2,516 research outputs found

    Exact Algorithm for Graph Homomorphism and Locally Injective Graph Homomorphism

    Full text link
    For graphs GG and HH, a homomorphism from GG to HH is a function φ ⁣:V(G)V(H)\varphi \colon V(G) \to V(H), which maps vertices adjacent in GG to adjacent vertices of HH. A homomorphism is locally injective if no two vertices with a common neighbor are mapped to a single vertex in HH. Many cases of graph homomorphism and locally injective graph homomorphism are NP-complete, so there is little hope to design polynomial-time algorithms for them. In this paper we present an algorithm for graph homomorphism and locally injective homomorphism working in time O((b+2)V(G))\mathcal{O}^*((b + 2)^{|V(G)|}), where bb is the bandwidth of the complement of HH

    Lower Bounds for the Graph Homomorphism Problem

    Full text link
    The graph homomorphism problem (HOM) asks whether the vertices of a given nn-vertex graph GG can be mapped to the vertices of a given hh-vertex graph HH such that each edge of GG is mapped to an edge of HH. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 22-CSP problem. In this paper, we prove several lower bound for HOM under the Exponential Time Hypothesis (ETH) assumption. The main result is a lower bound 2Ω(nloghloglogh)2^{\Omega\left( \frac{n \log h}{\log \log h}\right)}. This rules out the existence of a single-exponential algorithm and shows that the trivial upper bound 2O(nlogh)2^{{\mathcal O}(n\log{h})} is almost asymptotically tight. We also investigate what properties of graphs GG and HH make it difficult to solve HOM(G,H)(G,H). An easy observation is that an O(hn){\mathcal O}(h^n) upper bound can be improved to O(hvc(G)){\mathcal O}(h^{\operatorname{vc}(G)}) where vc(G)\operatorname{vc}(G) is the minimum size of a vertex cover of GG. The second lower bound hΩ(vc(G))h^{\Omega(\operatorname{vc}(G))} shows that the upper bound is asymptotically tight. As to the properties of the "right-hand side" graph HH, it is known that HOM(G,H)(G,H) can be solved in time (f(Δ(H)))n(f(\Delta(H)))^n and (f(tw(H)))n(f(\operatorname{tw}(H)))^n where Δ(H)\Delta(H) is the maximum degree of HH and tw(H)\operatorname{tw}(H) is the treewidth of HH. This gives single-exponential algorithms for graphs of bounded maximum degree or bounded treewidth. Since the chromatic number χ(H)\chi(H) does not exceed tw(H)\operatorname{tw}(H) and Δ(H)+1\Delta(H)+1, it is natural to ask whether similar upper bounds with respect to χ(H)\chi(H) can be obtained. We provide a negative answer to this question by establishing a lower bound (f(χ(H)))n(f(\chi(H)))^n for any function ff. We also observe that similar lower bounds can be obtained for locally injective homomorphisms.Comment: 19 page

    Graph homomorphisms and components of quotient graphs

    Get PDF
    We study how the number c(X)c(X) of components of a graph XX can be expressed through the number and properties of the components of a quotient graph X/.X/\sim. We partially rely on classic qualifications of graph homomorphisms such as locally constrained homomorphisms and on the concept of equitable partition and orbit partition. We introduce the new definitions of pseudo-covering homomorphism and of component equitable partition, exhibiting interesting inclusions among the various classes of considered homomorphisms. As a consequence, we find a procedure for computing c(X)c(X) when the projection on the quotient X/X/\sim is pseudo-covering. That procedure becomes particularly easy to handle when the partition corresponding to X/X/\sim is an orbit partition.Comment: arXiv admin note: text overlap with arXiv:1502.0296

    Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree.

    Get PDF
    A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even when G has pathwidth at most 5, 4 or 2, respectively, or when both G and H have maximum degree 3. We complement these hardness results by showing that the three problems are polynomial-time solvable if G has bounded treewidth and in addition G or H has bounded maximum degree

    An Algebraic Preservation Theorem for Aleph-Zero Categorical Quantified Constraint Satisfaction

    Full text link
    We prove an algebraic preservation theorem for positive Horn definability in aleph-zero categorical structures. In particular, we define and study a construction which we call the periodic power of a structure, and define a periomorphism of a structure to be a homomorphism from the periodic power of the structure to the structure itself. Our preservation theorem states that, over an aleph-zero categorical structure, a relation is positive Horn definable if and only if it is preserved by all periomorphisms of the structure. We give applications of this theorem, including a new proof of the known complexity classification of quantified constraint satisfaction on equality templates
    corecore