
Maximizing the Strong Triadic Closure in Split
Graphs and Proper Interval Graphs
Athanasios L. Konstantinidis1 and Charis Papadopoulos2

1 Department of Mathematics, University of Ioannina, Greece
skonstan@cc.uoi.gr

2 Department of Mathematics, University of Ioannina, Greece
charis@cs.uoi.gr

Abstract
In social networks the Strong Triadic Closure is an assignment of the edges with strong
or weak labels such that any two vertices that have a common neighbor with a strong edge are
adjacent. The problem of maximizing the number of strong edges that satisfy the strong triadic
closure was recently shown to be NP-complete for general graphs. Here we initiate the study of
graph classes for which the problem is solvable. We show that the problem admits a polynomial-
time algorithm for two unrelated classes of graphs: proper interval graphs and trivially-perfect
graphs. To complement our result, we show that the problem remains NP-complete on split
graphs, and consequently also on chordal graphs. Thus we contribute to define the first border
between graph classes on which the problem is polynomially solvable and on which it remains
NP-complete.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, G.2.2
Graph Theory

Keywords and phrases strong triadic closure, polynomial-time algorithm, NP-completeness, split
graphs, proper interval graphs

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.53

1 Introduction

Predicting the behavior of a network is an important concept in the field of social networks
[9]. Understanding the strength and nature of social relationships has found an increasing
usefulness in the last years due to the explosive growth of social networks (see e.g., [2]).
Towards such a direction the Strong Triadic Closure principle enables us to understand
the structural properties of the underlying graph: it is not possible for two individuals to
have a strong relationship with a common friend and not know each other [12]. Such a
principle stipulates that if two people in a social network have a “strong friend” in common,
then there is an increased likelihood that they will become friends themselves at some point
in the future. Satisfying the Strong Triadic Closure is to characterize the edges of
the underlying graph into weak and strong such that any two vertices that have a strong
neighbor in common are adjacent. Since users interact and actively engage in social networks
by creating strong relationships, it is natural to consider the MaxSTC problem: maximize
the number of strong edges that satisfy the Strong Triadic Closure. The problem has
been shown to be NP-complete for general graphs while its dual problem of minimizing the
number of weak edges admits a constant factor approximation ratio [28].

In this work we initiate the computational complexity study of the MaxSTC problem
in important classes of graphs. If the input graph is a P3-free graph (i.e., a graph having

© Athanasios L. Konstantinidis and Charis Papadopoulos;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 53; pp. 53:1–53:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/141727403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

53:2 Strong Triadic Closure in Split Graphs and Proper Interval Graphs

no induced path on three vertices which is equivalent with a graph that consists of vertex-
disjoint union of cliques) then there is a trivial solution by labeling strong all the edges. Such
an observation might falsely lead into a graph modification problem, known as Cluster
Deletion problem (see e.g., [3, 14]), in which we want to remove the minimum number of
edges that correspond to the weak edges, such that the resulting graph does not contain a
P3 as an induced subgraph. More precisely the obvious reduction would consist in labeling
the deleted edges in the instance of Cluster Deletion as weak, and the remaining ones as
strong. However, this reduction fails to be correct due to the fact that the graph obtained by
deleting the weak edges in an optimal solution of MaxSTC may contain an induced P3, so
long as those three vertices induce a triangle in the original graph (prior to deleting the weak
edges). We stress that there are examples on split graphs (Figure 1) and proper interval
graphs (Figure 3) showing such a difference.

To the best of our knowledge, no previous results were known prior to our work when
restricting the input graph for the MaxSTC problem. It is not difficult to see that for
bipartite graphs the MaxSTC problem has a simple polynomial-time solution by considering
a maximum matching that represent the strong edges [15]. In fact such an argument regarding
the maximum matching generalizes to the larger class of triangle-free graphs. Also notice that
for triangle-free graphs a set of edges is a maximum matching if and only if it is formed by a
solution for the Cluster Deletion problem. It is well-known that a maximum matching
of a graph corresponds to a maximum independent set of its line graph that represents the
adjacencies between the edges [10]. As previously noted, for general graphs it is not necessarily
the case that a maximum matching corresponds to the optimal solution for MaxSTC. Here
we show a similar characterization for MaxSTC by considering the adjacencies between
the edges of a graph that participate in induced P3’s. Such a characterization allows us to
exhibit properties towards an optimal solution of MaxSTC.

Due to the nature of the P3 existence that enforce the labeling of weak edges, there
is an interesting connection to problems related to the square root of a graph; a graph H
is a square root of a graph G and G is the square of H if two vertices are adjacent in G

whenever they are at distance one or two in H. Any graph does not have a square root (for
example consider a simple path), but every graph contains a subgraph that has a square root.
Although it is NP-complete to determine if a given chordal graph has a square root [21],
there are polynomial-time algorithms when the input is restricted to bipartite graphs [20], or
proper interval graphs [21], or trivially-perfect graphs [25]. Among several square roots that
a graph may have, one can choose the square root with the maximum or minimum number
of edges [5, 23]. The relationship between MaxSTC and to that of determining square roots
can be seen as follows. In the MaxSTC problem we are given a graph G and we want to
select the maximum possible number of edges, at most one from each induced P3 in G. Thus
we need to find the largest subgraph (in terms of the number of its edges) H of G such that
the square of H is a subgraph of G. However the known results related to square roots were
concerned with deciding if the whole graph has a (maximum or minimum) square root and
there are no such equivalent formulations related to the largest square root.

Our main motivation is to understand the complexity of the problem on subclasses of
chordal graphs, since the class of chordal graphs (i.e., graphs having no chordless cycle of
length at least four) finds important applications in both theoretical and practical areas
related to social networks [1, 19, 26]. More precisely two famous properties can be found in
social networks. For most known social and biological networks their diameter, that is, the
length of the longest shortest path between any two vertices of a graph, is known to be a small
constant [17]. On the other hand it has been shown that the most prominent social network

A. L. Konstantinidis and C. Papadopoulos 53:3

Figure 1 A split graph G is shown to the left side. The right side depicts a solution for MaxSTC
on G where the weak edges are exactly the edges of G that are not shown.

subgraphs are cliques, whereas highly infrequent induced subgraphs are cycles of length four
[29]. Thus it is evident that subclasses of chordal graphs are close related to such networks,
since they have rather small diameter (e.g., split graphs or trivially-perfect graphs) and are
characterized by the absence of chordless cycles (e.g., proper interval graphs). Towards such
a direction we show that MaxSTC is NP-complete on split graphs and consequently also
on chordal graphs. On the positive side, we present the first polynomial-time algorithm
for computing MaxSTC on proper interval graphs. Proper interval graphs, also known
as unit interval graphs or indifference graphs, form a subclass of interval graphs and they
are unrelated to split graphs [27]. By our result they form the first graph class, other than
triangle-free graphs, for which MaxSTC is shown to be polynomial time solvable. In order
to obtain our algorithm, we take advantage of their clique path (consecutive arrangement
of maximal cliques) and apply a dynamic programming on subproblems defined by passing
the clique path in its natural ordering. Our structural proofs on proper interval graphs
can be seen as useful tools towards settling the complexity of MaxSTC on interval graphs.
Furthermore by considering the characterization of the induced P3’s mentioned earlier, we
show that MaxSTC admits a simple polynomial-time solution on trivially-perfect graphs
(i.e., graphs having no induced P4 or C4).

2 Preliminaries

We refer to [4] for our standard graph terminology. Given a graph G = (V,E), a strong-weak
labeling on the edges of G is a function λ that assigns to each edge of E(G) one of the labels
strong or weak; i.e., λ : E(G)→ {strong,weak}. An edge that is labeled strong (resp., weak)
is simply called strong (resp. weak). The strong triadic closure of a graph G is a strong-weak
labeling λ such that for any two strong edges {u, v} and {v, w} there is a (weak or strong)
edge {u,w}. In other words, in a strong triadic closure there is no pair of strong edges {u, v}
and {v, w} such that {u,w} /∈ E(G). The problem of computing a maximum strong triadic
closure, denoted by MaxSTC, is to find a strong-weak labeling on the edges of E(G) that
satisfies the strong triadic closure and has the maximum number of strong edges. Note that
its dual problem asks for the minimum number of weak edges. Here we focus on maximizing
the number of strong edges in a strong triadic closure.

Let G be a strong-weak labeled graph. We denote by (ES , EW) the partition of E(G)
into strong edges ES and weak edges EW . The graph spanned by ES is the graph G \ EW .
For a vertex v ∈ V (G) we say that the strong neighbors of v are the other endpoints of the
strong edges incident to v. We denote by NS(v) ⊆ N(v) the strong neighbors of v. Similarly
we say that a vertex u is strongly adjacent to v if u is adjacent to v and {u, v} is strong.

I Observation 1. Let G = (ES , EW) be a strong-weak labeled graph. G satisfies the strong
triadic closure if and only if for every P3 in G \ EW , the vertices of P3 induce a K3 in G.

ISAAC 2017

53:4 Strong Triadic Closure in Split Graphs and Proper Interval Graphs

3 MaxSTC on split graphs

Here we provide an NP-hardness result for MaxSTC on split graphs. A graph G = (V,E) is
a split graph if V can be partitioned into a clique C and an independent set I, where (C, I)
is called a split partition of G. Split graphs form a subclass of the larger and widely known
graph class of chordal graphs, which are the graphs that do not contain induced cycles of
length 4 or more as induced subgraphs. It is known that split graphs are self-complementary,
that is, the complement of a split graph remains a split graph. Hereafter for two vertices u
and v we say that u sees v if {u, v} ∈ E(G); otherwise, we say that u misses v.

I Lemma 2. Let G = (V,E) be a split graph with a split partition (C, I). Let ES be the set
of strong edges in an optimal solution for MaxSTC on G and let IW be the vertices of I
that are incident to at least one edge of ES.
1. If every vertex of IW misses at least three vertices of C in G then ES = E(C).
2. If every vertex of IW misses exactly one vertex of C in G then |ES | ≤ |E(C)|+ b |IW |

2 c.

Proof. Let wi be a vertex of I and let Bi be the set of vertices in C that are non-adjacent
to wi. Let Ai be the strong neighbors of wi in an optimal solution. For the edges of the
clique, there are |Ai||Bi| weak edges due to the strong triadic closure. Moreover any vertex
wj of I \ {wi} cannot have a strong neighbor in Ai. This means that Ai ∩Aj = ∅. Notice,
however, that both sets Bi ∩Bj and Ai ∩Bj are not necessarily empty.

Observe that IW contains the vertices of I that are incident to at least one strong
edge. Let E(A,B) be the set of weak edges that have one endpoint in Ai and the other
endpoint in Bi, for every 1 ≤ i ≤ |IW |. We show that 2|E(A,B)| ≥

∑
wi∈IW

|Ai||Bi|. Let
{a, b} ∈ E(A,B) such that a ∈ Ai and b ∈ Bi. Assume that there is a pair Aj , Bj such that
{a, b} is an edge between Aj and Bj , for j 6= i. Then a cannot belong to Aj since Ai∩Aj = ∅.
Thus a ∈ Bj and b ∈ Aj . Therefore for every edge {a, b} ∈ E(A,B) there are at most two
pairs (Ai, Bi) and (Aj , Bj) for which a ∈ Ai ∪Bj and b ∈ Bi ∪Aj . This means that every
edge of E(A,B) is counted at most twice in

∑
wi∈IW

|Ai||Bi|.
For any two edges {u, v}, {v, z} ∈ E(C) \ E(A,B), observe that they satisfy the strong

triadic closure since there is the edge {u, z} in G. Thus the strong edges of the clique are
exactly the set of edges E(C) \ E(A,B). In total by counting the number of strong edges
between the independent set and the clique, we have |ES | = |E(C) \E(A,B)|+

∑
wi∈IW

|Ai|.
Since 2|E(A,B)| ≥

∑
wi∈IW

|Ai||Bi|, we get

|ES | ≤ |E(C)|+
∑

wi∈IW

|Ai|
(

1−
⌊
|Bi|

2

⌋)
.

Now the first claim of the lemma holds because |Bi| ≥ 3 so that IW = ∅. For the second
claim we show that for every vertex of IW , |Ai| = 1. Let wi ∈ IW such that |Ai| ≥ 2 and
let Bi = {bi}. Recall that no other vertex of IW has strong neighbors in Ai. Also note that
there is at most one vertex wj in IW that has bi as a strong neighbor. If such a vertex wj

exist and for the vertex bj of the clique that misses wj it holds bj ∈ Ai, then we let v = bj ;
otherwise we choose v as an arbitrary vertex of Ai. Observe that no vertex of I \ {wi} has a
strong neighbor in Ai \ {v} and only wj ∈ IW is strongly adjacent to bi. Then we label weak
the |Ai| − 1 edges between wi and the vertices of Ai \ {v} and we label strong the |Ai| − 1
edges between bi and the vertices of Ai \ {v}. Making strong the edges between bi and the
vertices of Ai \ {v} does not violate the strong triadic closure since every vertex of C ∪ {wj}
is adjacent to every vertex of Ai \ {v}. Therefore for every vertex wi ∈ IW , |Ai| = 1 and by
substituting |Bi| = 1 in the formula for |ES | we get the claimed bound. J

A. L. Konstantinidis and C. Papadopoulos 53:5

In order to give the reduction, we introduce the following problem that we call maximum
disjoint non-neighborhood: given a split graph (C, I) where every vertex of I misses three
vertices from C, we want to find the maximum subset SI of I such that the non-neighborhoods
of the vertices of SI are pairwise disjoint. In the corresponding decision version, denoted by
MaxDisjointNN, we are also given an integer k and the problem asks whether |SI | ≥ k.
The polynomial-time reduction to MaxDisjointNN is given from the classical NP-complete
problem 3-Set Packing [18]: given a universe U of n elements, a family F of triplets of
U , and an integer k, the problem asks for a subfamily F ′ ⊆ F with |F ′| ≥ k such that all
triplets of F ′ are pairwise disjoint.

I Corollary 3. MaxDisjointNN is NP-complete on split graphs.

Now we turn to our original problem MaxSTC. The decision version of MaxSTC takes
as input a graph G and an integer k and asks whether there is strong-weak labeling of the
edges of G that satisfies the strong triadic closure with at least k strong edges.

I Theorem 4. The decision version of MaxSTC is NP-complete on split graphs.

Proof. Given a strong-weak labeling (ES , EW) of a split graph G = (C, I), checking whether
(ES , EW) satisfies the strong triadic closure amounts to check in G \ EW whether there is a
non-edge in G between the endvertices of every P3 according to Observation 1. Thus by listing
all P3’s of G \ EW the problem belongs to NP. Next we give a polynomial-time reduction
to MaxSTC from the MaxDisjointNN problem on split graphs which is NP-complete
by Corollary 3. Let (G, k) be an instance of MaxDisjointNN where G = (C, I) is a split
graph such that every vertex of the independent set I misses exactly three vertices from
the clique C. For a vertex wi ∈ I, we denote by Bi the set of the three vertices in C that
are non-adjacent to wi. Let n = |C|. We extend G and construct another split graph G′ as
follows (see Figure 2):

We add n vertices y1, . . . , yn in the clique that constitutes the set CY .
We add n vertices x1, . . . , xn in the independent set that constitutes the set IX .
For every 1 ≤ i ≤ n, yi is adjacent to all vertices of (C ∪ CY ∪ I ∪ IX) \ {xi}.
For every 1 ≤ i ≤ n, xi is adjacent to all vertices of (C ∪ CY) \ {yi}.

Thus wi misses only the vertices of Bi from the clique. By construction it is clear that G′ is
a split graph with a split partition (C ∪ CY , I ∪ IX). Notice that the clique C ∪ CY has 2n
vertices and G = G′[I ∪ C].

We claim that G has a solution for MaxDisjointNN of size at least k if and only if G′
has a strong triadic closure with at least n(2n− 1) + bn

2 c+ dk
2 e strong edges. Due to space

restriction, we only show the one direction.
Assume that {w1, . . . , wk} ⊆ I is a solution for MaxDisjointNN on G of size at least

k. Since the sets B1, . . . , Bk are pairwise disjoint, there are k distinct vertices y1, . . . , yk in
CY such that k ≤ n. We will give a strong-weak labeling for the edges of G′ that fulfills the
strong triadic closure and has at least the claimed number of strong edges. For simplicity,
we describe only the strong edges; the edges of G′ that are not given are all labeled weak.
We label the edges between each vertex wi, yi, xi and the three vertices of each set Bi, for
1 ≤ i ≤ k as follows:

The edges of the form {yi, v} are labeled strong if v ∈ (C ∪ CY) \Bi or v = wi.
The edges between xi and the three vertices of Bi are labeled strong.

Next we label the edges incident to the rest of the vertices. No edge incident to a vertex
of I \ {w1, . . . , wk} is labeled strong. For every vertex u ∈ C \ (B1 ∪ · · · ∪Bk) we label the
edge {u, v} strong if v ∈ (C ∪ CY). Let C ′Y = {yk+1, . . . , yn} and let I ′X = {xk+1, . . . , xn}.

ISAAC 2017

53:6 Strong Triadic Closure in Split Graphs and Proper Interval Graphs

x1

y1

B1

w1

· · ·

· · ·

· · ·

· · ·

xk

yk

Bk

wk

xk+1

yk+1

Bk+1

wk+1

xk+2

yk+2

· · ·

· · ·

· · ·

· · ·

xn−1

yn−1

xn

yn

B|I|

w|I|

IX

CY

C

I

Figure 2 The split graph (C ∪CY , I ∪ IX) given in the polynomial-time reduction. Every vertex
wi misses the vertices of Bi and sees the vertices of (C ∪ CY) \Bi. Every vertex xi misses yi and
sees the vertices of (C ∪ CY) \ {yi}. The sets B1, . . . , Bk are pairwise disjoint whereas for every set
Bj , k < j ≤ |I|, there is a set Bi, 1 ≤ i ≤ k, such that Bi ∩Bj 6= ∅. The drawn edges correspond to
the strong edges between the independent set and the clique, and the dashed edges are the only
weak edges in the clique C ∪ CY .

Recall that every vertex xk+j is adjacent to every vertex of C ′Y \ {yk+j}. Let ` = bn−k
2 c.

Let M = {e1, . . . , e`} be a maximal set of pairwise non-adjacent edges in G′[C ′Y] where
ej = {yk+2j−1, yk+2j}, for j ∈ {1, . . . , `}; note that M is a maximal matching of G′[C ′Y].
For every vertex y ∈ C ′Y , we label the edge {y, v} strong if v ∈ (C ∪ CY) \ {y′} such that
{y, y′} ∈M . Moreover, for j ∈ {1, . . . , `}, the edges {xk+2j−1, yk+2j} and {xk+2j , yk+2j−1}
are labeled strong. Note that if n− k is odd then no edge incident to the unique vertex yn

belongs to M and all edges between yn and the vertices of C ∪ CY are labeled strong; in
such a case also note that no edge incident to xn is strong.

Let us show that such a labeling fulfills the strong triadic closure. Any labeling for the
edges inside G′[C ∪ CY] is satisfied since G′[C ∪ CY] is a clique. Also note that there are no
two adjacent strong edges that have a common endpoint in the clique C ∪ CY and the two
other endpoints in the independent set I ∪ IX . If there are two strong edges incident to the
same vertex v of the independent set then v ∈ {x1, . . . , xk} and NS [v] = Bi which is a clique.
Assume that there are two adjacent strong edges {u, v} and {v, z} such that u ∈ I ∪ IX , and
v, z ∈ C ∪ CY .

If u ∈ {w1, . . . , wk} then {u, z} ∈ E(G′) since every wi misses only the vertices of Bi.

If u ∈ {x1, . . . , xk} then v ∈ Bi and {u, z} ∈ E(G′) since every vertex xi misses only yi.

If u ∈ IX \ {x1, . . . , xk} then the strong neighbors of v in C ∪CY are adjacent to u in G′
since for the only non-neighbor of u in C ∪ CY there is a weak edge incident to v.

Recall that there is no strong edge incident to the vertices of I \ {w1, . . . , wk}. Therefore the
given strong-weak labeling fulfills the strong triadic closure.

Observe that the number of vertices in C ∪ CY is 2n. There are exactly 3k + ` weak
edges in G′[C ∪ CY]. Thus the number of strong edges in G′[C ∪ CY] is n(2n− 1)− 3k − `.
There are k strong edges incident to {w1, . . . , wk}, 3k strong edges incident to {x1, . . . , xk},
and 2` strong edges incident to IX \ {x1, . . . , xk}. Thus the total number of strong edges is
n(2n− 1)− 3k − `+ k + 3k + 2` = n(2n− 1) + `+ k and by substituting ` = bn−k

2 c we get
the claimed bound. J

A. L. Konstantinidis and C. Papadopoulos 53:7

4 Computing MaxSTC on proper interval graphs

Due to the NP-completeness on split graphs given in Theorem 4, it is natural to consider
interval graphs that form another well-studied subclass of chordal graphs. However besides
few observations of this section that may be applied for interval graphs, we found several
unresolved technicalities. Moreover, to the best of our knowledge, the complexity of the
close-related Cluster Deletion problem remains unresolved on interval graphs [3]. Thus
we further restrict the input to the class of proper interval graphs that form a proper subclass
of interval graphs. Our polynomial solution for MaxSTC on proper interval graphs can be
seen as a first step towards determining its complexity on interval graphs.

A graph is a proper interval graph if there is a bijection between its vertices and a family
of closed intervals of the real line such that two vertices are adjacent if and only if the two
corresponding intervals overlap and no interval is properly contained in another interval. A
vertex ordering σ is a linear arrangement σ = 〈v1, . . . , vn〉 of the vertices of G. For a vertex
pair x, y we write x � y if x = vi and y = vj for some indices i ≤ j; if x 6= y which implies
i < j then we write x ≺ y. The first position in σ will be referred to as the left end of σ, and
the last position as the right end. We will use the expressions to the left of, to the right of,
leftmost, and rightmost accordingly.

A vertex ordering σ for G is called a proper interval ordering if for every vertex triple
x, y, z of G with x ≺ y ≺ z, {x, z} ∈ E(G) implies {x, y}, {y, z} ∈ E(G). Proper interval
graphs are characterized as the graphs that admit such orderings, that is, a graph is a proper
interval graph if and only if it has a proper interval ordering [24]. We only consider this
vertex ordering characterization for proper interval graphs. Moreover it can be decided in
linear time whether a given graph is a proper interval graph, and if so, a proper interval
ordering can be generated in linear time [24]. It is clear that a vertex ordering σ for G is a
proper interval ordering if and only if the reverse of σ is a proper interval ordering. Two
adjacent vertices u and v are called twins if N [u] = N [v]. A connected proper interval graph
without twin vertices has a unique proper interval ordering σ up to reversal [8, 16]. Figure 3
shows a proper interval graph with its proper interval ordering.

Let us turn our attention to the MaxSTC problem. Instead of maximizing the strong
edges of the original graph G, we will look at the maximum independent set of the following
graph that we call the line-incompatibility graph Ĝ of G: for every edge of G there is a node
in Ĝ and two nodes of Ĝ are adjacent if and only if the vertices of the corresponding edges
induce a P3 in G. In a different context the notion of line-incompatibility has already been
considered under the term Gallai graph in [22] or as an auxiliary graph in [5]. Note that the
line-incompatibility graph of G is a subgraph of the line graph1 of G. Moreover observe that
for a graph G, its line graph and its line-incompatibility graph coincide if and only if G is a
triangle-free graph.

I Proposition 5. A subset S of edges E(G) is an optimal solution for MaxSTC of G if
and only if S is a maximum independent set of Ĝ.

Therefore we seek for the optimal solution of G by looking at a solution for a maximum
independent set of Ĝ. As a byproduct, if we are interested in minimizing the number of
weak edges then we ask for the minimum vertex cover of Ĝ. We denote by I

Ĝ
the maximum

independent set of Ĝ. To distinguish the vertices of Ĝ with those of G we refer to the

1 The line graph of G is the graph having the edges of G as vertices and two vertices of the line graph are
adjacent if and only if the two original edges are incident in G.

ISAAC 2017

53:8 Strong Triadic Closure in Split Graphs and Proper Interval Graphs

a b

{cde} {fgh}
i j

G:

a b {cde} {fgh} i j
G:

a b {cde} {fgh} i j
G:

Figure 3 A proper interval graph G and its proper interval ordering. The vertices {c, d, e} and
{f, g, h} form twin sets in G. The two lower orderings depict two solutions for MaxSTC on G. A
solid edge corresponds to a strong edge, whereas a dashed edge corresponds to a weak edge. Observe
that the upper solution contains larger number of strong edges than the lower one. Also note that
the lower solution consists an optimal solution for the Cluster Deletion problem on G.

ab

a{cde}

b{cde}

b{fgh}

{cde}{fgh}

{cde}i

{fgh}i

{fgh}j

ij

Ĝ:

IĜ

Figure 4 The line-incompatibility graph Ĝ of the proper interval graph G given in Figure 3. The
set I

Ĝ
is a maximum weighted independent set of Ĝ, by taking into account the weight of each node

(i.e., an edge of G) that corresponds to the number of the twin vertices of its endpoints in G (see
Lemma 6).

former as nodes and to the latter as vertices. For an edge {u, v} of G we denote by uv the
corresponding node of Ĝ. Figure 4 shows the line-incompatibility graph of the proper interval
graph given in Figure 3.

A natural contraction for several graph problems is to group twin vertices since they play
the same role on the given graph. With the next result, we show that this is indeed the case
for the MaxSTC problem.

I Lemma 6. Let x and y be twin vertices of a graph G. Then there is an optimal solution
I

Ĝ
such that xy ∈ I

Ĝ
and for every vertex u ∈ N(x), xu ∈ I

Ĝ
if and only if yu ∈ I

Ĝ
.

Lemma 6 suggests to consider a graph G that has no twin vertices as follows. We partition
V (G) into sets of twins. For every twin set Wx we choose an arbitrary vertex x and remove
all its twin vertices except x from G. Let G′ be the resulting graph that has no twin vertices.
For every edge {x, y} of G′ we assign a weight equal to the product |Wx| · |Wy|. This value
corresponds to all edges of the original graph G between the vertices of Wx and Wy. The
line-incompatibility graph Ĝ′ of G′ is constructed as defined above with the only difference
that a node of Ĝ′ has weight equal to the weight of its corresponding edge in G′. Let I

Ĝ′ be

A. L. Konstantinidis and C. Papadopoulos 53:9

a maximum weighted independent set, that is an independent set of Ĝ′ such that the sum of
the weights of its nodes is maximized. Then by Lemma 6 we have I

Ĝ
= I

Ĝ′ ∪ S(W) where
S(W) contains |Wx|(|Wx| − 1)/2 nodes for every twin set Wx. Therefore we are interested
in computing a maximum weighted independent set of Ĝ′. Also note that G′ is an induced
subgraph of the original graph G. In order to avoid heavier notation we refer to Ĝ′ as Ĝ by
assuming that G has no twin vertices and every vertex of G has a positive weight.

Before reaching the details of our algorithm for proper interval graphs, let us highlight
the difference between the optimal solution for MaxSTC and the optimal solution for the
Cluster Deletion. As already explained in the Introduction a solution for Cluster
Deletion satisfies the strong triadic closure, though the converse is not necessarily true.
In fact such an observation carries out for the class of proper interval graphs as shown in
the example given in Figure 3. For the Cluster Deletion problem twin vertices can be
grouped together following a similar characterization with Lemma 6, as proved in [3]. This
means that the P3-free graph depicted in the lower part of Figure 3 that is obtained by
removing its weak edges (i.e., the dashed drawn lines) is an optimal solution for Cluster
Deletion problem on the given proper interval graph. Therefore when restricted to proper
interval graphs the optimal solution for Cluster Deletion does not necessarily imply an
optimal solution for MaxSTC.

Let G be a proper interval graph and let σ be a proper interval ordering for G. We say
that a solution I

Ĝ
has the consecutive strong property with respect to σ if for any three

vertices x, y, z of G with x ≺ y ≺ z the following holds: xz ∈ I
Ĝ

implies xy, yz ∈ I
Ĝ
. Our

task is to show that such an optimal ordering exists. We start by characterizing the optimal
solution I

Ĝ
with respect to the proper interval ordering σ.

I Lemma 7. Let x, y, z be three vertices of a proper interval graph G such that x ≺ y ≺ z.
If xz ∈ I

Ĝ
then xy ∈ I

Ĝ
or yz ∈ I

Ĝ
.

Proof. We show that at least one of xy or yz belongs to I
Ĝ
. Assume towards a contradiction

that neither xy nor yz belong to I
Ĝ
. Consider the node xy in Ĝ. If xy is adjacent to a node

xx` ∈ IĜ
then {x`, y} /∈ E(G). Then observe that x` ≺ y because x ≺ y and {x`, y} /∈ E(G).

Since both xx` and xz belong to I
Ĝ
, {x`, z} ∈ E(G). This however contradicts the proper

interval ordering because x` ≺ y ≺ z, {x`, z} ∈ E(G) and y is non-adjacent to x`. Thus xy
is non-adjacent to any node xx` ∈ IĜ

and, in analogous fashion, yz is non-adjacent to any
node zzr ∈ IĜ

.
Now assume that xy is adjacent to a node yyr ∈ IĜ

and yz is adjacent to a node y`y ∈ IĜ
.

This means that {x, yr} /∈ E(G) and {z, y`} /∈ E(G). Since {x, z} ∈ E(G), by the proper
interval ordering we have y` ≺ x ≺ y ≺ z ≺ yr. Then notice that {y`, yr} ∈ E(G), because
both yyr, yy` ∈ IĜ

. By the proper interval ordering we know that both x and z are adjacent
to y`, yr, leading to a contradiction to the assumptions {x, yr} /∈ E(G) and {z, y`} /∈ E(G).
Therefore at least one of xy or yz belongs to I

Ĝ
. J

Thus by Lemma 7 we have two symmetric cases to consider. The next characterization
suggests that there is a fourth vertex with important properties in each corresponding case.

I Lemma 8. Let x, y, z be three vertices of a proper interval graph G such that x ≺ y ≺ z
and xz ∈ I

Ĝ
.

If xy /∈ I
Ĝ

and yz ∈ I
Ĝ

then xy is non-adjacent to any node x`x ∈ IĜ
and there is a

vertex w such that yw ∈ I
Ĝ
, {x,w} /∈ E(G), and z ≺ w.

If xy ∈ I
Ĝ

and yz /∈ I
Ĝ

then yz is non-adjacent to any node zzr ∈ IĜ
and there is a

vertex w such that wy ∈ I
Ĝ
, {w, z} /∈ E(G) and w ≺ x.

ISAAC 2017

53:10 Strong Triadic Closure in Split Graphs and Proper Interval Graphs

Now we are ready to show that there is an optimal solution that has the described
properties with respect to the given proper interval ordering.

I Lemma 9. There exists an optimal solution I
Ĝ
that has the consecutive strong property

with respect to σ.

Lemma 9 suggests to find an optimal solution that has the consecutive strong property
with respect to σ. In fact by Proposition 5 and the proper interval ordering, this reduces to
computing the largest proper interval subgraph H of G such that the vertices of every P3 of
H induce a clique in G.

Let G be a proper interval graph and let σ = 〈v1, . . . , vn〉 be its proper interval ordering.
For a vertex vi we denote by `(i) and r(i) the positions of its leftmost and rightmost neighbors,
respectively, in σ. Observe that for any two vertices vi ≺ vj in σ, v`(i) � v`(j) and vr(i) � vr(j)
[8]. For 1 ≤ j ≤ r(1), let Vj = {v1, . . . , vj}, that is, Vj contains the first j vertices in σ.
Observe that any subset of vertices of Vj induces a clique in G. For the set Vj we denote by
B(Vj) the value that corresponds to the total weight of the edges incident to v1 and each of
v2, . . . , vj .

Let A(G) be the value of an optimal solution I
Ĝ

for G. For technical reasons we assume
that vivi is an edge of G with weight equal to zero. For every vertex vi we denote by L[i] = i

and R[i] = r(i). The vectors L and R are called the rightmost limits of the vertices. Let
A(G,L,R) be the value of the optimal solution I(G,L,R) such that for every vertex vi its
rightmost strong neighbor vk lies between the positions L[i] and R[i]. That is, for every
vertex vi with vivk ∈ I(G,L,R) and k as large as possible, L[i] ≤ k ≤ R[i] holds. The key
idea is that we try all positions j among the rightmost limits of the first vertex v1. This is
achieved through the consecutive strong property by making v1 strongly adjacent to every
vertex of Vj . Then, however, we need to update accordingly the rightmost limits of each
vertex of Vj in order to obey the consecutive strong property. As a trivial case observe that
if G contains exactly one vertex then A(G) = 0.

I Lemma 10. Let G be a proper interval graph and let L and R be the rightmost limits of
the vertices with respect to σ. Then A(G) = A(G,L,R) and

A(G,L,R) = max
L[1]≤j≤R[1]

{A(G− {v1}, Lj , Rj) +B(Vj)} ,

where Lj [i] =
{
j if i ≤ j,
L[i] otherwise

and Rj [i] =
{

min{r(1), R[i]} if i ≤ j,
R[i] otherwise.

Now we are equipped with our necessary tools in order to obtain our main result, namely
a polynomial-time algorithm that solves the MaxSTC problem on proper interval graphs.

I Theorem 11. There is a polynomial-time algorithm that computes the MaxSTC of a
proper interval graph.

5 Concluding remarks

Given the first study with positive and negative results for the MaxSTC problem on
restricted input, there are some interesting open problems. As we pointed out MaxSTC
is more difficult than Cluster Deletion in the following sense: a solution for Cluster
Deletion forms a solution for MaxSTC but the converse is not necessarily true. We have
given examples showing that such an observation carries out for split graphs as well as for

A. L. Konstantinidis and C. Papadopoulos 53:11

proper interval graphs. Despite the structural difference of both problems, our result on
split graphs points out an important and interesting complexity difference between the two
problems: on split graphs Cluster Deletion has already been shown to be polynomially
solvable [3] whereas we prove that MaxSTC remains NP-complete. It is interesting to
explore other graph classes that exhibit the same behavior. Towards such a direction observe
that every problem expressible in monadic second order logic (MSOL) with quantification
over the vertices and vertex sets can be solved in linear time for graphs of bounded treewidth
[7]. Indeed, MaxSTC can be formulated in MSOL: (i) the edges are partitioned into two
subsets ES , EW (i.e., a strong-weak labeling), (ii) the endpoints of every path of length two
spanned by the edges of ES have an edge (i.e., satisfy the strong triadic closure), and (iii)
|ES | is as large as possible. Therefore there is a linear-time algorithm for MaxSTC on
graphs of bounded treewidth [7].

Apart from the structural properties that we proved for the solution on proper interval
graphs, the complexity of MaxSTC on interval graphs is still open. Moreover it is natural
to characterize the graphs for which their line-incompatibility graph is perfect. Such a
characterization will lead to further polynomial cases of MaxSTC, since the problem of
finding a maximum independent set of perfect graphs admits a polynomial solution [13]. A
typical example is the class of bipartite graphs for which their line graph coincides with
their line-incompatibility graph and it is known that the line graph of a bipartite graph is
perfect (see for e.g., [4]). As we show next, another paradigm of this type is the class of
trivially-perfect graphs.

A graph G is called trivially-perfect (also known as quasi-threshold) if for each induced
subgraph H of G, the number of maximal cliques of H is equal to the maximum size of an
independent set of H. It is known that the class of trivially-perfect graphs coincides with
the class of (P4, C4)-free graphs, that is every trivially-perfect graph has no induced P4 or
C4 [11]. A cograph is a graph without an induced P4, that is a cograph is a P4-free graph.
Hence trivially-perfect graphs form a subclass of cographs.

I Theorem 12. The line-incompatibility graph of a trivially-perfect graph is a cograph.

By Theorem 12 and the fact that the maximum independent set of a cograph can be
computed in linear time [6], MaxSTC can be solved in polynomial time on trivially-perfect
graphs. We would like to note that the line-incompatibility graph of a cograph or a proper
interval graph is not necessarily a perfect graph.

More general there are extensions and variations of the MaxSTC problem that are
interesting to consider as proposed in [28]. An interesting and realistic problem is to allow
multiple types of strong edges S0, S1, . . . , Sk that do not allow violating “ordered” P3’s.
More precisely the objective is to partition the edges of G into S0, S1, . . . , Sk with k ≥ 1
so that there is no pair of edges {u, v} ∈ Si and {v, w} ∈ Si such that {u,w} /∈ E(G) and
|S1|+ · · ·+ |Sk| is as large as possible.

References
1 A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree decompositions and social graphs.

Internet Mathematics, 12:315–361, 2016.
2 L. Backstrom and J. Kleinberg. Romantic partnerships and the dispersion of social ties: a

network analysis of relationship status on facebook. In Proceedings of CSCW 2014, pages
831–841, 2014.

3 F. Bonomo, G. Durán, and M. Valencia-Pabon. Complexity of the cluster deletion problem
on subclasses of chordal graphs. Theoretical Computer Science, 600:59–69, 2015.

ISAAC 2017

53:12 Strong Triadic Closure in Split Graphs and Proper Interval Graphs

4 A. Brandstädt, V. B. Le, and J. Spinrad. Graph Classes: A Survey. Society for Industrial
and Applied Mathematics, 1999.

5 M. Cochefert, J.-F. Couturier, P. A. Golovach, D. Kratsch, and D. Paulusma. Parameter-
ized algorithms for finding square roots. Algorithmica, 74:602–629, 2016.

6 D.G. Corneil, H. Lerchs, and L.K. Stewart. Complement reducible graphs. Discrete Applied
Mathematics, 3:163–174, 1981.

7 B. Courcelle. The monadic second-order logic of graphs i: Recognizable sets of finite graphs.
Information and Computation, 85:12–75, 1990.

8 X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper circular-
arc graphs and proper interval graphs. SIAM J. Comput., 25:390–403, 1996.

9 D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press, 2010.

10 J. Edmonds. Paths, trees and flowers. Canad. J. Math., 17:449–467, 1965.
11 M.C. Golumbic. Trivially perfect graphs. Discrete Mathematics, 24:105–107, 1978.
12 M. Granovetter. The strength of weak ties. American J. of Sociology, 78:1360–1380, 1973.
13 M. Grötschel. Polynomial algorithms for perfect graphs. North-Holland Mathematics Stud-

ies, 21:325–356, 1984.
14 P. Heggernes, D. Lokshtanov, J. Nederlof, C. Paul, and J. A. Telle. Generalized graph

clustering: recognizing (p, q)-cluster graphs. In Proceedings of WG 2010, pages 171–183,
2010.

15 J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput., 2:225–231, 1973.

16 L. Ibarra. The clique-separator graph for chordal graphs. Discrete Applied Mathematics,
157:1737–1749, 2009.

17 M. O. Jackson. Social and economic networks. Princeton University press, vol. 3, 2008.
18 R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer Com-

putations, pages 85–103, 1972.
19 D. J. Kleitman and R. V. Vohra. Computing the bandwidth of interval graphs. SIAM J.

Disc. Math., 3:373–375, 1990.
20 L. C. Lau. Bipartite roots of graphs. ACM Transactions on Algorithms, 2:178–208, 2006.
21 L. C. Lau and D. G. Corneil. Recognizing powers of proper interval, split, and chordal

graphs. SIAM J. Disc. Math., 18:83–102, 2004.
22 V. B. Le. Gallai graphs and anti-gallai graphs. Discrete Mathematics, 159:179–189, 1996.
23 V. B. Le, A. Oversberg, and O. Schaudt. Polynomial time recognition of squares of ptole-

maic graphs and 3-sun-free split graphs. Theoretical Computer Science, 602:39–49, 2015.
24 P. J. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs. Computers

& Mathematics with Applications, 25:15–25, 1993.
25 M. Milanič and O. Schaudt. Computing square roots of trivially perfect and threshold

graphs. Discrete Applied Mathematics, 161:1538–1545, 2013.
26 J. L. Pfaltz. Chordless cycles in networks. In Proceedings of ICDE Workshops 2013, pages

223–228, 2013.
27 F. S. Roberts. Indifference graphs. In Proof Techniques in Graph Theory, Academic Press,

New York, pages 139–146, 1969.
28 S. Sintos and P. Tsaparas. Using strong triadic closure to characterize ties in social networks.

In Proceedings of KDD 2014, pages 1466–1475, 2014.
29 J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping the empirical

and extremal geography of large graph collections. In Proceedings of WWW 2013, pages
1307–1318, 2013.

	Introduction
	Preliminaries
	MaxSTC on split graphs
	Computing MaxSTC on proper interval graphs
	Concluding remarks

