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Abstract: We show that the border support rank of the tensor corresponding to two-by-
two matrix multiplication is seven over the complex numbers. We do this by constructing
two polynomials that vanish on all complex tensors with format four-by-four-by-four and
border rank at most six, but that do not vanish simultaneously on any tensor with the same
support as the two-by-two matrix multiplication tensor. This extends the work of Hauenstein,
Ikenmeyer, and Landsberg. We also give two proofs that the support rank of the two-by-two
matrix multiplication tensor is seven over any field: one proof using a result of De Groote
saying that the decomposition of this tensor is unique up to sandwiching, and another proof
via the substitution method. These results answer a question asked by Cohn and Umans.
Studying the border support rank of the matrix multiplication tensor is relevant for the design
of matrix multiplication algorithms, because upper bounds on the border support rank of
the matrix multiplication tensor lead to upper bounds on the computational complexity of
matrix multiplication, via a construction of Cohn and Umans. Moreover, support rank may
be interpreted as a quantum communication complexity measure.

Key words and phrases: matrix multiplication, border support rank, algebraic complexity theory

1 Introduction

Multiplication of two n× n matrices over a field F is an F-bilinear map Fn×n×Fn×n→ Fn×n called
the matrix multiplication map. The matrix multiplication map corresponds naturally to the following
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structure tensor. Let [n] be the set {1,2, . . . ,n} and let {ei j : i, j ∈ [n]} be the standard basis for the vector
space Fn×n of n×n matrices. Define the structure tensor of the matrix multiplication map as

〈n,n,n〉 := ∑
i, j,k∈[n]

ei j⊗ e jk⊗ eki ∈ Fn×n⊗Fn×n⊗Fn×n.

(Technically, this is the structure tensor of the trilinear map that computes the trace of a product of
three matrices.) Let V1, V2, and V3 be vector spaces. The tensor rank of a tensor t ∈V1⊗V2⊗V3 is the
smallest number r such that t can be written as a sum of r simple tensors v1⊗v2⊗v3 ∈V1⊗V2⊗V3. The
computational complexity of matrix multiplication is tightly related to the tensor rank of the tensor 〈n,n,n〉
(see e.g. [5]). Strassen showed that the tensor rank of 〈2,2,2〉 is at most seven over any field [23]; Hopcroft
and Kerr [13] showed that the tensor rank is at least seven over the finite field F2, and Winograd [25]
showed that the tensor rank is at least seven over any field. Over an algebraically closed field, the border
rank of a tensor t ∈V1⊗V2⊗V3 is the smallest number r such that t is in the Zariski closure of all tensors
of rank at most r in V1⊗V2⊗V3. Landsberg proved that the border rank of 〈2,2,2〉 is seven over the
field C of complex numbers [16], and a different proof for this based on highest-weight vectors was later
given by Hauenstein, Ikenmeyer and Landsberg [12].

We extend the above results. Let t ∈ V1⊗V2⊗V3 be a tensor in a fixed basis, a hypermatrix. The
support of t is the set of coordinates where t has a nonzero coefficient. The support rank of t is the
minimal rank of a tensor with the same support as t. This has also been called s-rank [7], nondeterministic
rank [9], zero-one rank [24] and minimum rank of a nonzero pattern [2] in the literature. The border
support rank of t is the minimal border rank of a tensor with the same support as t. We prove the
following.

Theorem 1.1. The support rank of 〈2,2,2〉 is seven over any field F.

Theorem 1.2. The border support rank of 〈2,2,2〉 is seven over C.

Theorem 1.1 and Theorem 1.2 answer a question of Cohn and Umans [7], that was also posed
as an open problem during the Algorithms and Complexity in Algebraic Geometry programme at the
Simons Institute [1]. We note that, in general, computing the tensor rank or support rank of a tensor
is a computationally hard task. Namely, given a 3-tensor t and a natural number r, deciding whether
the tensor rank of t is at most r is NP-complete over any finite field [11] and NP-hard over any integral
domain [22]. Moreover, given a 2-tensor (that is, a matrix) A and a natural number r, deciding whether
the support rank of A is at most r is NP-hard over the real numbers [3].

Previously, it was known that the border support rank of the matrix multiplication tensor 〈n,n,n〉 is at
least 2n2−n [4], so in particular that the border support rank of 〈2,2,2〉 is at least six. This result was
obtained using Young flattenings.

Studying (border) support rank is interesting for two reasons. The first reason comes from algebraic
complexity theory. As mentioned above, the tensor rank of the matrix multiplication tensor is tightly re-
lated to the computational complexity of matrix multiplication. It turns out that asymptotically, the border
support rank of matrix multiplication gives an upper bound on the tensor rank of matrix multiplication,
as follows. The exponent of matrix multiplication ω is defined as the smallest number β such that for
any ε > 0 the tensor rank of 〈n,n,n〉 is in O(nβ+ε). The number ω is between 2 and 2.3728639 [18] and
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it is a major open problem in algebraic complexity theory to decide whether ω equals 2. One can define
an analogous quantity ωs for the support rank of 〈n,n,n〉. One can show with Strassen’s laser method that
ω ≤ (3ωs−2)/2 [7]. To show that ω = 2, it therefore suffices to show that ωs = 2. Cohn and Umans
aim to obtain upper bounds on ωs by realizing the algebra of n×n matrices inside some cleverly chosen
group algebra.

The second reason, which was our original motivation, comes from quantum communication com-
plexity. Let f : X×Y ×Z→{0,1} be a function on a product of finite sets X , Y and Z. Alice, Bob and
Charlie have to compute f in the following sense. Alice receives an x ∈ X , Bob receives a y ∈ Y and
Charlie receives a z ∈ Z. Moreover, the players share a so-called Greenberger–Horne–Zeilinger (GHZ)
state of rank r, which is described by the tensor GHZr = ∑

r
i=1 ei⊗ ei⊗ ei ∈ (Cr)⊗3. The players apply

local quantum operations. After this, each player has to output a bit such that if f (x,y,z) = 1, then with
some nonzero probability all players output 1 and if f (x,y,z) = 0, then with probability zero all players
output 1. The complexity of such a protocol is the logarithm of the rank r of the GHZ-state used, and the
minimum complexity of all quantum protocols for f is the nondeterministic communication complexity
of f . This number equals the logarithm of the support rank of the tensor with support given by f , that
is ∑x,y,z f (x,y,z)ex⊗ ey⊗ ez [4]. Similarly, the logarithm of the border support rank of the tensor with
support given by f equals the approximate nondeterministic communication complexity of f . Since
tensor rank and border rank are natural measures of entanglement, our result may also be of interest to
the quantum information theory community.

Notation. For any tensor t, we will denote tensor rank by R(t), border rank by R(t), support rank
by Rs(t) and border support rank by Rs(t).

Paper outline. This paper is structured as follows. In Section 2 we give two proofs for Theorem 1.1.
In Section 3 we give a short introduction to border rank lower bounds by highest-weight vectors and then
apply this theory to prove Theorem 1.2.

2 Support rank

We will give two proofs for Theorem 1.1. Both proofs use the following lemma that reduces the 8-
parameter minimization problem at hand to a 1-parameter minimization problem. Let F be a field. Let
e11 =

(
1 0
0 0

)
, e12 =

(
0 1
0 0

)
, e21 =

(
0 0
1 0

)
, e22 =

(
0 0
0 1

)
be the standard basis of the space of 2×2 matrices F2×2

over F. Let e1,e2,e3,e4 be the standard basis of F4. We naturally identify F2×2 with F4 by e11 7→ e1,
e12 7→ e2, e21 7→ e3, e22 7→ e4. Let GL4(F)×3 act on the tensor space F2×2⊗F2×2⊗F2×2 accordingly.

Lemma 2.1 (Parameter reduction). Let t ∈ F2×2⊗F2×2⊗F2×2 be a tensor with the same support as
the matrix multiplication tensor 〈2,2,2〉. There is a tensor s in the GL4(F)×3-orbit of t, with the same
support as t, such that all nonzero entries of s are 1 except possibly for the coefficient of e11⊗ e11⊗ e11.

Proof. Identify the tensor 〈2,2,2〉= ∑i, j,k∈[2] ei j⊗ e jk⊗ ek` with the tensor

e111 + e123 + e231 + e243 + e312 + e324 + e432 + e444 ∈ F4⊗F4⊗F4,
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where ei jk = ei⊗ e j⊗ ek. We can view this tensor as as a 4× 4× 4 cube filled with elements 0 and 1
from F. Let t be a tensor in F4⊗F4⊗F4 with the same support as 〈2,2,2〉, so, in 1-slices,

t =


a 0 0 0
0 0 b 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
c 0 0 0
0 0 d 0




0 e 0 0
0 0 0 f
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 g 0 0
0 0 0 h


where a,b,c,d,e, f ,g,h are nonzero elements in F. Here we index the 1-slices by the first tensor leg, the
rows of the slices by the second tensor leg and columns of the slices by the third tensor leg. Scaling the
1-slices of t according to diag(1/b,1/d,1/ f ,1/h), that is, applying diag(1/b,1/d,1/ f ,1/h)⊗14⊗14
to t, yields a tensor of the form

t ′ =


a′ 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
c′ 0 0 0
0 0 1 0




0 e′ 0 0
0 0 0 1
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 g′ 0 0
0 0 0 1


Scaling the rows of t ′ according to diag(1/e′,1,1/g′,1), that is, applying 14⊗diag(1/e′,1,1/g′,1)⊗14
to t ′, yields a tensor of the form

t ′′ =


a′′ 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
c′′ 0 0 0
0 0 1 0




0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1


Finally, scaling the columns of t ′′ according to diag(1/c′′,1,1,1), i.e., applying 14⊗14⊗diag(1/c′′,1,1,1)
to t ′′, yields a tensor of the required form.

Our first proof of Theorem 1.1 uses a corollary of a result of De Groote on the uniqueness of the
decomposition of 〈2,2,2〉 into simple tensors.

Theorem 2.2 ([8, Remark 4.2]). Let v := v1⊗v2⊗v3 ∈ F2×2⊗F2×2⊗F2×2 be an element of an arbitrary
optimal decomposition of 〈2,2,2〉 into simple tensors over F such that the rank of each vi as an element of
F2⊗F2 is one. Then there exist invertible matrices A,B,C ∈ GL2(F) such that we have v = (A−1e11B)⊗
(B−1e11C)⊗ (C−1e11A), where A, B and C act by matrix multiplication from the left and right on F2×2.

Definition 2.3. For any number q ∈ F, define the perturbed matrix multiplication tensor

〈2,2,2〉q := 〈2,2,2〉+(q−1)e11⊗ e11⊗ e11.

This is the tensor obtained from 〈2,2,2〉 by replacing the coefficient of e11⊗ e11⊗ e11 by q.

We now give our first proof of Theorem 1.1 using the above uniqueness statement.
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Proof of Theorem 1.1; uniqueness argument. As was already observed by De Groote, Theorem 2.2
gives the upper bound R(〈2,2,2〉0)≤ 6 and thus R(〈2,2,2〉q)≤ 7 for all q∈ F. We claim R(〈2,2,2〉q)≥ 7
for all nonzero q ∈ F. Suppose q is a number in F such that R(〈2,2,2〉q) = 6. Suppose we have a
decomposition 〈2,2,2〉q = ∑

6
i=1 ui⊗ vi⊗wi into simple tensors. Then

〈2,2,2〉= 〈2,2,2〉q +(1−q)e11⊗ e11⊗ e11 =
6

∑
i=1

ui⊗ vi⊗wi +(1−q)e11⊗ e11⊗ e11

is an optimal decomposition of 〈2,2,2〉 into simple tensors. Therefore, by Theorem 2.2, there exist A,B,C
in GL2(F) such that

A−1e11B⊗B−1e11C⊗C−1e11A = (1−q)e11⊗ e11⊗ e11.

Let f1, f2 be the standard basis of F2. Then by taking appropriate transposes the previous equation is
equivalent to

A−1 f1⊗BT f1⊗B−1 f1⊗CT f1⊗C−1 f1⊗AT f1 = (1−q) f⊗6
1 ,

which implies that AT ,BT ,CT each have eigenvector f1. Let α,β ,γ be the respective eigenvalues. Then
A−1,B−1,C−1 have eigenvalues α−1,β−1,γ−1. This yields the equation α−1 β β−1 γ α γ−1 = 1−q. We
conclude that q = 0. By Theorem 2.1 we can conclude that Rs(〈2,2,2〉) = 7.

Our second proof of Theorem 1.1 uses a method called the substitution method. Let xi j, yi j, zi j

(i, j ∈ [2]) be variables. Let X ,Y,Z be the corresponding 2×2 variable matrices. For q ∈ F, define the
function

fq(X ,Y,Z) := ∑
i, j,k∈[2]

xi j y jk zki +(q−1)x22 y22 z22.

The tensor rank of 〈2,2,2〉q is equal to the smallest number r such that fq(X ,Y,Z) can be written as a
sum ∑

r
ρ=1 uρ(X)vρ(Y )wρ(Z), where uρ is a linear form in the xi j, similarly for vρ and wρ .

Proof of Theorem 1.1; substitution method. Suppose that the function fq(X ,Y,Z) has rank r in the
sense that it has a decomposition into a sum of r products of three linear forms as described above. If
U = (ui j)i j∈[2] is any upper triangular matrix, then fq(X ,YU−1,UZ) has rank at most r and by direct
computation

fq(X ,YU−1,UZ) = fq(X ,Y,Z)+
u12

u11
(q−1)x22 y21 z22.

There exists an upper triangular matrix U such that the function gq(X ,Y,Z) := fq(X ,YU−1,UZ) has a
decomposition

gq(X ,Y,Z) =
r

∑
ρ=1

uρ(X)vρ(Y )wρ(Z) (2.1)
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MARKUS BLÄSER, MATTHIAS CHRISTANDL AND JEROEN ZUIDDAM

in which wr(Z) is of the form z21 + a12z12 + a22z22 for some a12,a22 ∈ F. Apply the substitution
z21 7→ w̃(Z) :=−a12z12−a22z22 to (2.1) to see that

∑
j∈[2]

(
x1 j y j1 z11 + x2 j y j1 z12 + x1 j y j2 w̃(Z)

)
+ x21 y12 z22 +qx22 y22 z22 +

u12

u11
(q−1)x22 y21 z22

=
r−1

∑
ρ=1

uρ(X)vρ(Y )wρ

([ z11 z12
w̃(Z) z22

])
. (2.2)

We can test that y22 occurs in the obtained decomposition of (2.2) by setting x22,z22 to 1 and y21 to 0 and
the other xi j,zi j to 0. We can test that y12 occurs in the obtained decomposition of (2.2) by setting x21,z22
to 1 and the other xi j,zi j to 0. Say y22 occurs in vr−1 and y12 occurs in vr−2. Then, there is a substitution
y12 7→ ṽ12(Y ), y22 7→ ṽ22(Y ), which, applied to (2.2) yields

∑
j∈[2]

(
x1 j y j1 z11+x2 j y j1 z12+x1 j ṽ j2(Y ) w̃(Z)

)
+x21 ṽ12(Y )z22+qx22 ṽ22(Y )z22+

u12

u11
(q−1)x12 y21 z22

=
r−3

∑
ρ=1

uρ(X)vρ

([
y11 ṽ12(Y )
y21 ṽ22(Y )

])
wρ

([ z11 z12
w̃(Z) z22

])
. (2.3)

To clean up, setting z22 7→ 0 in (2.3) shows that

∑
j∈[2]

x1 j y j1 z11 + x2 j y j1 z12 + x1 j ṽ j2(Y ) w̃(Z) =
r−3

∑
ρ=1

uρ(X)vρ

([
y11 ṽ12(Y )
y21 ṽ22(Y )

])
wρ

([ z11 z12
w̃(Z) 0

])
. (2.4)

We can test that x21 occurs in the obtained decomposition (2.4) by setting y11,z12 to 1 and the other xi j,zi j

to 0. Similarly, we can test that x22 occurs in the obtained decomposition (2.4) by setting y21,z12 to 1 and
the other xi j,zi j to 0. Say x21 occurs in ur−3 and x22 occurs in ur−4. We apply a substitution x21 7→ ũ21(X),
x22 7→ ũ22(X) to see that

∑
j∈[2]

x1 j y j1 z11 + ũ2 j(X)y j1 z12 + x1 j ṽ j2(Y ) w̃(Z)

=
r−5

∑
ρ=1

uρ

([ x11 x12
ũ21(X) ũ22(X)

])
vρ

([
y11 ṽ12(Y )
y21 ṽ22(Y )

])
wρ

([ z11 z12
w̃(Z) 0

])
. (2.5)

Apply the substitution z12 7→ 0 to (2.5) to get

∑
j∈[2]

x1 j y j1 z11 =
r−5

∑
ρ=1

uρ

([ x11 x12
ũ21(X) ũ22(X)

])
vρ

([
y11 ṽ12(Y )
y21 ṽ22(Y )

])
wρ

([
z11 0

w̃(Z) 0

])
. (2.6)

which clearly has rank 2. Therefore, r ≥ 7. By Theorem 2.1 we are done.
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3 Border support rank

In this section all vector spaces are complex vector spaces. We will review a method that was introduced
in [17] to study equations for border rank and that was later used in [12] to give a proof that R(〈2,2,2〉)≥ 7.
Then, we will use this method to show that the border support rank of 〈2,2,2〉 equals seven. Our Python
code is included as an ancillary file with the arXiv submission.

View the space ⊗3Cn as an affine variety, and let C[⊗3Cn] be its coordinate ring. Define σr ⊆⊗3Cn

as the subset of tensors with border rank at most r,

σr := {s ∈ ⊗3Cn : R(s)≤ r}.

This is called the rth secant variety of the Segre variety of Cn×Cn×Cn. The set σr is Zariski closed
in ⊗3Cn by definition of border rank. In other words, if we let I(σr) ⊆ C[⊗3Cn] be the ideal of
polynomials on ⊗3Cn that vanish identically on σr, then Z(I(σr)) = σr.

3.1 Lower bounds by polynomials

By definition, if R(t)> r then there exists a polynomial in I(σr) that does not vanish on t. The following
standard proposition says that we may in fact assume that this polynomial is homogeneous.

Proposition 3.1. Let t ∈ ⊗3Cn. If R(t)> r, then there exists a homogeneous polynomial f in I(σr) such
that f (t) 6= 0.

Proof. We give a proof for the convenience of the reader. If f (t) = 0 for all f ∈ I(σr), then we have
t ∈ Z(I(σr)) = σr, which is a contradiction. Let f be a polynomial in I(σr) such that f (t) 6= 0. Let
f = ∑d fd be the decomposition of f into homogeneous parts. There is a d such that fd(t) 6= 0.

Let v ∈ σr. For any α ∈ C, define g(α) := f (αv). This is a polynomial in α . We have that
g(α) = ∑d αd fd(v). Since σr is closed under scaling and f (v) = 0, we have g(α) = 0 for any α ∈ C,
so g is the zero polynomial. Therefore, each coefficient fd(v) is 0. This argument holds for any v ∈ σr, so
fd ∈ I(σr) for each d.

The polynomial ring C[⊗3Cn] decomposes into a direct sum of homogeneous parts C[⊗3Cn]d
and, by the above argument, the vanishing ideal I(σr) decomposes accordingly as I(σr) = ⊕dI(σr)d
with I(σr)d ⊆ C[⊗3Cn]d .

The space ⊗3Cn has a natural action of G := GL×3
n and σr is a G-submodule. Thus C[⊗3Cn]d ∼=

Symd(⊗3(Cn)∗) has a natural action of G and I(σr)d is a G-submodule. We will use the well-known
theory of highest-weight vectors to exploit this symmetry. The theory of highest-weight vectors holds in
a much more general setting than we need here. We refer to [15, III.1.5] and [10] for the general theory,
and focus on a description of the theory for the group GL×3

n .
Let W be a finite-dimensional G-module. Choose a basis so that G becomes the group of triples of

invertible matrices. Let T ⊆ G be the subgroup of triples of diagonal matrices. For

t = (diag(a1, . . . ,an), diag(b1, . . . ,bn), diag(c1, . . . ,cn)) ∈ T
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and z = (u,v,w) ∈ (Zn)3 define tz := ∏
n
i=1 aui

i bvi
i cwi

i . As a T -module, W decomposes into weight spaces,

W =
⊕

z∈(Zn)3

Wz where Wz = {w ∈W : t ·w = tzw ∀ t ∈ T}.

The vectors in Wz are said to have weight z. Let U ⊆ G be the subgroup of triples of unipotent matrices,
that is, upper triangular matrices with ones on the diagonal. A nonzero vector v ∈Wz is a highest-weight
vector if u · v = v for all u ∈U .

A finite-dimensional (rational) representation W of GL×3
n is irreducible if and only if it has a unique

highest-weight vector v, up to multiplication by a scalar, that is, [W ]U = SpanC v. If W is irreducible and v
is a highest-weight vector, then one has W = SpanC(Gv). Moreover, two irreducible representations are
isomorphic if and only if their highest-weight vectors have the same weight. We call a sequence of n
nonincreasing integers a generalized partition. It turns out that the weight of a highest-weight vector is
a triple of generalized partitions. For any triple of generalized partitions λ , we will denote an abstract
realisation of the G-module with highest-weight λ by Vλ . For any finite-dimensional G-module W , the
highest-weight vectors in W of weight λ form a vector space, which we denote by [Wλ ]

U .
For a generalized partition λ , define the dual partition λ ∗ as the generalized partition obtained from λ

by negating every entry and reversing the order. Then Vλ ∗ = V ∗
λ

, the dual module. We note that the
polynomial irreducible representations are precisely the ones that are isomorphic to Vλ with λ a partition.

Recall that σr is the variety of tensor in ⊗3Cn of border rank at most r. Consider the isotypic
decomposition of W := Symd(⊗3(Cn)∗) and I(σr)d under the action of GL×3

n ,

W =
⊕
λ`d

Wλ ∗ =
⊕
λ`d

k(λ )V ∗
λ
,

I(σr)d =
⊕
λ`d

I(σr)λ ∗ =
⊕
λ`d

m(λ )V ∗
λ
,

where λ runs over all triples of partitions of d with at most n parts, and k(λ )V ∗
λ

denotes an isotypic
component consisting of a direct sum of k(λ ) copies of the irreducible G-representation V ∗

λ
, similarly

for m(λ )V ∗
λ

. Note that, although the direct sums run over triples of partitions λ , the representations W
and I(σr) are not polynomial since we take duals. The number k(λ ) is exactly the dimension of the
highest-weight vector space [Wλ ∗ ]

U , and the number m(λ ) is the dimension of the highest-weight vector
space [I(σr)λ ∗ ]

U . The following proposition extends Theorem 3.1 by saying that we may assume that the
polynomial we are looking for is a highest-weight vector, if we replace t by a random point in its G-orbit.

Proposition 3.2. Let t ∈ ⊗3Cn. If R(t) > r, then there exists a highest-weight vector f ∈ I(σr) and a
group element g ∈ G such that f (gt) 6= 0.

Proof. We provide the proof for the convenience of the reader. By Theorem 3.1, there exists a homo-
geneous polynomial f ∈ I(σr) such that we have f (t) 6= 0. By highest-weight theory, the polynomial f
can be written as a sum ∑λ ,i gλ ,i fλ ,i, where fλ ,i is a highest-weight vector of type λ in I(σr) and gλ ,i ∈G.
Since f (t) 6= 0, there exists a λ and an i so that fλ ,i(g

−1
λ ,i t) 6= 0.
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3.2 Highest-weight vector method

The following method was first proposed in [17] to study equations for border rank and was later used
in [12] to give a proof that R(〈2,2,2〉)≥ 7. Let t ∈⊗3Cn be a tensor for which we want to show R(t)> r.

1. Choose a degree d ∈ N. Let W be the space Symd(⊗3(Cn)∗). Choose a partition triple λ ` d such
that the highest-weight vector space [Wλ ∗ ]

U is nonzero.

2. Construct a basis b1, . . . ,bk for [Wλ ∗ ]
U .

3. Find a linear combination f of the basis elements b1, . . . ,bk that vanishes on all tensors of border
rank at most r, that is, f ∈ [I(σr)λ ∗ ]

U where σr is the variety of tensors with border rank at most r.

4. Show that f does not vanish on gt for some g ∈ G.

The above method is guaranteed to work by Theorem 3.2. Before applying the method, we will consider
each step in more detail.

Step 1. Kronecker coefficient. The dimension of the space of U-invariants [(Symd(⊗3(Cn)∗))λ ∗ ]
U

is the so-called Kronecker coefficient k(λ ). We pick a partition triple λ such that the number k := k(λ )
is nonzero. Algorithms for computing Kronecker coefficients have been implemented in for example
Schur [26], Sage [20] and the Python package Kronecker [6].

Step 2. Las Vegas construction of basis. For any natural number `≤ n, let φ` := e∗1∧·· ·∧e∗` be the
Slater determinant living in ∧`(Cn)∗. For any partition µ ` d with at most n parts, we let φµ denote the
tensor φν1⊗·· ·⊗φνµ1

living in ⊗d(Cn)∗, where ν denotes the transpose of µ . Let λ = (λ (1),λ (2),λ (3))

be a triple of partitions of d. We define φλ := φ
λ (1)⊗φ

λ (2)⊗φ
λ (3) . This tensor lives in ⊗3⊗d (Cn)∗, but

we view it as a tensor in ⊗d⊗3 (Cn)∗ via the canonical reordering. Let Pd be the canonical symmetrizer
⊗d ⊗3 (Cn)∗ → Symd(⊗3(Cn)∗) acting from the right. The group S×3

d has a natural right action on
⊗3⊗d (Cn)∗ and via the reordering also on ⊗d⊗3 (Cn)∗. Let λ be a triple of partitions of d. The tensors
{φλ πPd : π ∈ S×3

d } span the vector space [(Symd(⊗3(Cn)∗))λ ∗ ]
U , see [14, 4.2.17].

We construct a basis of [(Symd(⊗3(Cn)∗))λ ∗ ]
U as follows. Randomly pick k permutation pairs

τ1, . . . ,τk ∈ S×2
d . Let e∈ Sd be the identity permutation. Let πi = (e,τ(1)

i ,τ
(2)
i ) and let bi := φλ πiPd . Pick k

random tensors w1, . . . ,wk in⊗3Cn and evaluate every bi in every w j, giving a k-by-k evaluation matrix M.
If M has full rank, then (b1, . . . ,bk) is the desired basis.

Before going to the next step we discuss how to efficiently implement the evaluation of a polynomial
represented by a pair of permutations, as was already described in [12]. Let f = φλ πPd and let t be the
tensor ∑

r
i=1 t1

i ⊗ t2
i ⊗ t3

i in ⊗3Cn. The evaluation of the polynomial f at t is equal to the contraction

φλ πPd t⊗d = φλ π t⊗d

= ∑
j∈[r]d

φλ π (t1
j1⊗ t2

j1⊗ t3
j1)⊗·· ·⊗ (t1

jd ⊗ t2
jd ⊗ t3

jd )

= ∑
j∈[r]d

φ
λ (1)(t1

j1⊗·· ·⊗ t1
jd )

·φ
λ (2) τ

(1)(t2
j1⊗·· ·⊗ t2

jd )

·φ
λ (3) τ

(2)(t3
j1⊗·· ·⊗ t3

jd ).
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Note that the last expression is a sum of a product of determinants. Let us study the first factor of a
summand. Let ν denote the transpose of λ (1). We have

φ
λ (1)(t1

j1⊗·· ·⊗ t1
jd ) = (φν1⊗·· ·⊗φνµ1

)(t1
j1⊗·· ·⊗ t1

jd )

= detν1(t
1
j1 , . . . , t

1
jν1
)detν2(t

1
jν1
, . . . , t1

jν1+ν2
)

· · · detνµ1
(t1

jd−νµ1
, . . . , t1

jd ),

where detm(v1, . . . ,vm) denotes top m-by-m minor of the matrix with columns v1, . . . ,vm. Suppose that,
in our evaluation of ∑ j, we have chosen values for j1, . . . , jν1 and suppose detν1(t

1
j1 , . . . , t

1
jν1
) is 0. Then

whatever choices we make for jν1+1, . . . , jd , the summand at hand will be zero. Recognizing this situation
early is crucial.

Step 3. Construction of a vector in I(σr). Pick k random tensors t1, . . . , tk of rank r. Evaluate each
basis element bi in each random tensor t j. If the resulting matrix (bi(t j))i, j∈[k] has a nontrivial kernel, then
we find a candidate highest-weight vector f in I(σr). We can verify the correctness of the candidate by
evaluating f at a symbolic tensor of rank r. This evaluation should be zero. The way we do this symbolic
evaluation is by working in ⊗3C6 and using the straightening algorithm, see e.g. the SchurFunctors
package in Macaulay2 [21]. We used multi-prolongation to split up the computation in order to save
memory. We refer to [17, 19] for a discussion of multi-prolongation.

Step 4. Evaluating at gt. Evaluate f at gt for a random g ∈ G. (In our case, it turns out that taking g
to be the identity is good enough.)

3.3 The matrix multiplication tensor

We will now prove that Rs(〈2,2,2〉) = 7.

Proof of Theorem 1.2. The upper bound follows from Theorem 1.1, so it remains to prove the lower
bound. Let σ6 be the variety of tensors in ⊗3C4 of border rank at most 6. We will apply the method
described above to the tensor 〈2,2,2〉q, see Theorem 2.3.

Let d = 20 and let λ be the partition triple (5,5,5,5)3. The Kronecker coefficient k(λ ) equals 4. Let
W := Sym20(⊗3(C4)∗) and denote by Wλ ∗ the isotypic component of type λ ∗. Writing permutations in the
one-line notation, the following pairs of permutations define a basis (b1,b2,b3,b4) for the highest-weight
vector space [Wλ ∗ ]

U :

π1 = ([5,14,8,2,12,0,1,15,6,11,18,13,4,3,9,17,7,10,16,19],

[14,5,9,0,6,13,16,15,4,11,3,10,12,8,2,17,7,19,18,1]),

π2 = ([11,18,2,12,10,5,1,17,19,9,3,4,7,6,13,0,14,16,15,8],

[19,1,2,7,8,3,13,6,17,10,18,12,15,4,5,11,16,0,14,9]),

π3 = ([2,16,17,1,4,0,7,5,10,14,11,6,18,15,9,12,19,13,3,8],

[15,9,0,11,19,16,18,7,2,13,5,6,17,14,8,1,12,4,10,3]),

π4 = ([9,12,14,2,6,19,18,3,15,0,1,5,11,17,7,16,8,4,13,10],

[14,4,18,3,11,16,15,12,5,0,17,2,10,9,13,19,7,6,1,8]).
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The polynomial f20 = 11832g1 +233074g2 +34117g3−32732g4 is the only linear combination of the
basis elements that is in I(σ6), up to scaling. We verified that f20 is indeed in I(σ6) with the straightening
algorithm. Evaluating f20 on 〈2,2,2〉q yields

f20(〈2,2,2〉q) =−730140480(q+1)q2.

Let d = 19 and let λ be the partition triple (5,5,5,4)3. The Kronecker coefficient k(λ ) equals 31.
Let W := Sym19(⊗3(C4)∗) and denote by Wλ ∗ the isotypic component of type λ ∗. The following pairs of
permutations define a basis (b1, . . . ,b31) for the highest-weight vector space [Wλ ∗ ]

U :

π1 = ([4,8,13,3,1,12,5,11,9,15,2,7,0,17,14,6,10,18,16],
[2,18,5,7,9,13,0,12,1,15,10,8,4,11,16,3,17,6,14]),

π2 = ([12,15,11,7,2,6,8,17,9,1,16,13,4,0,3,10,18,14,5],
[11,9,14,0,15,13,16,3,6,8,17,7,10,5,18,2,12,1,4]),

π3 = ([14,1,2,15,6,3,7,13,4,18,8,9,12,10,16,5,17,0,11],
[7,18,2,10,4,12,0,9,15,6,5,13,1,17,14,16,8,3,11]),

π4 = ([4,1,0,12,7,13,9,16,6,8,18,15,17,11,14,2,10,3,5],
[5,13,17,14,3,4,6,11,8,18,1,15,2,0,9,16,7,10,12]),

π5 = ([11,14,5,0,15,8,2,17,1,13,4,9,16,6,7,10,18,3,12],
[8,18,4,14,6,16,10,2,11,9,5,0,13,12,1,7,3,17,15]),

π6 = ([10,5,18,8,15,2,16,1,0,13,3,4,7,14,11,6,12,17,9],
[0,8,12,2,3,9,11,13,5,1,14,7,4,16,17,18,15,10,6]),

π7 = ([12,1,11,16,13,7,2,17,10,15,3,0,5,4,14,6,9,8,18],
[8,1,4,2,12,14,18,15,7,9,0,11,3,10,6,17,13,5,16]),

π8 = ([17,18,6,11,4,2,1,9,15,16,5,8,10,0,12,13,3,14,7],
[14,1,18,6,10,15,3,5,11,16,12,9,13,7,0,17,8,4,2]),

π9 = ([8,2,10,3,6,4,11,18,13,0,5,1,15,17,12,16,14,7,9],
[2,5,13,16,1,10,3,14,4,17,18,12,0,11,9,6,7,8,15]),

π10 = ([13,17,15,1,12,0,9,10,6,18,7,16,14,5,2,4,11,8,3],
[6,12,11,10,2,14,13,0,9,15,16,17,5,8,3,7,1,18,4]),

π11 = ([14,5,4,1,16,8,3,7,10,13,18,6,2,17,11,9,15,12,0],
[5,9,10,1,2,4,14,18,8,11,7,6,15,17,16,3,0,13,12]),

π12 = ([1,5,4,13,15,2,17,16,8,10,11,6,7,3,12,14,9,0,18],
[9,5,7,8,6,11,18,3,10,4,14,17,13,0,12,15,16,1,2]),

π13 = ([16,13,4,3,5,2,1,15,18,6,12,0,14,8,17,7,10,11,9],
[2,7,8,18,16,4,6,14,0,15,9,5,1,12,10,13,17,11,3]),
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π14 = ([5,12,0,9,3,7,17,2,6,14,11,8,15,4,1,10,13,18,16],
[5,15,18,8,17,11,9,4,13,1,16,2,0,14,7,10,12,3,6]),

π15 = ([12,6,9,14,18,5,17,2,1,4,3,11,0,10,15,7,16,13,8],
[9,1,16,18,14,5,6,0,10,13,3,7,15,4,11,17,12,2,8]),

π16 = ([1,18,4,8,5,3,0,16,6,10,11,2,17,7,9,12,14,13,15],
[8,2,15,12,18,6,0,11,13,5,9,4,16,7,10,17,14,1,3]),

π17 = ([18,8,16,6,5,7,2,13,0,4,12,11,14,15,3,17,1,10,9],
[12,9,14,2,18,5,0,13,4,16,8,7,1,10,6,3,17,11,15]),

π18 = ([7,5,16,15,1,0,8,11,14,17,12,6,9,3,10,18,13,4,2],
[8,9,0,4,2,3,5,13,18,12,6,1,16,11,17,10,14,7,15]),

π19 = ([2,17,0,14,15,8,1,9,12,5,10,3,7,11,4,16,6,13,18],
[13,3,0,15,7,17,18,10,6,16,1,8,9,14,12,4,5,2,11]),

π20 = ([0,16,9,3,15,1,4,14,7,2,18,10,12,11,17,8,6,5,13],
[3,2,13,11,8,1,5,4,0,16,7,17,6,12,14,9,18,15,10]),

π21 = ([17,3,5,14,0,16,2,8,1,11,7,18,12,6,9,15,4,13,10],
[7,2,17,8,0,13,6,1,4,5,18,9,15,10,16,11,3,14,12]),

π22 = ([5,4,1,14,16,3,9,17,12,8,2,6,11,7,18,15,13,0,10],
[6,14,8,7,9,18,3,12,15,2,0,1,13,5,10,16,4,11,17]),

π23 = ([17,4,10,13,14,1,6,8,5,15,9,2,0,11,18,7,3,12,16],
[6,3,11,12,15,17,10,2,8,5,1,0,14,7,9,18,13,4,16]),

π24 = ([3,9,0,15,14,7,1,16,2,8,11,4,17,12,10,6,18,13,5],
[10,11,3,2,1,9,14,13,18,16,0,4,15,8,5,12,6,7,17]),

π25 = ([12,2,8,6,16,1,15,9,11,14,10,3,5,17,0,13,18,4,7],
[8,2,14,1,6,17,16,3,7,9,11,12,18,0,5,13,15,10,4]),

π26 = ([2,16,14,6,9,0,11,12,3,15,1,18,17,7,4,8,13,5,10],
[10,15,13,12,17,0,16,7,4,11,1,2,6,14,8,5,9,3,18]),

π27 = ([10,7,6,0,12,11,16,13,1,3,17,14,8,18,4,2,9,5,15],
[3,17,11,12,6,5,2,13,18,14,9,1,7,16,4,8,10,15,0]),

π28 = ([16,6,8,4,7,5,9,1,0,2,14,13,17,10,18,15,11,3,12],
[6,11,1,12,2,8,5,9,3,16,15,18,4,7,14,0,10,17,13]),

π29 = ([8,13,7,0,17,4,2,15,16,1,18,3,5,11,12,10,6,14,9],
[4,13,1,10,18,12,2,5,17,7,6,15,8,9,0,11,16,14,3]),
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π30 = ([1,6,12,0,3,10,9,13,17,4,7,8,18,14,2,5,15,16,11],
[16,6,10,11,15,8,17,13,14,4,5,1,3,12,2,7,0,18,9]),

π31 = ([5,10,11,8,17,16,2,15,12,14,0,18,3,1,7,9,6,4,13],
[10,15,4,12,18,3,16,6,0,13,11,7,1,8,9,2,14,17,5]).

Let

c1 = 289082199568614200505625810989998081122378290025627334

c2 = 41448548699164679707399349100915823812613974963005402

c3 = 211649838021887426162677078824519293749517217920047823

c4 =−118150576713220917823141541211872001702845422153137763

c5 = −71972591371289085208000082313759547126396087856917092

c6 =−148042611712972282129069557835544665097810271759437007

c7 = −20671385701071233448917086723379921457752823704368686

c8 = −41700697565765737458921317121977791710351222967960389

c9 = 89818454969459149830510070194701368406615458716738371

c10 = −33389561951163547125931836395846743479037338582546746

c11 = −55953034618025281839233784369005651793756337420914611

c12 = 99436050816695444459576518293215696786461418941439932

c13 = −30608800079918651823012662681016076665421200200986429

c14 = 62322369796163233078186315204176712499710334162812978

c15 = 71531123200873494604907676681446086219352685074695096

c16 = 11103950876950753893392891180499777390516447716768874

c17 = −18170416924354926777786745151805158474424942420073625

c18 = 56636600557844043196391811853778001287738236566321291

c19 = −49475697236538461568207568070821224602714314684182556

c20 = −58897567946922439319826816178640661508235201647724834

c21 = −29789369352552042959878217935401203848547004115080562

c22 = 42553086095082787553533988614363448520647296308373860

c23 = −10584947869810207513601472123471095674362492708851758

c24 =−155536179226293398590182659612811187764949236460651258

c25 = −15163630056597008306009257387099740416829146255166469

c26 = 152468055855066906135282920200590542819196123610118125

c27 =−170101205621738870358375711649013594303036219144235962

c28 = −36619800006361115328892590783407206736313224654320560

c29 = 63636824324804825079032794300460871506246849887804488
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c30 =−114422655018015193150391631424350000645293977961135740

c31 = 99270978701207213884119395668714341424298017907910144

and define f19 = c1g1 + · · ·+ c31g31. This is the only linear combination that is in I(σ6), up to scaling.
We verified that f19 is in I(σ6) by straightening. Evaluating f19 at 〈2,2,2〉q yields

69332245782016022615247261570208505413020193878724712262(3q+2)q.

We have thus found two highest-weight vectors

f19 ∈ [I(σ6)(5,5,5,4)3∗ ]U ⊆ Sym19(⊗3(C4)∗)

f20 ∈ [I(σ6)(5,5,5,5)3∗ ]U ⊆ Sym20(⊗3(C4)∗)

such that f19(〈2,2,2〉q) = α q(3q+ 2) and f20(〈2,2,2〉q) = β q2(q+ 1), where α and β are nonzero
constants. The only simultaneous root of these polynomials occurs at q = 0. This means that for any
nonzero q, the point 〈2,2,2〉q is not contained in σ6. From Theorem 2.1 we conclude that the border rank
of any tensor with the same support as 〈2,2,2〉 is at least seven, which proves the theorem.

Remark 3.3. The lower bound R(〈2,2,2〉)≥ 7 in [12] was also obtained by showing on the one hand
that the highest-weight vector space [I(σ6)(5,5,5,5)3∗ ]U is nonzero, and on the other hand that the evaluation
of a nonzero element v ∈ [I(σ6)(5,5,5,5)3∗ ]U at 〈2,2,2〉 is nonzero.

Acknowledgements. The authors are grateful to Christian Ikenmeyer for helpful discussions.
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