1,262 research outputs found

    The Complexity of Approximately Counting Stable Matchings

    Get PDF
    We investigate the complexity of approximately counting stable matchings in the kk-attribute model, where the preference lists are determined by dot products of "preference vectors" with "attribute vectors", or by Euclidean distances between "preference points" and "attribute points". Irving and Leather proved that counting the number of stable matchings in the general case is #P-complete. Counting the number of stable matchings is reducible to counting the number of downsets in a (related) partial order and is interreducible, in an approximation-preserving sense, to a class of problems that includes counting the number of independent sets in a bipartite graph (#BIS). It is conjectured that no FPRAS exists for this class of problems. We show this approximation-preserving interreducibilty remains even in the restricted kk-attribute setting when k3k \geq 3 (dot products) or k2k \geq 2 (Euclidean distances). Finally, we show it is easy to count the number of stable matchings in the 1-attribute dot-product setting.Comment: Fixed typos, small revisions for clarification, et

    A Simply Exponential Upper Bound on the Maximum Number of Stable Matchings

    Full text link
    Stable matching is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we provide a new upper bound on f(n)f(n), the maximum number of stable matchings that a stable matching instance with nn men and nn women can have. It has been a long-standing open problem to understand the asymptotic behavior of f(n)f(n) as nn\to\infty, first posed by Donald Knuth in the 1970s. Until now the best lower bound was approximately 2.28n2.28^n, and the best upper bound was 2nlognO(n)2^{n\log n- O(n)}. In this paper, we show that for all nn, f(n)cnf(n) \leq c^n for some universal constant cc. This matches the lower bound up to the base of the exponent. Our proof is based on a reduction to counting the number of downsets of a family of posets that we call "mixing". The latter might be of independent interest

    The Complexity of Approximately Counting Stable Roommate Assignments

    Get PDF
    We investigate the complexity of approximately counting stable roommate assignments in two models: (i) the kk-attribute model, in which the preference lists are determined by dot products of "preference vectors" with "attribute vectors" and (ii) the kk-Euclidean model, in which the preference lists are determined by the closeness of the "positions" of the people to their "preferred positions". Exactly counting the number of assignments is #P-complete, since Irving and Leather demonstrated #P-completeness for the special case of the stable marriage problem. We show that counting the number of stable roommate assignments in the kk-attribute model (k4k \geq 4) and the 3-Euclidean model(k3k \geq 3) is interreducible, in an approximation-preserving sense, with counting independent sets (of all sizes) (#IS) in a graph, or counting the number of satisfying assignments of a Boolean formula (#SAT). This means that there can be no FPRAS for any of these problems unless NP=RP. As a consequence, we infer that there is no FPRAS for counting stable roommate assignments (#SR) unless NP=RP. Utilizing previous results by the authors, we give an approximation-preserving reduction from counting the number of independent sets in a bipartite graph (#BIS) to counting the number of stable roommate assignments both in the 3-attribute model and in the 2-Euclidean model. #BIS is complete with respect to approximation-preserving reductions in the logically-defined complexity class #RH\Pi_1. Hence, our result shows that an FPRAS for counting stable roommate assignments in the 3-attribute model would give an FPRAS for all of #RH\Pi_1. We also show that the 1-attribute stable roommate problem always has either one or two stable roommate assignments, so the number of assignments can be determined exactly in polynomial time

    Counting Popular Matchings in House Allocation Problems

    Full text link
    We study the problem of counting the number of popular matchings in a given instance. A popular matching instance consists of agents A and houses H, where each agent ranks a subset of houses according to their preferences. A matching is an assignment of agents to houses. A matching M is more popular than matching M' if the number of agents that prefer M to M' is more than the number of people that prefer M' to M. A matching M is called popular if there exists no matching more popular than M. McDermid and Irving gave a poly-time algorithm for counting the number of popular matchings when the preference lists are strictly ordered. We first consider the case of ties in preference lists. Nasre proved that the problem of counting the number of popular matching is #P-hard when there are ties. We give an FPRAS for this problem. We then consider the popular matching problem where preference lists are strictly ordered but each house has a capacity associated with it. We give a switching graph characterization of popular matchings in this case. Such characterizations were studied earlier for the case of strictly ordered preference lists (McDermid and Irving) and for preference lists with ties (Nasre). We use our characterization to prove that counting popular matchings in capacitated case is #P-hard

    The number of matchings in random graphs

    Full text link
    We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erdos-Renyi random graphs. Our main new result is the computation of the entropy, i.e. the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm to compute this entropy for an arbitrary graph with a girth that diverges in the large size limit, and an analytic result for the entropy in regular and Erdos-Renyi random graph ensembles.Comment: 17 pages, 6 figures, to be published in Journal of Statistical Mechanic

    Solving Hard Stable Matching Problems Involving Groups of Similar Agents

    Get PDF
    Many important stable matching problems are known to be NP-hard, even when strong restrictions are placed on the input. In this paper we seek to identify structural properties of instances of stable matching problems which will allow us to design efficient algorithms using elementary techniques. We focus on the setting in which all agents involved in some matching problem can be partitioned into k different types, where the type of an agent determines his or her preferences, and agents have preferences over types (which may be refined by more detailed preferences within a single type). This situation would arise in practice if agents form preferences solely based on some small collection of agents' attributes. We also consider a generalisation in which each agent may consider some small collection of other agents to be exceptional, and rank these in a way that is not consistent with their types; this could happen in practice if agents have prior contact with a small number of candidates. We show that (for the case without exceptions), several well-studied NP-hard stable matching problems including Max SMTI (that of finding the maximum cardinality stable matching in an instance of stable marriage with ties and incomplete lists) belong to the parameterised complexity class FPT when parameterised by the number of different types of agents needed to describe the instance. For Max SMTI this tractability result can be extended to the setting in which each agent promotes at most one `exceptional' candidate to the top of his/her list (when preferences within types are not refined), but the problem remains NP-hard if preference lists can contain two or more exceptions and the exceptional candidates can be placed anywhere in the preference lists, even if the number of types is bounded by a constant.Comment: Results on SMTI appear in proceedings of WINE 2018; Section 6 contains work in progres

    Enumeration of Matchings: Problems and Progress

    Full text link
    This document is built around a list of thirty-two problems in enumeration of matchings, the first twenty of which were presented in a lecture at MSRI in the fall of 1996. I begin with a capsule history of the topic of enumeration of matchings. The twenty original problems, with commentary, comprise the bulk of the article. I give an account of the progress that has been made on these problems as of this writing, and include pointers to both the printed and on-line literature; roughly half of the original twenty problems were solved by participants in the MSRI Workshop on Combinatorics, their students, and others, between 1996 and 1999. The article concludes with a dozen new open problems. (Note: This article supersedes math.CO/9801060 and math.CO/9801061.)Comment: 1+37 pages; to appear in "New Perspectives in Geometric Combinatorics" (ed. by Billera, Bjorner, Green, Simeon, and Stanley), Mathematical Science Research Institute publication #37, Cambridge University Press, 199
    corecore