very competitive controllers. The division of the neural network into modules and of the task into incremental steps seems to be a precondition for success, and we analyse why this might be so

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Development of small-scale unmanned-aerial-vehicle helicopter systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advanced control for miniature helicopters : modelling, design and flight test

    Get PDF
    Unmanned aerial vehicles (UAV) have been receiving unprecedented development during the past two decades. Among different types of UAVs, unmanned helicopters exhibit promising features gained from vertical-takeoff-and-landing, which make them as a versatile platform for both military and civil applications. The work reported in this thesis aims to apply advanced control techniques, in particular model predictive control (MPC), to an autonomous helicopter in order to enhance its performance and capability. First, a rapid prototyping testbed is developed to enable indoor flight testing for miniature helicopters. This testbed is able to simultaneously observe the flight state, carry out complicated algorithms and realtime control of helicopters all in a Matlab/Simulink environment, which provides a streamline process from algorithm development, simulation to flight tests. Next, the modelling and system identification for small-scale helicopters are studied. A parametric model is developed and the unknown parameters are estimated through the designed identification process. After a mathematical model of the selected helicopter is available, three MPC based control algorithms are developed focusing on different aspects in the operation of autonomous helicopters. The first algorithm is a nonlinear MPC framework. A piecewise constant scheme is used in the MPC formulation to reduce the intensive computation load. A two-level framework is suggested where the nonlinear MPC is combined with a low-level linear controller to allow its application on the systems with fast dynamics. The second algorithm solves the local path planning and the successive tracking control by using nonlinear and linear MPC, respectively. The kinematics and obstacle information are incorporated in the path planning, and the linear dynamics are used to design a flight controller. A guidance compensator dynamically links the path planner and flight controller. The third algorithm focuses on the further reduction of computational load in a MPC scheme and the trajectory tracking control in the presence of uncertainties and disturbances. An explicit nonlinear MPC is developed for helicopters to avoid online optimisation, which is then integrated with a nonlinear disturbance observer to significantly improve its robustness and disturbance attenuation. All these algorithms have been verified by flight tests for autonomous helicopters in the dedicated rapid prototyping testbed developed in this thesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Robust and Adaptive Control Methods for Small Aerial Vehicles

    Get PDF
    Recent advances in sensor and microcomputer technology and in control and aeroydynamics theories has made small unmanned aerial vehicles a reality. The small size, low cost and manoueverbility of these systems has positioned them to be potential solutions in a large class of applications. However, the small size of these vehicles pose significant challenges. The small sensors used on these systems are much noisier than their larger counterparts.The compact structure of these vehicles also makes them more vulnerable to environmental effects. This work develops several different control strategies for two sUAV platforms and provides the rationale for judging each of the controllers based on a derivation of the dynamics, simulation studies and experimental results where possible. First, the coaxial helicopter platform is considered. This sUAV’s dual rotor system (along with its stabilizer bar technology) provides the ideal platform for safe, stable flight in a compact form factor. However, the inherent stability of the vehicle is achieved at the cost of weaker control authority and therefore an inability to achieve aggressive trajectories especially when faced with heavy wind disturbances. Three different linear control strategies are derived for this platform. PID, LQR and H∞ methods are tested in simulation studies. While the PID method is simple and intuitive, the LQR method is better at handling the decoupling required in the system. However the frequency domain design of the H∞ control method is better at suppressing disturbances and tracking more aggressive trajectories. The dynamics of the quadrotor are much faster than those of the coaxial helicopter. In the quadrotor, four independent fixed pitch rotors provide the required thrust. Differences between each of the rotors creates moments in the roll, pitch and yaw directions. This system greatly simplifies the mechanical complexity of the UAV, making quadrotors cheaper to maintain and more accessible. The quadrotor dynamics are derived in this work. Due to the lack of any mechanical stabilization system, these quadrotor dynamics are not inherently damped around hover. As such, the focus of the controller development is on using nonlinear techniques. Linear quadratic regulation methods are derived and shown to be inadequate when used in zones moderately outside hover. Within nonlinear methods, feedback linearization techniques are developed for the quadrotor using an inner/outer loop decoupling structure that avoids more complex variants of the feedback linearization methodology. Most nonlinear control methods (including feedback linearization) assume perfect knowledge of vehicle parameters. In this regard, simulation studies show that when this assumption is violated the results of the flight significantly deteriorate for quadrotors flying using the feedback linearization method. With this in mind, an adaptation law is devised around the nonlinear control method that actively modifies the plant parameters in an effort to drive tracking errors to zero. In simple cases with sufficiently rich trajectory requirements the parameters are able to adapt to the correct values (as verified by simulation studies). It can also adapt to changing parameters in flight to ensure that vehicle stability and controller performance is not compromised. However, the direct adaptive control method devised in this work has the added benefit of being able to modify plant parameters to suppress the effects of external disturbances as well. This is clearly shown when wind disturbances are applied to the quadrotor simulations. Finally, the nonlinear quadrotor controllers devised above are tested on a custom built quadrotor and autopilot platform. While the custom quadrotor is able to fly using the standard control methods, the specific controllers devised here are tested on a test bench that constrains the movement of the vehicle. The results of the tests show that the controller is able to sufficiently change the necessary parameter to ensure effective tracking in the presence of unmodelled disturbances and measurement error

    Rotorcraft Blade Pitch Control Through Torque Modulation

    Get PDF
    Micro air vehicle (MAV) technology has broken with simple mimicry of manned aircraft in order to fulfill emerging roles which demand low-cost reliability in the hands of novice users, safe operation in confined spaces, contact and manipulation of the environment, or merging vertical flight and forward flight capabilities. These specialized needs have motivated a surge of new specialized aircraft, but the majority of these design variations remain constrained by the same fundamental technologies underpinning their thrust and control. This dissertation solves the problem of simultaneously governing MAV thrust, roll, and pitch using only a single rotor and single motor. Such an actuator enables new cheap, robust, and light weight aircraft by eliminating the need for the complex ancillary controls of a conventional helicopter swashplate or the distributed propeller array of a quadrotor. An analytic model explains how cyclic blade pitch variations in a special passively articulated rotor may be obtained by modulating the main drive motor torque in phase with the rotor rotation. Experiments with rotors from 10 cm to 100 cm in diameter confirm the predicted blade lag, pitch, and flap motions. We show the operating principle scales similarly as traditional helicopter rotor technologies, but is subject to additional new dynamics and technology considerations. Using this new rotor, experimental aircraft from 29 g to 870 g demonstrate conventional flight capabilities without requiring more than two motors for actuation. In addition, we emulate the unusual capabilities of a fully actuated MAV over six degrees of freedom using only the thrust vectoring qualities of two teetering rotors. Such independent control over forces and moments has been previously obtained by holonomic or omnidirection multirotors with at least six motors, but we now demonstrate similar abilities using only two. Expressive control from a single actuator enables new categories of MAV, illustrated by experiments with a single actuator aircraft with spatial control and a vertical takeoff and landing airplane whose flight authority is derived entirely from two rotors

    A Simple Passive Attitude Stabilizer for Palm-size Aerial Vehicles

    Get PDF
    This paper presents a simple passive attitude stabilizer (PAS) for vision-based stabilization of palm-size aerial vehicles. First, a mathematical dynamic model of a palm-size aerial vehicle with the proposed PAS is constructed. Stability analysis for the dynamics is carried out in terms of Lyapunov stability theory. The analysis results show that the proposed stabilizer guarantees passive stabilizing behavior, i.e., passive attitude recovering, of the aerial vehicle for small perturbations from a stability theory point of view. Experimental results demonstrate the utility of the proposed PAS for the aerial vehicle
    corecore