8 research outputs found

    Pebbling in Semi-2-Trees

    Full text link
    Graph pebbling is a network model for transporting discrete resources that are consumed in transit. Deciding whether a given configuration on a particular graph can reach a specified target is NP{\sf NP}-complete, even for diameter two graphs, and deciding whether the pebbling number has a prescribed upper bound is Π2P\Pi_2^{\sf P}-complete. Recently we proved that the pebbling number of a split graph can be computed in polynomial time. This paper advances the program of finding other polynomial classes, moving away from the large tree width, small diameter case (such as split graphs) to small tree width, large diameter, continuing an investigation on the important subfamily of chordal graphs called kk-trees. In particular, we provide a formula, that can be calculated in polynomial time, for the pebbling number of any semi-2-tree, falling shy of the result for the full class of 2-trees.Comment: Revised numerous arguments for clarity and added technical lemmas to support proof of main theorem bette

    Critical Pebbling Numbers of Graphs

    Full text link
    We define three new pebbling parameters of a connected graph GG, the rr-, gg-, and uu-critical pebbling numbers. Together with the pebbling number, the optimal pebbling number, the number of vertices nn and the diameter dd of the graph, this yields 7 graph parameters. We determine the relationships between these parameters. We investigate properties of the rr-critical pebbling number, and distinguish between greedy graphs, thrifty graphs, and graphs for which the rr-critical pebbling number is 2d2^d.Comment: 26 page

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Subject Index Volumes 1–200

    Get PDF

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    The Complexity Of Pebbling Reachability And Solvability In Planar And Outerplanar Graphs

    No full text
    Given a simple, connected graph, a pebbling configuration is a function from its vertex set to the nonnegative integers. A pebbling move between adjacent vertices removes two pebbles from one vertex and adds one pebble to the other. A vertex r is said to be reachable from a configuration if there exists a sequence of pebbling moves that places at least one pebble on r. A configuration is solvable if every vertex is reachable. We prove that determining reachability of a vertex and solvability of a configuration are NP-complete on planar graphs. We also prove that both reachability and solvability can be determined in O(n6)time on planar graphs with diameter two. Finally, for outerplanar graphs, we present a linear algorithm for determining reachability and a quadratic algorithm for determining solvability. To prove this result, we provide linear algorithms to determine all possible maximal configurations of pebbles that can be placed on the endpoints of a path and on two adjacent vertices in a cycle
    corecore