
Parameterized Complexities of Dominating and
Independent Set Reconfiguration
Hans L. Bodlaender
Department of Information and Computing Sciences, Utrecht University, The Netherlands

Carla Groenland
Department of Information and Computing Sciences, Utrecht University, The Netherlands

Céline M. F. Swennenhuis #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Abstract
We settle the parameterized complexities of several variants of independent set reconfiguration
and dominating set reconfiguration, parameterized by the number of tokens. We show that both
problems are XL-complete when there is no limit on the number of moves and XNL-complete when
a maximum length ℓ for the sequence is given in binary in the input. The problems are known to be
XNLP-complete when ℓ is given in unary instead, and W[1]- and W[2]-hard respectively when ℓ is
also a parameter. We complete the picture by showing membership in those classes.

Moreover, we show that for all the variants that we consider, token sliding and token jumping
are equivalent under pl-reductions. We introduce partitioned variants of token jumping and token
sliding, and give pl-reductions between the four variants that have precise control over the number
of tokens and the length of the reconfiguration sequence.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases Parameterized complexity, independent set reconfiguration, dominating set
reconfiguration, W-hierarchy, XL, XNL, XNLP

Digital Object Identifier 10.4230/LIPIcs.IPEC.2021.9

Related Version Full Version: https://arxiv.org/abs/2106.15907 [2]

Funding Carla Groenland: Supported by the project CRACKNP that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research innovation
programme (grant agreement No 853234).
Céline M. F. Swennenhuis: Supported by the Netherlands Organization for Scientific Research under
project no. 613.009.031b.

Acknowledgements We would like to thank the referees for useful comments.

1 Introduction

In this paper, we study the parameterized complexity of reconfiguration of independent sets,
and of dominating sets, with the sizes of the sets as parameter. Interestingly, the complexity
varies depending on the assumptions on the length of the reconfiguration sequence, which can
be unbounded, given in binary, given in unary, or given as second parameter. One can study
the reconfiguration problems for different reconfiguration rules; we will show equivalence
regarding the complexity for several reconfiguration rules.

© Hans L. Bodlaender, Carla Groenland, and Céline M. F. Swennenhuis;
licensed under Creative Commons License CC-BY 4.0

16th International Symposium on Parameterized and Exact Computation (IPEC 2021).
Editors: Petr A. Golovach and Meirav Zehavi; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9297-3330
https://orcid.org/0000-0002-9878-8750
mailto:c.m.f.swennenhuis@tue.nl
https://orcid.org/0000-0001-9654-8094
https://doi.org/10.4230/LIPIcs.IPEC.2021.9
https://arxiv.org/abs/2106.15907
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Parameterized Complexities of Dominating and Independent Set Reconfiguration

Independent Set Reconfiguration

In the Independent Set Reconfiguration problem, we are given a graph and two
independent sets A and B, and wish to decide we can “reconfigure” A to B via a “valid”
sequence of independent sets A, I1, . . . , Iℓ−1, B. Suppose that we represent the current
independent set by placing a token on each vertex. We can move between two independent
sets by moving a single token. We consider two well-studied rules for deciding how we can
move the tokens.

Token jumping (TJ): we can “jump” a single token to any vertex that does not yet contain
a token.
Token sliding (TS): we can “slide” a single token to an adjacent vertex that does not yet
contain a token.

Independent Set Reconfiguration is PSPACE-complete for both rules [9], but their
complexities may be different when restricting to specific graph classes. For example,
Independent Set Reconfiguration is NP-complete on bipartite graphs under the token
jumping rule, but remains PSPACE-complete under the token sliding rule [11].

There is a third rule which has been widely studied, called the token addition-removal rule,
but this rule is equivalent to the token jumping rule for our purposes (see e.g. [9, Theorem
1]). As further explained later, we show that the token jumping and the token sliding rule
are also equivalent in some sense (which is much weaker but does allow us to control all the
parameters that we care about). We will therefore not explicitly mention the specific rule
under consideration below.

Throughout this paper, our reconfiguration problems are parameterized by the number
of tokens (the size of the independent set). Independent Set Reconfiguration is W[1]-
hard [7], but the problem is not known to be in W[1]. We show that in fact it is complete for
the class XL, consisting of the parameterized problems that can be solved by a deterministic
algorithm that uses f(k) log n space, where k is the parameter, n the input size and f any
computable function.

▶ Theorem 1. Independent Set Reconfiguration is XL-complete.

In the Timed Independent Set Reconfiguration, we are given an integer ℓ in unary
and two independent sets A and B in a graph G, and need to decide whether there is a
reconfiguration sequence from A to B of length at most ℓ. We again parameterize it by the
number of tokens. The following result has been shown by the authors and Nederlof [1].

▶ Theorem 2 ([1]). Timed Independent Set Reconfiguration is XNLP-complete.

The class XNLP (also denoted N [f poly, f log] by Elberfeld et al. [5]) is the class of parame-
terized problems that can be solved with a non-deterministic algorithm with simultaneously,
the running time bounded by f(k)nc and the space usage bounded by f(k) log n, with k the
parameter, n the input size, c a constant, and f a computable function. This is a natural
subclass of the class XNL, which consists of the parameterized problems that can be solved by
a nondeterministic algorithm that uses f(k) log n space. Amongst others, XNL was studied
by Chen et al. [3].

The classes XL, XNL, XSL, XP can be seen as the parameterized counterparts of L, NL,
SL, P respectively. Although no explicit time bound is given, we can freely add a time bound
of 2f(k) log n, and thus XNL is a subset of XP. We remark that XL=XSL1 [15] (just as L=SL),
XL⊆XNL and XNLP⊆XNL.

1 A proof can be found in Appendix A of the full version [2]

H. L. Bodlaender, C. Groenland, and C. M. F. Swennenhuis 9:3

Table 1 The table shows the parameterized complexities of the independent set and dominating
set reconfiguration problems, parameterized by the number of tokens, depending on the treatment
of the bound ℓ on the length of the reconfiguration sequence.

Sequence length ℓ Independent Set Dominating Set Sources
not given XL-complete XL-complete Theorems 1, 5
parameter W[1]-complete W[2]-complete Theorems 4, 5 and [12]
unary input XNLP-complete XNLP-complete [1]
binary input XNL-complete XNL-complete Theorems 3, 5

In Binary Timed Independent Set Reconfiguration, the bound ℓ on the length of
the sequence is given in binary2. Interestingly, this slight adjustment to Timed Independent
Set Reconfiguration is complete for XNL instead.

▶ Theorem 3. Binary Timed Independent Set Reconfiguration is XNL-complete.

Finally, we consider what happens when we consider ℓ to be a parameter instead. If Timed
Independent Set Reconfiguration (or equivalently Binary Timed Independent Set
Reconfiguration) is parameterized by the size of the independent set and the length of
the sequence3, then it is W[1]-hard [12]4. We show that in this case, W[1] is the “correct
class”.

▶ Theorem 4. Timed Independent Set Reconfiguration is in W[1] when parameterized
by the size of the independent set and the length of the sequence.

Dominating set reconfiguration

The dominating set reconfiguration problem is similar to the independent set reconfiguration
problem, but in this case all sets in the sequence must form a dominating set in the graph.
This again gives a PSPACE-complete problem [6]. We define the parameterized problems
Dominating Set Reconfiguration, Timed Dominating Set Reconfiguration and
Binary Timed Dominating Set Reconfiguration similarly as their independent set
counterparts, again parameterized by the number of tokens. Since Dominating Set is
W[2]-complete and Independent Set is W[1]-complete (parameterized by “the number
of tokens”), it may be expected that the reconfiguration variants also do not have the
same parameterized complexity. Indeed, Timed Dominating Set Reconfiguration is
W[2]-hard when it is moreover parameterized by the length of the sequence [12].

We show that the picture is otherwise the same as for independent set.

▶ Theorem 5. Dominating Set Reconfiguration is XL-complete. Binary Timed
Dominating Set Reconfiguration is XNL-complete. Timed Dominating Set Recon-
figuration is W[2]-complete when moreover parameterized by the length of the sequence.

It was already known that Timed Dominating Set Reconfiguration is XNLP-complete [1].
The proof Theorem 5 can be found in Appendix C of the the full version of this paper [2]. A
summary of our results can be found in Table 1.

2 Giving ℓ in binary implies that it contributes log2(ℓ) to the size of an instance of Binary Timed
Independent Set Reconfiguration.

3 We can also consider it to be parameterized by the sum of the two parameters.
4 Mouawad et al. [12] only studied the token jumping variant, but Theorem 6 implies the hardness also

holds for token sliding.

IPEC 2021

9:4 Parameterized Complexities of Dominating and Independent Set Reconfiguration

Many other types of reconfiguration problems have been studied as well, and we refer the
reader to the surveys by Van den Heuvel [14] and Nishimura [13] for further background.

Equivalences between token jumping and token sliding

In Appendix D of the full version [2], we introduce partitioned variants of token sliding
and token jumping in which the tokens need to stay within specified token sets. We prove
the theorem below by giving reductions from and to the independent set reconfiguration
problems (with the four rules: (partitioned) token sliding and (partitioned) token jumping)
that control the number of tokens and the length of the reconfiguration sequence. We give
similar reductions for the dominating set reconfiguration problems.

▶ Theorem 6. For the following parameterized problems, their variant with the token jump-
ing rule is equivalent under pl-reductions and fpt-reductions to their variant with the token
sliding rule: Independent Set Reconfiguration, Timed Independent Set Reconfig-
uration, Binary Independent Set Reconfiguration and Timed Independent Set
Reconfiguration when moreover parameterized by the length of the sequence. The same
holds for the dominating set variants.

2 Preliminaries

We write N for the set of integers 0, 1, 2, . . . and write [a, b] for the set of integers x with
a ≤ x ≤ b. All logs in this paper are base 2.

Parameterized reductions

A parameterized reduction from a parameterized problem Q1 ⊆ Σ∗
1 × N to a parameterized

problem Q2 ⊆ Σ∗
2 × N is a function f : Σ∗

1 × N → Σ∗
2 × N, such that the following holds.

1. For all (x, k) ∈ Σ∗
1 × N, (x, k) ∈ Q1 if and only if f((x, k)) ∈ Q2.

2. There is a computable function g, such that for all (x, k) ∈ Σ∗
1 × N, if f((x, k)) = (y, k′),

then k′ ≤ g(k).
A parameterized logspace reduction or pl-reduction is a parameterized reduction for which
there is an algorithm that computes f((x, k)) in space O(g(k) + log n), with g a computable
function and n = |x| the number of bits to denote x.

Symmetric Turing Machine

A Symmetric Turing Machine (STM) is a Nondeterministic Turing Machine (NTM), where
the transitions are symmetric. That means that for any transition, we can also take its
inverse back. More formally, a Symmetric Turing Machine with one work tape is a 5-tuple
(S, Σ, T , sstart, A), where S is a finite set of states, Σ is the alphabet, T is the set of transitions,
sstart is the start state and A is the set of accepting states. A transition τ ∈ T is a tuple of
the form (p, ∆, q) describing a transition the STM may take, where p, q ∈ S are states and ∆
is a tape triple. A tape triple is equal to either (ab, δ, cd), where a, b, c, d ∈ Σ and δ ∈ {−1, 1},
or (a, 0, b), where a, b ∈ Σ. For example, the transition (p, (ab, 1, cd), q) describes that if the
STM is in state p, reads a and b on the current work tape cell and the cell directly right of
it, then it can replace a with c, b with d, moving the head to the right and going to state q.

Let ∆ = (ab, δ, cd) be a state triple, then its inverse is defined as ∆−1 = (cd, −δ, ab). The
inverse of ∆ = (a, 0, b) is defined as ∆−1 = (b, 0, a). By definition of the Symmetric Turing
Machine, for any τ ∈ T , there is an inverse transition τ−1 ∈ T , i.e. if τ = (p, ∆, q) ∈ T ,
then τ−1 = (q, ∆−1, p) ∈ T .

H. L. Bodlaender, C. Groenland, and C. M. F. Swennenhuis 9:5

We say that STM M accepts if there is a computation of M that ends in an accepting
state. We remark that the Turing Machines in this paper do not have an input tape, as it is
hidden in the states (see Appendix A of the full version [2]). For a more formal definition
of Symmetric Turing Machines we would like to refer to the definition from Louis and
Papadimitriou in [10].

Note that we may assume that there is only one accepting state sacc ∈ A, by creating
this new state sacc and adding a transition to sacc from any original accepting state. We
may also assume all transitions to move the tape head to the left or right. This can be
accomplished by replacing each transition τ = (p, (a, 0, b), q) with 2|Σ| transitions as follows.
For all σ ∈ Σ, we create a new state sσ and two new transitions τ1

σ = (p, (aσ, 1, bσ), sσ) and
τ2

σ = (sσ, (bσ, −1, bσ), q).
The following problem will be used in the reductions of Section 3.

Accepting Log-Space Symmetric Turing Machine
Given: A STM M = (S, Σ, T , sstart, A) with Σ = [1, n] and a work tape with k cells.
Parameter: k.
Question: Does M accept?

We define Accepting Log-Space Nondeterministic Turing Machine to be the
Nondeterministic Turing Machine analogue of Accepting Log-Space Symmetric Turing
Machine.

▶ Theorem 7. Accepting Log-Space Symmetric Turing Machine is XL-complete
and Accepting Log-Space Nondeterministic Turing Machine is XNL-complete.

A proof of Theorem 7 can be found in Appendix A of the full version [2].
In our reductions we use the notion of a configuration, describing exactly in what state

an NTM (and therefore an STM) and its tape are.

▶ Definition 8. Let M = (S, Σ, T , sstart, A) be an NTM with Σ = [1, n] and k cells on the
work tape and let α ∈ Σ∗ be the input. A configuration of M is a k + 2 tuple (p, i, σ1, . . . , σk)
where p ∈ S, i ∈ [1, k] and σ1, . . . , σk ∈ Σ, describing the state, head position and content of
the work tape of M respectively.

3 Proof of Theorem 1: XL-completeness

By Theorem 6, it suffices to show that the following problem is XL-complete.

Partitioned TS-Independent Set Reconfiguration
Given: Graph G = (V, E); independent sets Iinit, Ifin of size k; a partition V = ⊔k

i=1Pi

of the vertex set.
Parameter: k.
Question: Does there exist a sequence Iinit = I0, I1, . . . , IT = Ifin of independent sets

of size k for some T , with |It ∩ Pi| = 1 for all t ∈ [0, T] and i ∈ [1, k], such that
for all t ∈ [1, T], It = It−1 \ {u} ∪ {v} for some uv ∈ E(G) with u ∈ It−1 and
v ̸∈ It−1?

Theorem 6 then implies the XL-completeness results for the other variants of Independent
Set Reconfiguration.

The XL-completeness proof for Partitioned TS-Dominating Set Reconfiguration
is similar and given in Appendix C of the full version [2].

IPEC 2021

9:6 Parameterized Complexities of Dominating and Independent Set Reconfiguration

▶ Theorem 9. Partitioned TS-Independent Set Reconfiguration is XL-complete.

Proof. By Theorem 7, it suffices to give pl-reductions to and from Accepting Log-Space
Symmetric Turing Machine.

The problem is in XL (=XSL) as it can be simulated with a Symmetric Turing Machine
with O(k log n) space as follows. We store the current independent set of size k on the
work tape, which takes about k · log n bits space. We use the transitions of the STM to
model the changes of one of the vertices in the independent set. For all vertices u, v ∈ V ,
we have a sequence of states and transitions that allows you to remove u and add v to the
independent set currently stored on the work tape, if the following assumptions are met:
u ∈ I, v ̸∈ I, uv ∈ E(G), u, v are part of the same token set (part of the partition) and I ′

is an independent set. This gives a total of O(n2k2) states. There is one accepting state,
reachable via a sequence of states and transitions that verifies that the current independent
set is the final independent set. All transitions are symmetric.

We prove the problem to be XL-hard by giving a reduction from Accepting Log-Space
Symmetric Turing Machine. Let M = (S, Σ, T , sstart, A) be the STM of a given instance,
with A = {sacc}, Σ = [1, n] and a work tape of k cells. We may assume that M only accepts
if the symbol 1 is on every cell of the work tape and the head is at the first position. This can
be done by creating a new accepting state and adding O(k) transitions from sacc to this new
state, which set only 1’s on the work tape and move the head to the first position. We create
an instance Γ of Partitioned TS-Independent Set Reconfiguration with k′ = k + 1
tokens. These tokens will simulate the configuration of M: k tape-tokens modeling the work
tape cells and one state token describing the current state and tape head position.

Tape gadgets. For each work tape cell i ∈ [1, k], we create a tape gadget consisting of n + 1
vertices as follows. We add a vertex vi

σ for all σ ∈ Σ = [1, n] and a vertex yi, connected to
vi

σ for all σ ∈ Σ. The vertices in a tape gadget form a token set (a part of the partition, i.e.
exactly one of these n + 1 vertices is in the independent set at any given time). The symbol
σ that is on the ith work tape cell of M is simulated by which vi

σ is in the independent set.

State vertices. The last token set is the set of all transition and state vertices (defined
below), meaning that exactly one of these vertices is in the independent set at any given
time. The token of this set (called the “state token”) simulates the state of M, the position
of the head, and the transition M takes.

We create a vertex pi for each state p ∈ S and all head positions i ∈ [1, k]. We add edges
piyi′ for all i′ ∈ [1, k]. These vertices will simulate the current state of M and the position i

of the tape head.

Transition vertices. To go from one state vertex to another, we create a path of three
transition vertices, to checking whether the work tape agrees with the transition before and
afterwards, and one allowing moving some tokens of the tape gadget. To control when we
can move tokens in the tape gadgets, we put edges between yi and all state and transition
vertices (for each i ∈ [1, k]), unless specified otherwise. We further outline which edges are
present below, and give an example in Figure 1.

Recall that we may assume that head always moves left or right. Consider first a transition
τ ∈ T that moves the head to the right, say τ = (p, (ab, 1, cd), q). For all i ∈ [1, k − 1], we
create a path between state vertices pi and qi+1 consisting of three “transition” vertices: τ i

ab,
τ i

shift and τ i
cd. In order to ensure a token can only be on τ i

ab when the token on the ith tape
gadget represents the symbol a, we add edges from τ i

ab to vi
σ for all σ ∈ Σ \ {a}. Similarly,

H. L. Bodlaender, C. Groenland, and C. M. F. Swennenhuis 9:7

pi qi+1τ i
ab τ i

shift τ i
cd

vi
a

vi
b

vi
c

vi
d

vi+1
a

vi+1
b

vi+1
c

vi+1
d

yi yi+1

Figure 1 Sketch of part of the construction of Theorem 9. Given are the two tape gadgets for
positions i and i + 1, two state vertices and a transition path for transition τ = (p, (ab, 1, cd), q).

edges to vi+1
σ are added for all σ ∈ Σ \ {b}, as well as edges between τ i

cd and all vi
σ and vi+1

σ

except for vi
c and vi+1

d . When the token is on the shift vertex τ i
shift, the independent set is

allowed to change the token in the ith and (i + 1)th tape gadget. Therefore, we remove the
edges between yi and yi+1 and τ i

shift.
Note that the constructed paths also handle transitions which move the tape head to the

left, as we can transverse the constructed paths in both directions. We omit the details.

Initial and final independent sets. Recall that sstart is the starting state of M. We let
the initial independent set be Iinit = {s1

start} ∪
(⋃

i∈[1,k]{vi
1}

)
, corresponding to the initial

configuration of M. Let the final independent set be Ifin = {s1
acc} ∪

(⋃
i∈[1,k]{vi

1}
)

, where
sacc is the accepting state of M. We note that both Iinit and Ifin are independent sets.

Let Γ be the created instance of Partitioned TS-Independent Set Reconfiguration.
We prove that Γ is a yes-instance is and only if M accepts. We use the following function,
hinting at the equivalence between configurations of M and certain independent sets of Γ.

▶ Definition 10. Let C = (p, i, σ1, . . . , σk) be a configuration of M. Then let I(C) be the
corresponding independent set in Γ:

I(C) = {pi} ∪

 k⋃
j=1

{
vj

σj

}
▷ Claim 11. Γ is a yes-instance if M accepts.

Proof. Let C1, . . . , Cℓ be the sequence of configurations such that M accepts. We note that
I(C1) = Iinit. For each t ∈ [1, ℓ − 1], we do the following. Let Ct = (p, i, σ1, . . . , σk). Let τ

be the transition M takes to the next configuration. Assume τ = (p, (ab, 1, cd), q), the case
where τ moves the head to the left will be discussed later, but is similar. Take the following

IPEC 2021

9:8 Parameterized Complexities of Dominating and Independent Set Reconfiguration

sequence of independent sets, where I(Ct) = I0 is the current independent set:

I1 = I0 \
{

pi
}

∪
{

τ i
ab

}
I5 = I4 \

{
vi+1

b

}
∪

{
yi+1}

I2 = I1 \
{

τ i
ab

}
∪

{
τ i

shift
}

I6 = I5 \
{

yi+1}
∪

{
vi+1

d

}
I3 = I2 \

{
vi

a

}
∪

{
yi

}
I7 = I6 \

{
τ i

shift
}

∪
{

τ i
cd

}
I4 = I3 \

{
yi

}
∪

{
vi

c

}
I8 = I7 \

{
τ i

cd

}
∪

{
qi+1}

Notice that this sequence of independent sets is allowed, as all sets are independent, each
token stays within its token set and each next independent set is a slide away from its
previous. Also, we see that I(Ct+1) = I8. For transition τ = (p, (ab, −1, cd), q), where the
tape head moves to the left, we do the following. Let τ−1 = (q, (cd, 1, ab), p) be the inverse.
We take the sequence that belongs to τ−1 backwards, i.e. if I0, . . . , I8 was the sequence of
independent sets as described for τ−1, then take the sequence I8, . . . , I0.

We note that I(Cℓ) = Ifin is the final independent set, as we assumed the machine only
to accept with σi = 1 for all i ∈ [1, k] and the head at the first position. Therefore, we find
that this created sequence of independent sets is a solution to Γ. ◁

We now prove the other direction.

▷ Claim 12. M accepts if Γ is a yes-instance.

Proof. Let Iinit = I1, . . . , Iℓ−1, Iℓ = Ifin be the sequence of independent sets that is a solution
to Γ. We assume this sequence to be minimal, implying that no independent set can occur
twice.

The state token should always be on either a state or transition vertex, because of its
token set. Let I ′

1, . . . , I ′
ℓ′ be the subsequence of I1, . . . , Iℓ of independent sets that include a

state vertex. We will prove that the configurations of M, simulated by this subsequence, is a
sequence of configurations that leads to the accepting state sacc. To do this, first we note
some general facts about It for t ∈ [1, ℓ].

If the state token of It is on a state vertex pi, then It+1 slides the state token to a neighbor
of pi. This is because all yi′ for i′ ∈ [1, k] are neighbors of pi, hence the tokens in the tape
gadgets are on some vi′

σ and cannot move. The same holds for transition vertices of the form
τ i

ab. If τ i
shift ∈ It, then yi and yi+1 are not neighbors of the state token. Therefore, the ith

and i + 1th tape gadgets token can now slide. If τ i
ab ∈ It, then vi

a ∈ It and vi+1
b ∈ It. This is

because all other vertices of the ith and i + 1th tape gadgets are neighbors of τ i
ab.

Recall that I ′
1, . . . , I ′

ℓ′ is the sequence of independent sets with the state token on a
state vertex. For any I ′

t with t ∈ [1, ℓ′], let Ct be the unique configuration of M such that
I(Ct) = I ′

t. We prove that C1, . . . , Cℓ′ is an allowed sequence of configurations for M. Note
that this implies that M accepts as Cℓ′ is the accepting configuration.

We fix t ∈ [1, ℓ′] and focus on the transition between Ct and Ct+1. Let A1, . . . , AR be the
sequence of independent sets in the solution of Γ, that are visited between I ′

t and I ′
t+1. By

definition of I ′
t and I ′

t+1, Ar does not contain a state vertex for all r ∈ [1, R], therefore each
Ar must have its state token on a transition vertex. Each such transition vertex corresponds
to the same transition τ = (p, ∆, q), as this is the only path the state token can take. We
assume that ∆ = (ab, 1, cd), the case ∆ = (ab, −1, cd) can be proved with similar arguments.
The set A1 contains transition vertex τ i

ab and therefore I ′
t contains vi

a and vi+1
b . Also, AR

contains τ i
cd, implying that vi

c, vi+1
d ∈ I ′

t+1. We note that A2, . . . , AR−1 must contain τ i
shift:

only the ith and i + 1th tape gadget tokens can shift when the state token is on τ i
shift. So if

the state token would be on τ i
ab or τ i

cd twice in A1, . . . , AR, the independent sets would be
equal, contradicting the minimal length of the sequence.

H. L. Bodlaender, C. Groenland, and C. M. F. Swennenhuis 9:9

Combining this all, we conclude that if I(Ct) = I ′
t and I(Ct+1) = I ′

t+1, there is an allowed
sequence of independent set, traversing the path belonging to a transition τ = (p, (ab, 1, cd), q).
Therefore, It+1 = It \ {vi

a, vi+1
b , pi} ∪ {vi

c, vi+1
d , qi+1} and we are allowed to take transition τ

from Ct to end up in configuration Ct+1. ◁

Hence, Γ is a yes instance if and only if M accepts and we find that the given reduction
is correct. This concludes the proof of Theorem 9. ◀

4 Proof of Theorem 3: XNL-completeness

In this section we prove Theorem 3 by showing that the following problem is XNL-complete.

Binary Timed Partitioned TS-Independent Set Reconfiguration
Given: Graph G = (V, E); independent sets Iinit, Ifin of size k; integer ℓ given in

binary; a partition V = ⊔k
i=1Pi of the vertex set.

Parameter: k.
Question: Does there exist a sequence Iinit = I0, I1, . . . , IT = Ifin of independent sets

of size k with T ≤ ℓ and |It ∩ Pi| = 1 for all t ∈ [0, T] and i ∈ [1, k], such that
for all t ∈ [1, T], It = It−1 \ {u} ∪ {v} for some uv ∈ E(G) with u ∈ It−1 and
v ̸∈ It−1?

To prove XNL-hardness, we introduce a variant of CNF-SAT. The following is a “long
chain”-variant of the XNLP-complete problems “chained CNF-Satisfiability” introduced
by [1].

Long Partitioned Positive Chain Satisfiability
Input: Integers k, q, r ∈ N with r given in binary and r ≤ qk; Boolean formula F ,

which is an expression on 2q positive variables and in conjunctive normal form; a
partition of [1, q] into k parts P 1, . . . , P k.

Parameter: k.
Question: Do there exist variables x

(t)
j for t ∈ [1, r] and j ∈ [1, q], such that we can

satisfy the formula∧
1≤t≤r−1

F (x(t)
1 , . . . , x(t)

q , x
(t+1)
1 , . . . , x(t+1)

q)

by setting, for i ∈ [1, k] and t ∈ [1, r], exactly one variable from the set {x
(t)
j : j ∈

Pi} to true and all others to false?

We remark that all XNLP-complete “chained satisfiability” variant of [1] have an XNL-
complete analogue, but we decided to only present the form we need for this section. In
Appendix B of the full version [2], we prove the following result.

▶ Theorem 13. Long Partitioned Positive Chain Satisfiability is XNL-complete.

From this, we derive the following result.

▶ Theorem 14. Binary Timed Partitioned TS-Independent Set Reconfiguration
is XNL-complete.

Recall that Theorem 6 then implies the XNL-completeness results for the other variants of
Binary Timed Independent Set Reconfiguration. A similar proof for the dominating
set variant can be found in Appendix C.2 of the full version [2].

IPEC 2021

9:10 Parameterized Complexities of Dominating and Independent Set Reconfiguration

Proof of Theorem 14. We first show that Binary Timed Partitioned TS-Independent
Set Reconfiguration is in XNL, that is, it can be modelled by a Nondeterministic Turing
Machine using a work tape of size O(k log n). One can store the current independent set
of size k on the work tape and allow only transitions between an independent set I to an
independent set I ′ = I \ {v} ∪ {w} if vw ∈ E, v ∈ I and w ̸∈ I. We can generate the possible
independent sets adjacent to a given independent set I and keep track of the number of
moves on a work tape of size O(k log n). Since the number of independent sets of size k is at
most nk, and a shortest sequence consists of distinct independent sets, we may assume that
ℓ ≤ nk.

To prove that Binary Timed Partitioned TS-Independent Set Reconfiguration
is XNL-hard, we give a reduction from Long Partitioned Positive Chain Satisfiability.
The construction is similar (but more cumbersome) way as the one in [1, Theorem 4.11].

Let (q, r, F, P 1, . . . , P k) be an instance of Long Partitioned Positive Chain Satisfi-
ability. We will create an instance Γ of Binary Timed Partitioned TS-Independent
Set Reconfiguration with 3k + 1 token sets. The idea is to represent the choice of which
variables x

(t)
j are set to true with variable gadgets, and to create a clause checking gadget

that verifies that F (x(t)
1 , . . . , x

(t)
q , x

(t+1)
1 , . . . , x

(t+1)
q) is true. The time counter gadget has k

tokens, which together represent the integer t. Using the time constraint, we ensure that we
have to follow a very specific sequence of moves, and can therefore not change which x

(t)
j is

true after we passed an independent set that made a choice for this.

Time counter gadget. We create k time tokens who have its token set within the time
counter gadget, where the positions of these tokens represent an integer t ∈ [1, r] with r ≤ qk.
We create k timers, consisting each of 4q vertices. For i ∈ [1, k], the timer ti is a cycle on
vertices ti

0, . . . , ti
4q−1, which forms a token set for one of the time tokens. If the time tokens

are on the vertices t1
ℓ1

, . . . , tk
ℓk

, then this represents the current time as

t =
k∑

i=1
(ℓi mod q)qi−1.

Henceforth, we will silently assume t to be given by the position of the time tokens as
specified above. How these timers are connected such that they work as expected will be
discussed later.

Variable gadget. We create four sets A = {a1, . . . , aq}, B = {b1, . . . , bq}, C = {c1, . . . , cq}
and D = {d1, . . . , dq} that all contain q vertices. These sets will be used to model which
variables x

(t)
j are chosen to be true. We partition the sets in the same way as the variables,

setting Ai = {aj : j ∈ P i} for all i ∈ [1, k] and defining Bi, Ci and Di similarly.
For all i ∈ [1, k], we make (Ai, Bi) and (Ci, Di) complete bipartite graphs, adding the

edges ajbj′ and cjdj′ for all j, j′ ∈ P i. We specify Ai ∪ Bi and Ci ∪ Di as token sets, and
refer to the corresponding 2k tokens as variable tokens. The first set is used to model the
choice of the true variable x

(t)
j for j ∈ P i for all odd t, whereas the second partition models

the same for any even t.
We will enforce the following. Whenever we check whether all the clauses are satisfied,

we will either restrict all tokens of A ∪ B to be in A, or restrict all to be in B. Whenever we
have to choose a new set of true variables for t odd, we move all tokens from A to B (or the
other way around). This movement takes exactly k steps. The same holds for even t and the
sets C and D.

H. L. Bodlaender, C. Groenland, and C. M. F. Swennenhuis 9:11

Clause checking gadget. The clause checking gadget exists of four parts, called AC,
BC, BD and AD, named after which pair of sets we want the variable tokens to be
in. All the vertices of the clause checking gadget form a token set, and we refer to the
corresponding token as the clause token. The token will traverse the gadget parts in the
order AC → BC → BD → AD → AC → If the token is on AC, we require the variable
tokens to be in A and C and we then check whether the clauses hold for the given choice of
variables. The other parts are constructed likewise. For an example we refer to Figure 2.

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

T AC

v1
1

v1
2 T BC

Figure 2 Sketch of part of the construction of Theorem 14. Given are the two variable gadgets for
Ai ∪ Bi and Ci ∪ Di, the AC part of the clause checking gadget with one clause: C1 = (x(t)

1 , x
(t+1)
3),

where t is odd. Hence v1
1 checks whether a1 is set to true and v1

2 checks whether c3 is set to true.

We now give the construction of this gadget. We create a vertex, T AC that is connected
to all b ∈ B. This ensures that if the clause token is on T AC , all tokens from A ∪ B are on
vertices in A, yet tokens will be able to move from vertices in D to vertices in C.

Suppose F = C1 ∧ · · · ∧ CS with each Ci a disjunction of literals. Let s ∈ [1, S] and let
Cs = y1 ∨ · · · ∨ yHs

be the sth clause. We create a vertex vs
h for all h ∈ [1, Hs]. All vs

h are
connected to all vertices in B and D, which ensures that whenever the clause token is on
some vs

h, all variable tokens to be on vertices in A and C and prohibits these variable tokens
to move.

Let h ∈ [1, Hs] and let j ∈ [1, q] be such that yh is the jth variable. We ensure that the
clause token can only be on vs

h if the corresponding x
(t)
j is modelled as true, that is, the

corresponding variable token is on the vertex aj or cj (depending on the parity of t). To
ensure this, we connect vs

h to all variables in Ai \ {aj} if t is odd and to all variables in
Ci \ {cj} if t is even, where i ∈ [1, k] satisfies j ∈ P i.

We add edges such that ({vs
h}h∈[1,Hs], {vs+1

h }h∈[1,Hs+1]) forms a complete bipartite graph
for all s ∈ [1, S − 1]. We connect T AC to all v1

h and we connect all vS
h to T BC , the first

vertex of the next gadget. Whenever we move the clause token from T AC to T BC , we have
to traverse a vertex vs

h for each clause Cs, which ensures that the literal yh in the clause Cs

is set to true according to the variable tokens.
The gadget parts for BC, BD and AD are constructed likewise. We omit the details.

Connecting the time counter gadget. We now describe how to connect the vertices in the
time counter gadget to those in the clause checking gadget. In the first timer, we create the
following edges for z ∈ [0, 4q − 1]:

T ACt1
z when z ≡ 2 or z ≡ 3 mod 4,

T BCt1
z when z ≡ 3 or z ≡ 0 mod 4,

T BDt1
z when z ≡ 0 or z ≡ 1 mod 4,

T ADt1
z when z ≡ 1 or z ≡ 2 mod 4.

IPEC 2021

9:12 Parameterized Complexities of Dominating and Independent Set Reconfiguration

This ensures that we can only move the first time token from t1
0 to t1

1 if the clause token is
on T AC , and that we cannot put the clause token on T BC before having moved the time
token. To enforce that the time token moves when the clause token is at T AC , we add edges
between any vs

h vertex in this path and all t1
z with z ̸≡ 1 mod 4. The edges are created in a

similar manner for the paths following T BC , T BD and T AD.
When the first time token has made q steps, we allow the second time token to move 1

step forward. For i ∈ [2, k] we add all edges ti
zti+1

y , except for the following y, z ∈ [0, 4q − 1]:

y ≡ 0 mod 4 and z ∈ [0, q],
y ≡ 1 mod 4 and z ∈ [q, 2q],
y ≡ 2 mod 4 and z ∈ [2q, 3q],
y ≡ 3 mod 4 and z ∈ [3q, 4q − 1] ∪ {0}.

This ensures, for example, that the (i + 1)th gadget token can move from ti+1
0 to ti+1

1 if and
only if the ith time gadget token is on ti

q.
Finally, we add two sets Vinit and Vfin of 2k vertices, and add the first set to the initial

independent set Iinit and the second to the final independent set Ifin. Each vertex of Vinit is
added to the token set of Ai ∪ Bi or Ci ∪ Di for some i ∈ [1, 2k], adding exactly one vertex
to each token set, and similarly for Vfin.

We create edges uv for all u ∈ Vinit ∪ Vfin and v in the clause checking gadget. We
also create two vertices cinit and cfin that are added to the initial and final independent set
respectively, and to the token set of the clause token. We make cinit adjacent to T AC and cfin
to a vertex T XY , where X, Y depend on the value of r modulo 4.

The vertices cinit and cfin are adjacent to all vertices in the time gadgets except for those
representing the time 0 and r respectively. The initial independent set also contains the
vertices in the time gadget that represent t = 0 and similarly Ifin contains the vertices that
represent r.

Bounding the sequence length. We give a bound ℓ on the length of the reconfiguration
sequence, to ensure that only the required moves are made. Before moving the time token,
we first move the 2k variable tokens into position. We can then move the clause token to
T AC , move the first time token so that the time represents 1 and after that take S + 1 steps
to reach T BC (with S the number of clauses in F), at which point we can move the first
time token one step forward, and we need to move k variable tokens from A to B. Because
we check exactly r − 1 assignments, we need to move the ith time counter token exactly
⌊(r − 1)/qk−(i−1)⌋ times. As a last set of moves, we need to move the variable tokens to the
set Vfin, and the clause token to cfin taking another 2k + 1 steps. Hence, we set the maximum
length of the sequence ℓ (from the input of our instance of Binary Timed Partitioned
TS-Independent Set Reconfiguration) to

4k + 2 + (r − 1)(S + k + 1) +
k∑

i=1
⌊(r − 1)/qk−(i−1)⌋.

We claim that there is a satisfying assignment for our instance of Long Partitioned
Positive Chain Satisfiability if and only if there is a reconfiguration sequence from Iinit
to Ifin of length at most ℓ. It is not too difficult to see that a satisfying assignment leads to a
reconfiguration sequence (by moving the variable tokens such that they represent the chosen
true variables x

(t)
j when the time tokens represent time t).

H. L. Bodlaender, C. Groenland, and C. M. F. Swennenhuis 9:13

Vice versa, suppose that there is a reconfiguration sequence of length ℓ. This is only
possible if the sequence takes a particular form: we need to move the time tokens for∑k

i=1⌊(r − 1)/qk−(i−1)⌋ steps, and can only do this if we can move the clause token (r −
1)(S + 1) + 2 steps. The moves of the clause token forces us to move k variable tokens
between A and B and between C and D a total of (r − 1) times, and we need a further 2k

moves to get these from Vinit and to Vfin. In particular, there is no room for moving a variable
token from one position in A to another position in A, without the “time” having moved 4
places. Therefore, for each i ∈ [1, k] and t ∈ [1, r], there is a unique j for which we find a
variable token on aj ∈ Ai, bj ∈ Bi, cj ∈ Ci or dj ∈ Di (which letter a, b, c or d we search
for depends on the value of t modulo 4) when the time tokens represent time t. This is the
variable x

(t)
j that we set to true from the tth variable set in partition P i. ◀

5 Proof of Theorem 4: W[1]-membership

We formulate Timed TJ-Independent Set Reconfiguration with the number of tokens
and length of the reconfiguration sequence as combined parameter as an instance of Weighted
3-CNF-Satisfiability.

Weighted 3-CNF-Satisfiability
Given: Boolean formula F on n variables in conjunctive normal form such that each

clause contains at most 3 literals; integer K.
Parameter: K.
Question: Can we satisfy F by setting exactly K variables to true?

This proves Theorem 4 since Weighted 3-CNF-Satisfiability is W[1]-complete [4]. We
explain how to adjust it to W[2]-membership for the dominating set variant in Appendix C of
the full version [2]; the main idea of our proof can be applied for several other reconfiguration
problems (all that is needed is that the property of the solution set can be expressed as a
CNF formula).

Proof of Theorem 4. Let (G = (V, E), Iinit, Ifin, k, ℓ) be an instance of Timed TJ-Indepen-
dent Set Reconfiguration. We set C = (k +1+ ℓ)2 and K = ℓ(C +1)+(ℓ+1)k. We add
the following variables to our Weighted 3-CNF-Satisfiability instance for all t ∈ [0, ℓ]:

st,v, for each vertex v ∈ V . This should be set to true if and only if v has a token at time
t.
m

(i)
t,v,w, for each pair of distinct vertices v, w ∈ V and for all i ∈ [1, C]. This should be set

to true if and only if we move a token from v to w from time t − 1 to time t.
m

(i)
t,∅, for all i ∈ [1, C]. This is set to true if no token is moved at from time t − 1 to time t.

at,v for all v ∈ V . This is set to true if and only if v received a token from time t − 1 to
time t.
at,∅. This is set to true if no vertex received a token from time t − 1 to time t.

We add clauses that are satisfied if and only if the set of true variables corresponds to a
correct TJ-reconfiguration sequence from Iinit to Ifin.

We have clauses with one literal that ensure that at time 0, we have the initial configuration:
for each v ∈ Iinit, we have a clause s0,v and for each v ̸∈ Iinit, we have a clause ¬s0,v.
Similarly, we have clauses that ensure that at time ℓ, we have the final configuration: for
each v ∈ Ifin, we have a clause sℓ,v and for each v ̸∈ Ifin, we have a clause ¬sℓ,v.

IPEC 2021

9:14 Parameterized Complexities of Dominating and Independent Set Reconfiguration

All m
(i)
t,⋆ are equivalent: for all distinct i, j ∈ [1, C], for all t ∈ [1, ℓ] and for all distinct

v, w ∈ V , we add the clauses ¬m
(i)
t,v,w ∨ m

(j)
t,v,w and m

(i)
t,v,w ∨ ¬m

(j)
t,v,w. For all distinct

i, j ∈ [1, C], for all t ∈ [1, ℓ], we add the clauses ¬m
(i)
t,∅ ∨ m

(j)
t,∅ and m

(i)
t,∅ ∨ ¬m

(j)
t,∅ .

We have clauses that ensure that at each time t ∈ [1, ℓ], at most one move is selected:
for any two distinct pairs of distinct vertices (v, w) and (v′, w′), we add the clauses
¬m

(1)
t,v,w ∨ ¬m

(1)
t,v′,w′ and ¬m

(1)
t,v,w ∨ ¬m

(1)
t,∅ .

For t ∈ [1, ℓ], if the move m
(1)
t,v,w is selected, then v lost a token and w obtained a token

from time t − 1 to time t: ¬m
(1)
t,v,w ∨ st−1,v, ¬m

(1)
t,v,w ∨ ¬st−1,w, ¬m

(1)
t,v,w ∨ ¬st,v and

¬m
(1)
t,v,w ∨ st,w.

For t ∈ [1, ℓ], tokens on vertices not involved in the move remain in place. For all distinct
v, w, u ∈ V , we add the clauses

¬m
(1)
t,∅ ∨ ¬st−1,v ∨ st,v,

¬m
(1)
t,∅ ∨ st−1,v ∨ ¬st,v,

¬m
(1)
t,v,w ∨ ¬st−1,u ∨ st,u and

¬m
(1)
t,v,w ∨ st−1,u ∨ ¬st,u.

We record if a token was added to a vertex: for all t ∈ [1, ℓ] and v ∈ V , we add the clause
st−1,v ∨ ¬st,v ∨ at,v. This in particular ensures that at,v is true when m

(1)
t,v,w is true for

some vertex w ̸= v.
No move happened if and only if no token was added: for all t ∈ [1, ℓ] we add the clauses
¬m

(1)
t,∅ ∨ at,∅ and ¬at,∅ ∨ m

(1)
t,∅ .

At most one at,⋆ is set to true, implying that at most one taken gets added at each
time step: for all t ∈ [1, ℓ] and distinct v, w ∈ V , we add the clauses ¬at,v ∨ ¬at,w and
¬at,v ∨ ¬at,∅.
Finally, we check whether the current set forms an independent set: for all edges
vw ∈ E(G) and t ∈ [0, ℓ], we add the clause ¬st,v ∨ ¬st,w.

If there is a TJ-independent set reconfiguration sequence Iinit = I0, . . . , IT = Ifin with
T ≤ ℓ, then we set st,v to true if and only if v ∈ It for t ∈ [0, T]. For all t ∈ [T, ℓ], we set st,v

to true if and only if v ∈ IT .
Let t ∈ [1, ℓ]. If It = It−1, we set at,∅ to true and m

(i)
t,∅ to true for all i ∈ [1, C]. Otherwise,

we find It = It−1 \ {v} ∪ {w} for some v, w ∈ V and we set m
(i)
t,v,w and at,v to true for all

i ∈ [1, C]. All other m
(i)
t,⋆ are set to false. This gives a satisfying assignment with exactly

ℓ(C + 1) + (ℓ + 1)k = K variables set to true.
Suppose now that there is a satisfying assignment with K variables set to true. At most

one at,v variable can be true for each t ∈ [1, ℓ]. Exactly k variables of the form s0,v are set
to true by the initial condition. If there are k′ tokens true at time t, then there are at most
k′ + 1 tokens true at time t + 1 and so the st,v and at,v variables together can constitute
at most ((k + ℓ) + 1)ℓ ≤ C − 1 true variables. Therefore, there must be strictly more than
(C + 1)(ℓ − 1) variables of the form m

(i)
t,⋆ that are set to true. Since m

(i)
t,⋆ must take the same

value as m
(j)
t,⋆ , there must be at least ℓ variables of the form m

(1)
t,⋆ that are set to true. There

can be at most one per time step t, and so there is exactly one per time step. We consider
the TJ-independent set reconfiguration sequence Iinit = I ′

0, . . . , I ′
ℓ = Ifin where for t ∈ [1, ℓ] we

define I ′
t = I ′

t−1 if mt,∅ is true, and I ′
t = I ′

t−1 \ {v} ∪ {w} if m
(1)
t,v,w is true. The subsequence

Iinit = I0, . . . , IT = Ifin obtained by removing I ′
t if I ′

t = I ′
t−1, is now a valid TJ-independent

set reconfiguration sequence. ◀

H. L. Bodlaender, C. Groenland, and C. M. F. Swennenhuis 9:15

6 Conclusion

We showed that for independent set reconfiguration problems parameterized by the number
of tokens, the complexity may vary widely depending on the way the length ℓ of the sequence
is treated. If no bound is given, then we ask for the existence of an undirected path in
the reconfiguration graph5 and indeed the problem is XL-complete. If ℓ is given in binary,
then we may in particular choose it larger than the maximum number of vertices in the
reconfiguration graph, and so this problem is at least as hard as the previous. We show it to
be XNL-complete. When ℓ is given in unary, it is easier to have a running time polynomial
in ℓ, and indeed the problems becomes XNLP-complete. When ℓ is taken as parameter, the
problem is W [1]-complete.

On the other hand, switching the rules of how the tokens may move does not affect
the parameterized complexity, and the results for dominating set reconfiguration are also
similar. It would be interesting to investigate for which graph classes switching between
token jumping and token sliding does affect the parameterized complexities. We give an
explicit suggestion below.

▶ Problem 15. For which graphs H is TJ-Independent Set Reconfiguration equivalent
to TS-Independent Set Reconfiguration under pl-reductions for the class of graphs
with no induced H?

The answer might also differ for Independent Set Reconfiguration and Dominating
Set Reconfiguration. We remark that TJ-Clique Reconfiguration and TS-Clique
Reconfiguration have the same complexity for all graph classes [8].

References
1 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.

Parameterized Problems Complete for Nondeterministic FPT time and Logarithmic Space.
arXiv:2105.14882, 2021.

2 Hans L. Bodlaender, Carla Groenland, and Céline M. F. Swennenhuis. Parameterized com-
plexities of dominating and independent set reconfiguration. CoRR, abs/2106.15907, 2021.
arXiv:2106.15907.

3 Yijia Chen, Jörg Flum, and Martin Grohe. Bounded nondeterminism and alternation in
parameterized complexity theory. In 18th Annual IEEE Conference on Computational Com-
plexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark, pages 13–29. IEEE Computer
Society, 2003. doi:10.1109/CCC.2003.1214407.

4 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.
5 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity

of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

6 Takehiro Ito, Erik D. Demaine, Nicholas J.A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12):1054–1065, 2011.

7 Takehiro Ito, Marcin Kamiński, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and Katsuhisa
Yamanaka. On the parameterized complexity for token jumping on graphs. In T. V. Gopal,
Manindra Agrawal, Angsheng Li, and S. Barry Cooper, editors, Theory and Applications of
Models of Computation, pages 341–351, Cham, 2014. Springer International Publishing.

5 The reconfiguration graph has the possible token configurations as vertex set, and there is an edge
between two configurations if we can go from one to the other with a single move.

IPEC 2021

http://arxiv.org/abs/2106.15907
https://doi.org/10.1109/CCC.2003.1214407
https://doi.org/10.1007/s00453-014-9944-y

9:16 Parameterized Complexities of Dominating and Independent Set Reconfiguration

8 Takehiro Ito, Hirotaka Ono, and Yota Otachi. Reconfiguration of cliques in a graph. In Pro-
ceedings of the 12th Annual Conference on Theory and Applications of Models of Computation,
pages 212–223, 2015.

9 Marcin Kamiński, Paul Medvedev, and Martin Milanič. Complexity of independent set
reconfigurability problems. Theoretical Computer Science, 439:9–15, 2012. doi:10.1016/j.
tcs.2012.03.004.

10 Harry R. Lewis and Christos H. Papadimitriou. Symmetric space-bounded computation.
Theoretical Computer Science, 19(2):161–187, 1982.

11 Daniel Lokshtanov and Amer E. Mouawad. The complexity of independent set reconfiguration
on bipartite graphs. ACM Trans. Algorithms, 15(1), 2018.

12 Amer E. Mouawad, Naomi Nishimura, Venkatesh Raman, Narges Simjour, and Akira Suzuki.
On the Parameterized Complexity of Reconfiguration Problems. Algorithmica, 78(1):274–297,
2017. doi:10.1007/s00453-016-0159-2.

13 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4), 2018.
14 Jan van den Heuvel. The complexity of change. Surveys in Combinatorics, 409:127–160, 2013.
15 Michael Wehar. On the complexity of intersection non-emptiness problems. PhD thesis, State

University of New York at Buffalo, 2017.

https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1007/s00453-016-0159-2

	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1: XL-completeness
	4 Proof of Theorem 3: XNL-completeness
	5 Proof of Theorem 4: W[1]-membership
	6 Conclusion

