673 research outputs found

    Deterministic Consistency: A Programming Model for Shared Memory Parallelism

    Full text link
    The difficulty of developing reliable parallel software is generating interest in deterministic environments, where a given program and input can yield only one possible result. Languages or type systems can enforce determinism in new code, and runtime systems can impose synthetic schedules on legacy parallel code. To parallelize existing serial code, however, we would like a programming model that is naturally deterministic without language restrictions or artificial scheduling. We propose "deterministic consistency", a parallel programming model as easy to understand as the "parallel assignment" construct in sequential languages such as Perl and JavaScript, where concurrent threads always read their inputs before writing shared outputs. DC supports common data- and task-parallel synchronization abstractions such as fork/join and barriers, as well as non-hierarchical structures such as producer/consumer pipelines and futures. A preliminary prototype suggests that software-only implementations of DC can run applications written for popular parallel environments such as OpenMP with low (<10%) overhead for some applications.Comment: 7 pages, 3 figure

    Preventing Atomicity Violations with Contracts

    Full text link
    Software developers are expected to protect concurrent accesses to shared regions of memory with some mutual exclusion primitive that ensures atomicity properties to a sequence of program statements. This approach prevents data races but may fail to provide all necessary correctness properties.The composition of correlated atomic operations without further synchronization may cause atomicity violations. Atomic violations may be avoided by grouping the correlated atomic regions in a single larger atomic scope. Concurrent programs are particularly prone to atomicity violations when they use services provided by third party packages or modules, since the programmer may fail to identify which services are correlated. In this paper we propose to use contracts for concurrency, where the developer of a module writes a set of contract terms that specify which methods are correlated and must be executed in the same atomic scope. These contracts are then used to verify the correctness of the main program with respect to the usage of the module(s). If a contract is well defined and complete, and the main program respects it, then the program is safe from atomicity violations with respect to that module. We also propose a static analysis based methodology to verify contracts for concurrency that we applied to some real-world software packages. The bug we found in Tomcat 6.0 was immediately acknowledged and corrected by its development team

    Approaches to Shared State in Concurrent Programs

    Get PDF
    We are in the multicore machine era, but our programs have yet to utilize the increased computing power offered by these machines. At present, lock-based multithreaded programming is the most common programming model used for writing concurrent programs. However, due to the nuances of shared state (and memory) in multithreaded programs and the cognitive load introduced due to locks, concurrent programming remains difficult. One way to deal with shared state in concurrent programs is to get rid of it altogether and use message passing. The other way would be to isolate shared state and store it in a state store, making it the “single source of truth”. This paper explores the problems with lock-based multithreaded programming and discusses approaches for handling shared state in concurrent programs. We introduce a novel pattern language called Quarantined Software Transactional Memory (QSTM) and use it to solve the nuances of shared state in concurrent programs. Subsequently, we introduce the monad pattern language for making implicit side-effects in a program explicit and discuss its incorporation into the QSTM pattern. Finally, we present a comparison between the QSTM pattern and Redux –– a popular JavaScript-based state store

    Hardware-Assisted Dependable Systems

    Get PDF
    Unpredictable hardware faults and software bugs lead to application crashes, incorrect computations, unavailability of internet services, data losses, malfunctioning components, and consequently financial losses or even death of people. In particular, faults in microprocessors (CPUs) and memory corruption bugs are among the major unresolved issues of today. CPU faults may result in benign crashes and, more problematically, in silent data corruptions that can lead to catastrophic consequences, silently propagating from component to component and finally shutting down the whole system. Similarly, memory corruption bugs (memory-safety vulnerabilities) may result in a benign application crash but may also be exploited by a malicious hacker to gain control over the system or leak confidential data. Both these classes of errors are notoriously hard to detect and tolerate. Usual mitigation strategy is to apply ad-hoc local patches: checksums to protect specific computations against hardware faults and bug fixes to protect programs against known vulnerabilities. This strategy is unsatisfactory since it is prone to errors, requires significant manual effort, and protects only against anticipated faults. On the other extreme, Byzantine Fault Tolerance solutions defend against all kinds of hardware and software errors, but are inadequately expensive in terms of resources and performance overhead. In this thesis, we examine and propose five techniques to protect against hardware CPU faults and software memory-corruption bugs. All these techniques are hardware-assisted: they use recent advancements in CPU designs and modern CPU extensions. Three of these techniques target hardware CPU faults and rely on specific CPU features: ∆-encoding efficiently utilizes instruction-level parallelism of modern CPUs, Elzar re-purposes Intel AVX extensions, and HAFT builds on Intel TSX instructions. The rest two target software bugs: SGXBounds detects vulnerabilities inside Intel SGX enclaves, and “MPX Explained” analyzes the recent Intel MPX extension to protect against buffer overflow bugs. Our techniques achieve three goals: transparency, practicality, and efficiency. All our systems are implemented as compiler passes which transparently harden unmodified applications against hardware faults and software bugs. They are practical since they rely on commodity CPUs and require no specialized hardware or operating system support. Finally, they are efficient because they use hardware assistance in the form of CPU extensions to lower performance overhead

    ORDER VIOLATION IN MULTITHREADED APPLICATIONS AND ITS DETECTION IN STATIC CODE ANALYSIS PROCESS

    Get PDF
    The subject presented in the paper concerns resource conflicts, which are the cause of order violation in multithreaded applications. The work focuses on developing conditions that can be implemented as a tool for allowing to detect these conflicts in the process of static code analysis. The research is based on known errors reported to developers of large applications such as Mozilla Firefox browser and MySQL relational database system. These errors could have been avoided by appropriate monitoring of the source code

    Static detection of anomalies in transactional memory programs

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia InformáticaTransactional Memory (TM) is an approach to concurrent programming based on the transactional semantics borrowed from database systems. In this paradigm, a transaction is a sequence of actions that may execute in a single logical instant, as though it was the only one being executed at that moment. Unlike concurrent systems based in locks, TM does not enforce that a single thread is performing the guarded operations. Instead, like in database systems, transactions execute concurrently, and the effects of a transaction are undone in case of a conflict, as though it never happened. The advantages of TM are an easier and less error-prone programming model, and a potential increase in scalability and performance. In spite of these advantages, TM is still a young and immature technology, and has still to become an established programming model. It still lacks the paraphernalia of tools and standards which we have come to expect from a widely used programming paradigm. Testing and analysis techniques and algorithms for TM programs are also just starting to be addressed by the scientific community, making this a leading research work is many of these aspects. This work is aimed at statically identifying possible runtime anomalies in TMprograms. We addressed both low-level dataraces in TM programs, as well as high-level anomalies resulting from incorrect splitting of transactions. We have defined and implemented an approach to detect low-level dataraces in TM programs by converting all the memory transactions into monitor protected critical regions, synchronized on a newly generated global lock. To validate the approach, we have applied our tool to a set of tests, adapted from the literature, that contain well documented errors. We have also defined and implemented a new approach to static detection of high-level concurrency anomalies in TM programs. This new approach works by conservatively tracing transactions, and matching the interference between each consecutive pair of transactions against a set of defined anomaly patterns. Once again, the approach was validated with well documented tests adapted from the literature
    corecore