6 research outputs found

    The border support rank of two-by-two matrix multiplication is seven

    Get PDF
    We show that the border support rank of the tensor corresponding to two-by-two matrix multiplication is seven over the complex numbers. We do this by constructing two polynomials that vanish on all complex tensors with format four-by-four-by-four and border rank at most six, but that do not vanish simultaneously on any tensor with the same support as the two-by-two matrix multiplication tensor. This extends the work of Hauenstein, Ikenmeyer, and Landsberg. We also give two proofs that the support rank of the two-by-two matrix multiplication tensor is seven over any field: one proof using a result of De Groote saying that the decomposition of this tensor is unique up to sandwiching, and another proof via the substitution method. These results answer a question asked by Cohn and Umans. Studying the border support rank of the matrix multiplication tensor is relevant for the design of matrix multiplication algorithms, because upper bounds on the border support rank of the matrix multiplication tensor lead to upper bounds on the computational complexity of matrix multiplication, via a construction of Cohn and Umans. Moreover, support rank has applications in quantum communication complexity

    Nondeterministic quantum communication complexity: the cyclic equality game and iterated matrix multiplication

    Get PDF
    We study nondeterministic multiparty quantum communication with a quantum generalization of broadcasts. We show that, with number-in-hand classical inputs, the communication complexity of a Boolean function in this communication model equals the logarithm of the support rank of the corresponding tensor, whereas the approximation complexity in this model equals the logarithm of the border support rank. This characterisation allows us to prove a log-rank conjecture posed by Villagra et al. for nondeterministic multiparty quantum communication with message-passing. The support rank characterization of the communication model connects quantum communication complexity intimately to the theory of asymptotic entanglement transformation and algebraic complexity theory. In this context, we introduce the graphwise equality problem. For a cycle graph, the complexity of this communication problem is closely related to the complexity of the computational problem of multiplying matrices, or more precisely, it equals the logarithm of the asymptotic support rank of the iterated matrix multiplication tensor. We employ Strassen's laser method to show that asymptotically there exist nontrivial protocols for every odd-player cyclic equality problem. We exhibit an efficient protocol for the 5-player problem for small inputs, and we show how Young flattenings yield nontrivial complexity lower bounds

    Revealed Preference Dimension via Matrix Sign Rank

    Full text link
    Given a data-set of consumer behaviour, the Revealed Preference Graph succinctly encodes inferred relative preferences between observed outcomes as a directed graph. Not all graphs can be constructed as revealed preference graphs when the market dimension is fixed. This paper solves the open problem of determining exactly which graphs are attainable as revealed preference graphs in dd-dimensional markets. This is achieved via an exact characterization which closely ties the feasibility of the graph to the Matrix Sign Rank of its signed adjacency matrix. The paper also shows that when the preference relations form a partially ordered set with order-dimension kk, the graph is attainable as a revealed preference graph in a kk-dimensional market.Comment: Submitted to WINE `1

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran
    corecore