12,373 research outputs found

    Evaluation of MEMS Structures with Directional Characteristics Based on FRAT and Lifting Wavelet

    Get PDF
    Steps and grooves, which have typical directional characteristic, are two main functional structures of MEMS (Micro-Electro-Mechanical Systems). This paper proposes a method for analysis and evaluation of MEMS steps and grooves based on finite radon transform (FRAT) and lifting wavelet. The method consists of three steps. Firstly, FRAT is adopted to detect the directional characteristic of a MEMS structure. Secondly, on the basis of the directional characteristic obtained, the profiles of the MEMS structure are analyzed by lifting wavelet. Finally, Histogram-fitting is employed for areal evaluation of a MEMS structure. Simulated and experimental results show that MEMS structures with directional characteristic can be extracted and evaluated by the method effectively

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Implicit Methods for Equation-Free Analysis: Convergence Results and Analysis of Emergent Waves in Microscopic Traffic Models

    Get PDF
    We introduce a general formulation for an implicit equation-free method in the setting of slow-fast systems. First, we give a rigorous convergence result for equation-free analysis showing that the implicitly defined coarse-level time stepper converges to the true dynamics on the slow manifold within an error that is exponentially small with respect to the small parameter measuring time scale separation. Second, we apply this result to the idealized traffic modeling problem of phantom jams generated by cars with uniform behavior on a circular road. The traffic jams are waves that travel slowly against the direction of traffic. Equation-free analysis enables us to investigate the behavior of the microscopic traffic model on a macroscopic level. The standard deviation of cars' headways is chosen as the macroscopic measure of the underlying dynamics such that traveling wave solutions correspond to equilibria on the macroscopic level in the equation-free setup. The collapse of the traffic jam to the free flow then corresponds to a saddle-node bifurcation of this macroscopic equilibrium. We continue this bifurcation in two parameters using equation-free analysis.Comment: 35 page

    Coarse Grained Computations for a Micellar System

    Full text link
    We establish, through coarse-grained computation, a connection between traditional, continuum numerical algorithms (initial value problems as well as fixed point algorithms) and atomistic simulations of the Larson model of micelle formation. The procedure hinges on the (expected) evolution of a few slow, coarse-grained mesoscopic observables of the MC simulation, and on (computational) time scale separation between these and the remaining "slaved", fast variables. Short bursts of appropriately initialized atomistic simulation are used to estimate the (coarse-grained, deterministic) local dynamics of the evolution of the observables. These estimates are then in turn used to accelerate the evolution to computational stationarity through traditional continuum algorithms (forward Euler integration, Newton-Raphson fixed point computation). This "equation-free" framework, bypassing the derivation of explicit, closed equations for the observables (e.g. equations of state) may provide a computational bridge between direct atomistic / stochastic simulation and the analysis of its macroscopic, system-level consequences
    • …
    corecore