10 research outputs found

    Dominating sets reconfiguration under token sliding

    Get PDF

    TS-Reconfiguration of Dominating Sets in circle and circular-arc graphs

    Full text link
    We study the dominating set reconfiguration problem with the token sliding rule. It consists, given a graph G=(V,E) and two dominating sets D_s and D_t of G, in determining if there exists a sequence S= of dominating sets of G such that for any two consecutive dominating sets D_r and D_{r+1} with r<t, D_{r+1}=(D_r\ u) U v, where uv is an edge of G. In a recent paper, Bonamy et al studied this problem and raised the following questions: what is the complexity of this problem on circular arc graphs? On circle graphs? In this paper, we answer both questions by proving that the problem is polynomial on circular-arc graphs and PSPACE-complete on circle graphs.Comment: This work was supported by ANR project GrR (ANR-18-CE40-0032) and submitted to the conference WADS 202

    Shortest Reconfiguration of Matchings

    Full text link
    Imagine that unlabelled tokens are placed on the edges of a graph, such that no two tokens are placed on incident edges. A token can jump to another edge if the edges having tokens remain independent. We study the problem of determining the distance between two token configurations (resp., the corresponding matchings), which is given by the length of a shortest transformation. We give a polynomial-time algorithm for the case that at least one of the two configurations is not inclusion-wise maximal and show that otherwise, the problem admits no polynomial-time sublogarithmic-factor approximation unless P = NP. Furthermore, we show that the distance of two configurations in bipartite graphs is fixed-parameter tractable parameterized by the size dd of the symmetric difference of the source and target configurations, and obtain a dεd^\varepsilon-factor approximation algorithm for every ε>0\varepsilon > 0 if additionally the configurations correspond to maximum matchings. Our two main technical tools are the Edmonds-Gallai decomposition and a close relation to the Directed Steiner Tree problem. Using the former, we also characterize those graphs whose corresponding configuration graphs are connected. Finally, we show that deciding if the distance between two configurations is equal to a given number ℓ\ell is complete for the class DPD^P, and deciding if the diameter of the graph of configurations is equal to ℓ\ell is DPD^P-hard.Comment: 31 pages, 3 figure

    Parameterized Complexities of Dominating and Independent Set Reconfiguration

    Get PDF
    We settle the parameterized complexities of several variants of independent set reconfiguration and dominating set reconfiguration, parameterized by the number of tokens. We show that both problems are XL-complete when there is no limit on the number of moves and XNL-complete when a maximum length â„“\ell for the sequence is given in binary in the input. The problems are known to be XNLP-complete when â„“\ell is given in unary instead, and W[1]W[1]- and W[2]W[2]-hard respectively when â„“\ell is also a parameter. We complete the picture by showing membership in those classes. Moreover, we show that for all the variants that we consider, token sliding and token jumping are equivalent under pl-reductions. We introduce partitioned variants of token jumping and token sliding, and give pl-reductions between the four variants that have precise control over the number of tokens and the length of the reconfiguration sequence.Comment: 31 pages, 3 figure

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore