23 research outputs found

    Applications of mathematical network theory

    Get PDF
    This thesis is a collection of papers on a variety of optimization problems where network structure can be used to obtain efficient algorithms. The considered applications range from the optimization of radiation treatment plkans in cancer therapy to maintenance planning for maximizing the throughput in bulk good supply chains

    Improved Approximation Algorithms for Segment Minimization in Intensity Modulated Radiation Therapy

    Full text link
    he segment minimization problem consists of finding the smallest set of integer matrices that sum to a given intensity matrix, such that each summand has only one non-zero value, and the non-zeroes in each row are consecutive. This has direct applications in intensity-modulated radiation therapy, an effective form of cancer treatment. We develop three approximation algorithms for matrices with arbitrarily many rows. Our first two algorithms improve the approximation factor from the previous best of 1+log⁡2h1+\log_2 h to (roughly) 3/2⋅(1+log⁡3h)3/2 \cdot (1+\log_3 h) and 11/6⋅(1+log⁡4h)11/6\cdot(1+\log_4{h}), respectively, where hh is the largest entry in the intensity matrix. We illustrate the limitations of the specific approach used to obtain these two algorithms by proving a lower bound of (2b−2)b⋅log⁡bh+1b\frac{(2b-2)}{b}\cdot\log_b{h} + \frac{1}{b} on the approximation guarantee. Our third algorithm improves the approximation factor from 2⋅(log⁡D+1)2 \cdot (\log D+1) to 24/13⋅(log⁡D+1)24/13 \cdot (\log D+1), where DD is (roughly) the largest difference between consecutive elements of a row of the intensity matrix. Finally, experimentation with these algorithms shows that they perform well with respect to the optimum and outperform other approximation algorithms on 77% of the 122 test cases we consider, which include both real world and synthetic data.Comment: 18 page

    Approximated multileaf collimator field segmentation

    Get PDF
    In intensity-modulated radiation therapy the aim is to realize given intensity distributions as a superposition of differently shaped fields. Multileaf collimators are used for field shaping. This segmentation task leads to discrete optimization problems, that are considered in this dissertation. A variety of algorithms for exact and approximated segmentation, for different objective functions and various technical as well as dosimetric constraints are developed

    A shortest path-based approach to the multileaf collimator sequencing problem

    Get PDF
    AbstractThe multileaf collimator sequencing problem is an important component in effective cancer treatment delivery. The problem can be formulated as finding a decomposition of an integer matrix into a weighted sequence of binary matrices whose rows satisfy a consecutive ones property. Minimising the cardinality of the decomposition is an important objective and has been shown to be strongly NP-hard, even for a matrix restricted to a single column or row. We show that in this latter case it can be solved efficiently as a shortest path problem, giving a simple proof that the one-row problem is fixed-parameter tractable in the maximum intensity. We develop new linear and constraint programming models exploiting this result. Our approaches significantly improve the best known for the problem, bringing real-world sized problem instances within reach of exact algorithms

    On the minimum cardinality problem in intensity modulated radiotherapy

    Full text link
    The thesis examines an optimisation problem that appears in the treatment planning of intensity modulated radiotherapy. An approach is presented which solved the optimisation problem in question while also extending the approach to execute in a massively parallel environment. The performance of the approach presented is among the fastest available

    Column Generation-Based Techniques for Intensity-Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) Treatment Planning

    Get PDF
    RÉSUMÉ: Les statistiques ont estimĂ© Ă  environ 14,1 millions le nombre de cas de cancer en 2018 dans le monde, et qui devrait passer Ă  24 millions d’ici 2035. La radiothĂ©rapie est l’une des premiĂšres mĂ©thodes de traitement du cancer, qu’environ 50% des patients reçoivent au cours de leur maladie. Cette mĂ©thode endommage le matĂ©riel gĂ©nĂ©tique des cellules cancĂ©reuses, dĂ©truisant ainsi leur capacitĂ© de reproduction. Cependant, les cellules normales sont Ă©galement affectĂ©es par le rayonnement ; par consĂ©quent, le traitement doit ĂȘtre effectuĂ© de maniĂšre Ă  maximiser la dose de rayonnement aux tumeurs, tout en minimisant les effets nĂ©fastes des radiations sur les tissus sains. Les techniques d’optimisation sont utilisĂ©es afin de dĂ©terminer la dose et la position du rayonnement Ă  administrer au corps du patient. Ce projet aborde la radiothĂ©rapie externe Ă  travers la radiothĂ©rapie par modulation d’intensitĂ© (IMRT), ainsi qu’une nouvelle forme appelĂ©e modulation d’intensitĂ© volumĂ©trique par thĂ©rapie par arcs (VMAT). En IMRT, un nombre fini de directions sont dĂ©terminĂ©es pour le rayonnement du faisceau, tandis qu’en VMAT l’accĂ©lĂ©rateur linĂ©aire tourne autour du corps du patient alors que le faisceau est allumĂ©. Cette technologie permet de modifier dynamiquement la forme du faisceau et le dĂ©bit de dose pendant le traitement. Le problĂšme de planification du traitement consiste Ă  choisir une sĂ©quence de distribution des formes de faisceaux, Ă  optimiser le dĂ© bit de dose du faisceau et Ă  dĂ©terminer la vitesse de rotation du portique, si nĂ©cessaire. Cette recherche tire profit de la mĂ©thode de gĂ©nĂ©ration de colonnes, en tant que mĂ©thode d’optimisation efficace en particulier pour les problĂšmes Ă  grande Ă©chelle. Cette technique permet d’amĂ©liorer le temps de traitement et les objectifs cliniques non linĂ©aires et non convexes, dans la planification de traitement en VMAT. Un nouveau modĂšle multi-objectif de gĂ©nĂ©ration de colonnes pour l’IMRT est Ă©galement dĂ©veloppĂ©. Dans le premier essai, nous dĂ©veloppons un nouvel algorithme de gĂ©nĂ©ration de colonnes qui optimise le compromis entre le temps et la qualitĂ© du traitement dĂ©livrĂ© pour la planification de traitement en VMAT. Pour ce faire, une gĂ©nĂ©ration simultanĂ©e de colonnes et de rangĂ©es est dĂ©veloppĂ©e, afin de relier les colonnes, contenant la configuration des ouvertures de faisceaux, aux rangĂ©es du modĂšle, reprĂ©sentant la restriction de temps de traitement. De plus, nous proposons une technique de regroupement par grappe modifiĂ©e, afin d’agrĂ©ger des Ă©lĂ©ments de volume similaires du corps du patient, et de rĂ©duire efficacement le nombre de contraintes dans le modĂšle. Les rĂ©sultats de calcul montrent qu’il est possible d’obtenir un traitement de haute qualitĂ© sur quatre processeurs en parallĂšle. Dans le deuxiĂšme essai, nous dĂ©veloppons une approche de planification automatique intĂ©grant les critĂšres de l’histogramme dose-volume (DVH). Les DVH sont la reprĂ©sentation de dose la plus courante pour l’évaluation de la qualitĂ© de traitement en technologie VMAT. Nous profitons de la procĂ©dure itĂ©rative de gĂ©nĂ©ration de colonnes pour ajuster les paramĂštres du modĂšle lors de la gĂ©nĂ©ration d’ouverture, et rĂ©pondre aux critĂšres DVH non linĂ©aires, sans tenir compte des contraintes dures dans le modĂšle. Les rĂ©sultats sur les cas cliniques montrent que notre mĂ©thodologie a Ă©tĂ© significativement amĂ©liorĂ©e, pour obtenir des plans cliniquement acceptables sans intervention humaine par rapport Ă  une simple optimisation VMAT. De plus, la comparaison avec un systĂšme de planification de traitement commercial existant montre que la qualitĂ© des plans obtenus Ă  partir de la mĂ©thode proposĂ©e, en particulier pour les tissus sains, est largement meilleure alors que le temps de calcul est moindre. Dans le troisiĂšme essai, nous abordons la planification de traitement en IMRT, qui est formulĂ©e comme un problĂšme d’optimisation convexe Ă  grande Ă©chelle, avec un espace de faisabilitĂ© simplex. Nous intĂ©grons d’abord une nouvelle approche de solution basĂ©e sur la mĂ©thode Frank-Wolfe, appelĂ©e Blended Conditional Gradients, dans la gĂ©nĂ©ration de colonnes, pour amĂ©liorer les performances de calcul de la mĂ©thode. Nous proposons ensuite une technique de gĂ©nĂ©ration de colonnes multi-objectif, pour obtenir directement des ouvertures qui se rapprochent d’un ensemble efficace de plans de traitement non dominĂ©s. A cette fin, nous trouvons les limites infĂ©rieure et supĂ©rieure du front de Pareto, et gĂ©nĂ©rons une colonne avec un vecteur de poids des objectifs prĂ©-assignĂ© ou nouveau, rĂ©duisant la distance maximale de deux bornes. Nous prouvons que cet algorithme converge vers le front de Pareto. Les rĂ©sultats de recherche d’un bon compromis de traitement entre la destruction des volumes cibles et la protection des structures saines dans un espace objectif bidimensionnel, montrent l’efficacitĂ© de l’algorithme dans l’approche du front de Pareto, avec des plans de traitement livrables en 3 minutes environ, et Ă©vitant un grand nombre de colonnes. Cette mĂ©thode s’applique Ă©galement Ă  d’autres classes de problĂšmes d’optimisation convexe, faisant appel Ă  la fois Ă  une gĂ©nĂ©ration de colonnes et Ă  une optimisation multi-objectifs.----------ABSTRACT: The statistics have estimated about 18.1 million cancer cases in 2018 around the world, which is expected to increase to 24 million by 2035. Radiation therapy is one of the most important cancer treatment methods, which about 50% of patients receive during their illness. This method works by damaging the genetic material within cancerous cells and destroying their ability to reproduce. However, normal cells are also affected by radiation; therefore, the treatment should be performed in such a way that it maximizes the dose of radiation to tumors, while simultaneously minimizing the adverse effects of radiations to healthy tissues. The optimization techniques are useful to determine where and how much radiation should be delivered to patient’s body. In this project, we address the intensity-modulated radiation therapy (IMRT) as a widelyused external radiotherapy method and also a novel form called volumetric modulated arc therapy (VMAT). In IMRT, a finite number of directions are determined for the beam radiation, while in VMAT, the linear accelerator rotates around the patient’s body while the beam is on. These technologies give us the ability of changing the beam shape and the dose rate dynamically during the treatment. The treatment planning problem consists of selecting a delivery sequence of beam shapes, optimizing the dose rate of the beam, and determining the rotation speed of the gantry, if required. In this research, we take advantages of the column generation technique, as a leading optimization method specifically for large-scale problems, to improve the treatment time and non-linear non-convex clinical objectives in VMAT treatment planning, and also develop a new multi-objective column generation framework for IMRT. In the first essay, we develop a novel column generation algorithm optimizing the trade-off between delivery time and treatment quality for VMAT treatment planning. To this end, simultaneous column-and-row generation is developed to relate the configuration of beam apertures in columns to the treatment time restriction in the rows of the model. Moreover, we propose a modified clustering technique to aggregate similar volume elements of the patient’s body and efficiently reduce the number of constraints in the model. The computational results show that a high-quality treatment is achievable using a four-thread CPU. In the second essay, we develop an automatic planning approach integrating dose-volume histogram (DVH) criteria, the most common method of treatment evaluation in practice, for VMAT treatment planning. We take advantage of the iterative procedure of column generation to adjust the model parameters during aperture generation and meet nonlinear DVH criteria without considering hard constraints in the model. The results on clinical cases show that our methodology had significant improvement to obtain clinically acceptable plans without human intervention in comparison to simple VMAT optimization. In addition, the comparison to an existing commercial treatment planning system shows the quality of the obtained plans from the proposed method, especially for the healthy tissues, is significantly better while the computational time is less. In the third essay, we address the IMRT treatment planning, which is formulated as a large scale convex optimization problem with simplex feasibility space. We first integrate a novel Frank-Wolfe-based solution approach, so-called Blended Conditional Gradients, into the column generation to improve the computational performance for the method. We then propose a multi-objective column generation technique to directly obtain apertures that approximate an efficient non-dominated set of treatment plans. To this end, we find lower and upper bounds for the Pareto front and generate a column with a pre-assigned or new weight-vector of the objectives, reducing the maximum distance of two bounds. We prove this algorithm converges to the Pareto front. The results in a two-dimensional objective space to find the trade-off plans between the treat of target volumes and sparing the healthy structures show the efficiency of the algorithm to approximate the Pareto front with deliverable treatment plans in about 3 minutes, avoiding a large number of columns. This method is also applicable for other classes of convex optimization problems requiring both column generation and multi-objective optimization

    Optimization Methods for Volumetric Modulated Arc Therapy and Radiation Therapy under Uncertainty.

    Full text link
    Treatment plan optimization is crucial in the success of radiation therapy treatments. In order to deliver the prescribed radiation dose to the tumor without damaging the healthy organs, plans must be carefully designed so that collectively the dose delivered from different angles achieves the desired treatment outcome. The development of Volumetric Modulated Arc Therapy (VMAT) enables planners to explore additional benefits compared to traditional Intensity Modulated Radiation Therapy (IMRT). By rotating the gantry and attached source continuously, VMAT treatments can be delivered in a short period of time. While clinics can benefit from improved equipment utilization and less patient discomfort, treatment planning for VMAT is challenging because of the restrictions associated with the continuous gantry motion. We propose a new column generation based algorithm that explicitly considers the physical constraints, and constructs the treatment plan in an iterative process that searches for the maximum marginal improvement in each iteration. Implemented with GPU-based parallel computing, our algorithm is very efficient in generating high quality plans compared to idealized 177-angle IMRT plans. While treatments can benefit from VMAT in many ways, the capital expenditure in upgrading to a dedicated VMAT system is an important factor for clinics. Conventional IMRT machines can deliver VMAT treatments with constant rate of radiation output and gantry speed (VMATC). The absence of the ability to dynamically change the dose rate and gantry speed makes VMATC different in nature from VMAT. We propose two optimization frameworks for optimizing the machine parameters in the treatment, and recommend one configuration that consistently produces high quality plans compared to VMAT treatments. Finally, we consider uncertainties in radiation therapy treatments associated with errors in the daily setup process. We propose a stochastic programming based model that explicitly incorporates the range of uncertain outcomes in both the daily and cumulative dose distributions. While the problem is difficult to solve directly, we use a dynamic sampling procedure that can guarantee close to optimal solutions by establishing bounds on the optimal objective. Experiments with clinical cases show that the stochastic plans outperform the conventional approach, and reveal important information for planning adaptive treatments.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99813/1/feipeng_1.pd

    Concepts for the efficient Monte Carlo-based treatment plan optimization in radiotherapy

    Get PDF
    Monte Carlo (MC) dose calculation algorithms are regarded as the gold standard in intensity-modulated radiation therapy (IMRT). Simply adding a MC dose calculation engine to a standard IMRT optimization framework is possible but computationally inefficient. Thus, the optimization would be too time consuming for clinical practice. In this work we developed a hybrid algorithm for the treatment plan optimization that combines the accuracy of MC simulations with the efficiency of less precise dose calculation algorithms. Two methods are introduced that allow a rapid convergence of the iterative optimization algorithm and preserve the efficiency of the MC dose calculation. The performance of the hybrid optimization algorithm is analyzed on different treatment sites. The results are compared against a reference optimization algorithm, which is based on MC simulations in the standard IMRT framework. For this comparison we evaluated several indicators of treatment plan quality, convergence properties, calculation times and efficiency ratios. The efficiency of the optimization could be improved from originally 10-30% to 80-95%. Due to this improvement the calculation times could be reduced to 2-28 minutes, depending on the treatment plan complexity. At the same time, the treatment plan quality could be maintained compared to the reference algorithm
    corecore