151,755 research outputs found

    Leaps: an approach to the block structure of a graph

    Get PDF
    To study the block structure of a connected graph G=(V,E), we introduce two algebraic approaches that reflect this structure: a binary operation + called a leap operation and a ternary relation L called a leap system, both on a finite, nonempty set V. These algebraic structures are easily studied by considering their underlying graphs, which turn out to be block graphs. Conversely, we define the operation +G as well as the set of leaps LG of the connected graph G. The underlying graph of +G , as well as that of LG , turns out to be just the block closure of G (i.e. the graph obtained by making each block of G into a complete subgraph).

    Computing metric hulls in graphs

    Full text link
    We prove that, given a closure function the smallest preimage of a closed set can be calculated in polynomial time in the number of closed sets. This confirms a conjecture of Albenque and Knauer and implies that there is a polynomial time algorithm to compute the convex hull-number of a graph, when all its convex subgraphs are given as input. We then show that computing if the smallest preimage of a closed set is logarithmic in the size of the ground set is LOGSNP-complete if only the ground set is given. A special instance of this problem is computing the dimension of a poset given its linear extension graph, that was conjectured to be in P. The intent to show that the latter problem is LOGSNP-complete leads to several interesting questions and to the definition of the isometric hull, i.e., a smallest isometric subgraph containing a given set of vertices SS. While for S=2|S|=2 an isometric hull is just a shortest path, we show that computing the isometric hull of a set of vertices is NP-complete even if S=3|S|=3. Finally, we consider the problem of computing the isometric hull-number of a graph and show that computing it is Σ2P\Sigma^P_2 complete.Comment: 13 pages, 3 figure

    Maximizing the Strong Triadic Closure in Split Graphs and Proper Interval Graphs

    Get PDF
    In social networks the Strong Triadic Closure is an assignment of the edges with strong or weak labels such that any two vertices that have a common neighbor with a strong edge are adjacent. The problem of maximizing the number of strong edges that satisfy the strong triadic closure was recently shown to be NP-complete for general graphs. Here we initiate the study of graph classes for which the problem is solvable. We show that the problem admits a polynomial-time algorithm for two unrelated classes of graphs: proper interval graphs and trivially-perfect graphs. To complement our result, we show that the problem remains NP-complete on split graphs, and consequently also on chordal graphs. Thus we contribute to define the first border between graph classes on which the problem is polynomially solvable and on which it remains NP-complete
    corecore