24 research outputs found

    Some results on (a:b)-choosability

    Get PDF
    A solution to a problem of Erd\H{o}s, Rubin and Taylor is obtained by showing that if a graph GG is (a:b)(a:b)-choosable, and c/d>a/bc/d > a/b, then GG is not necessarily (c:d)(c:d)-choosable. Applying probabilistic methods, an upper bound for the kthk^{th} choice number of a graph is given. We also prove that a directed graph with maximum outdegree dd and no odd directed cycle is (k(d+1):k)(k(d+1):k)-choosable for every k≥1k \geq 1. Other results presented in this article are related to the strong choice number of graphs (a generalization of the strong chromatic number). We conclude with complexity analysis of some decision problems related to graph choosability

    On Two problems of defective choosability

    Full text link
    Given positive integers p≥kp \ge k, and a non-negative integer dd, we say a graph GG is (k,d,p)(k,d,p)-choosable if for every list assignment LL with ∣L(v)∣≥k|L(v)|\geq k for each v∈V(G)v \in V(G) and ∣⋃v∈V(G)L(v)∣≤p|\bigcup_{v\in V(G)}L(v)| \leq p, there exists an LL-coloring of GG such that each monochromatic subgraph has maximum degree at most dd. In particular, (k,0,k)(k,0,k)-choosable means kk-colorable, (k,0,+∞)(k,0,+\infty)-choosable means kk-choosable and (k,d,+∞)(k,d,+\infty)-choosable means dd-defective kk-choosable. This paper proves that there are 1-defective 3-choosable graphs that are not 4-choosable, and for any positive integers ℓ≥k≥3\ell \geq k \geq 3, and non-negative integer dd, there are (k,d,ℓ)(k,d, \ell)-choosable graphs that are not (k,d,ℓ+1)(k,d , \ell+1)-choosable. These results answer questions asked by Wang and Xu [SIAM J. Discrete Math. 27, 4(2013), 2020-2037], and Kang [J. Graph Theory 73, 3(2013), 342-353], respectively. Our construction of (k,d,ℓ)(k,d, \ell)-choosable but not (k,d,ℓ+1)(k,d , \ell+1)-choosable graphs generalizes the construction of Kr\'{a}l' and Sgall in [J. Graph Theory 49, 3(2005), 177-186] for the case d=0d=0.Comment: 12 pages, 4 figure

    On Structure of Some Plane Graphs with Application to Choosability

    Get PDF
    AbstractA graph G=(V, E) is (x, y)-choosable for integers x>y⩾1 if for any given family {A(v)∣v∈V} of sets A(v) of cardinality x, there exists a collection {B(v)∣v∈V} of subsets B(v)⊂A(v) of cardinality y such that B(u)∩B(v)=∅ whenever uv∈E(G). In this paper, structures of some plane graphs, including plane graphs with minimum degree 4, are studied. Using these results, we may show that if G is free of k-cycles for some k∈{3, 4, 5, 6}, or if any two triangles in G have distance at least 2, then G is (4m, m)-choosable for all nonnegative integers m. When m=1, (4m, m)-choosable is simply 4-choosable. So these conditions are also sufficient for a plane graph to be 4-choosable

    Filling the complexity gaps for colouring planar and bounded degree graphs.

    Get PDF
    We consider a natural restriction of the List Colouring problem, k-Regular List Colouring, which corresponds to the List Colouring problem where every list has size exactly k. We give a complete classification of the complexity of k-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no 4-cycles and no 5-cycles. We also give a complete classification of the complexity of this problem and a number of related colouring problems for graphs with bounded maximum degree
    corecore