94,508 research outputs found

    Southern Tier Community Revitalization and Redevelopment: Endicott Lithium Battery Factory

    Get PDF
    This project will survey around 800 residents of Endicott, New York, to analyze their perspective on the redevelopment plans and construction of a new lithium-ion battery factory in the Southern Tier of New York. The survey will be conducted online and distributed by postcard. It will focus on the impact of the battery factory on the local environment, economy, and quality of life for residents. The questions will address community concerns, public knowledge, personal expectations, and the general opinion of the redevelopment project and battery factory. The results of this survey can inform residents, project stakeholders, and government officials about the public opinion and impact of the battery factory on the region. It can also guide future community involvement in redevelopment projects and highlight areas of concern. This survey will be conducted by a collaborative of student and faculty researchers to examine information for future reports on community revitalization and redevelopment and community representation in these projects and provide a basis for future research.https://orb.binghamton.edu/research_days_posters_2023/1067/thumbnail.jp

    Exploiting visual cues for safe and flexible cyber-physical production systems

    Get PDF
    Human workers are envisioned to work alongside robots and other intelligent factory modules, and fulfill supervision tasks in future smart factories. Technological developments, during the last few years, in the field of smart factory automation have introduced the concept of cyber-physical systems, which further expanded to cyber-physical production systems. In this context, the role of collaborative robots is significant and depends largely on the advanced capabilities of collision detection, impedance control, and learning new tasks based on artificial intelligence. The system components, collaborative robots, and humans need to communicate for collective decision-making. This requires processing of shared information keeping in consideration the available knowledge, reasoning, and flexible systems that are resilient to the real-time dynamic changes on the industry floor as well as within the communication and computer network infrastructure. This article presents an ontology-based approach to solve industrial scenarios for safety applications in cyber-physical production systems. A case study of an industrial scenario is presented to validate the approach in which visual cues are used to detect and react to dynamic changes in real time. Multiple scenarios are tested for simultaneous detection and prioritization to enhance the learning surface of the intelligent production system with the goal to automate safety-based decisions

    Towards safe human robot collaboration - Risk assessment of intelligent automation

    Get PDF
    Automation and robotics are two enablers for developing the Smart Factory of the Future, which is based on intelligent machines and collaboration between robots and humans. Especially in final assembly and its material handling, where traditional automation is challenging to use, collaborative robot (cobot) systems may increase the flexibility needed infuture production systems. A major obstacle to deploy a truly collaborative application is to design and implement a safe and efficient interaction between humans and robot systems while maintaining industrial requirements such as cost and productivity. Advanced and intelligent control strategies is the enabler when creating this safe, yet efficient, system, but is often hard to design and build.This paper highlights and discusses the challenges in meeting safety requirements according to current safety standards, starting with the mandatory risk assessment and then applying risk reduction measures, when transforming a typical manual final assembly station into an intelligent collaborative station. An important conclusion is that current safety standards and requirements must be updated and improved and the current collaborative modes defined by the standards community should be extended with a new mode, which in this paper is refereed tothedeliberative planning and acting mode

    Smooth and Resilient Human–Machine Teamwork as an Industry 5.0 Design Challenge

    Get PDF
    Smart machine companions such as artificial intelligence (AI) assistants and collaborative robots are rapidly populating the factory floor. Future factory floor workers will work in teams that include both human co-workers and smart machine actors. The visions of Industry 5.0 describe sustainable, resilient, and human-centered future factories that will require smart and resilient capabilities both from next-generation manufacturing systems and human operators. What kinds of approaches can help design these kinds of resilient human–machine teams and collaborations within them? In this paper, we analyze this design challenge, and we propose basing the design on the joint cognitive systems approach. The established joint cognitive systems approach can be complemented with approaches that support human centricity in the early phases of design, as well as in the development of continuously co-evolving human–machine teams. We propose approaches to observing and analyzing the collaboration in human–machine teams, developing the concept of operations with relevant stakeholders, and including ethical aspects in the design and development. We base our work on the joint cognitive systems approach and propose complementary approaches and methods, namely: actor–network theory, the concept of operations and ethically aware design. We identify their possibilities and challenges in designing and developing smooth human–machine teams for Industry 5.0 manufacturing systems

    A Seamless Convergence of the Digital and Physical Factory Aiming in Personalized Product Emergence Process (PPEP) for Smart Products within ESB Logistics Learning Factory at Reutlingen University

    Get PDF
    AbstractA seamless convergence of the digital and physical factory aiming in personalized Product Emergence Process (PPEP) for smart products within ESB Logistics Learning Factory at Reutlingen University.A completely new business model with reference to Industrie4.0 and facilitated by 3D Experience Software in today's networked society in which customers expect immediate responses, delightful experience and simple solutions is one of the mission scenarios in the ESB Logistics Learning Factory at ESB Business School (Reutlingen University).The business experience platform provides software solutions for every organization in the company respectively in the factory. An interface with dashboards, project management apps, 3D - design and construction apps with high end visualization, manufacturing and simulation apps as well as intelligence and social network apps in a collaborative interactive environment help the user to learn the creation of a value end to end process for a personalized virtual and later real produced product.Instead of traditional ways of working and a conventional operating factory real workers and robots work semi-intuitive together. Centerpiece in the self-planned interim factory is the smart personalized product, uniquely identifiable and locatable at all times during the production process – a scooter with an individual colored mobile phone – holder for any smart phone produced with a 3D printer in lot size one. Smart products have in the future solutions incorporated internet based services – designed and manufactured - at the costs of mass products. Additionally the scooter is equipped with a retrievable declarative product memory. Monitoring and control is handled by sensor tags and a raspberry positioned on the product. The engineering design and implementation of a changeable production system is guided by a self-execution system that independently find amongst others esplanade workplaces.The imparted competences to students and professionals are project management method SCRUM, customization of workflows by Industrie4.0 principles, the enhancements of products with new personalized intelligent parts, electrical and electronic self-programmed components and the control of access of the product memory information, to plan in a digital engineering environment and set up of the physical factory to produce customer orders. The gained action-orientated experience refers to the chances and requirements for holistic digital and physical systems

    A Holistic Algorithm for Materials Requirement Planning in Collaborative Networks

    Full text link
    [EN] Collaboration has increasingly been considered a key topic within the small and medium-sized enterprises, allowing dealing with the intense competitiveness of today¿s globalised markets. The European H2020 Cloud Collaborative Manufacturing Networks Project proposes mechanisms to encourage collaboration among enterprises, through the computation of collaborative plans. Particularly, this paper focuses on the proposal of a holistic algorithm to deal with the automated and collaborative calculation of the Materials Requirement Plan. The proposed algorithm is validated in a collaborative network belonging to the automotive industry.The research leading to these results is in the frame of the “Cloud Collaborative Manufacturing Networks” (C2NET) project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 636909.Andres, B.; Poler, R.; Sanchis, R. (2017). A Holistic Algorithm for Materials Requirement Planning in Collaborative Networks. IFIP Advances in Information and Communication Technology. 560:41-50. https://doi.org/10.1007/978-3-319-65151-4_4S4150560CORDIS Europa: Factories of the Future. H2020-EU.2.1.5.1. - Technologies for Factories of the Future (2014)H2020 Project C2NET (2015). http://cordis.europa.eu/project/rcn/193440_en.htmlAndres, B., Sanchis, R., Poler, R.: A cloud platform to support collaboration in supply networks. Int. J. Prod. Manag. Eng. 4(1), 5–13 (2016)Andres, B., Sanchis, R., Lamothe, J., Saari, L., Hauser, F.: Integrated production-distribution planning optimization models: a review in collaborative networks context. Int. J. Prod. Manag. Eng. 5(1), 31–38 (2017)Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: a new scientific discipline. J. Intell. Manuf. 16(4–5), 439–452 (2005)Andres, B., Poler, R.: Models, guidelines and tools for the integration of collaborative processes in non-hierarchical manufacturing networks: a review. Int. J. Comput. Integr. Manuf. 2(29), 166–201 (2016)Sanchis, R., Poler, R., Lario, F.C.: Identification and analysis of Disruptions: the first step to understand and measure Enterprise Resilience. In: International Conference on Industrial Engineering and Engineering Management, pp. 424–431 (2012)Andres, B., Saari, L., Lauras, M., Eizaguirre, F.: Optimization algorithms for collaborative manufacturing and logistics processes. In: Zelm, M., Doumeingts, G., Mendonça, J.P. (eds.) Enterprise Interoperability in the Digitized and Netwroked Factory of the Future, iSTE 2016, pp. 167–173 (2016)Orbegozo, A., Andres, B., Mula, J., Lauras, M., Monteiro, C., Malheiro, M.: An overview of optimization models for integrated replenishment and production planning decisions. In: Building Bridges Between Researchers and Practitioners. Book of Abstracts of the International Joint Conference CIO-ICIEOM-IISE-AIM (IJC 2016), p. 68 (2016

    Lemon Factory Extension

    Get PDF
    Martin works for Urban Future Organization (UFO), an internationally networked architectural practice involved in advanced digital design and fabrication. This new administrative wing is being added to an existing factory outside Messina in Sicily, sitting adjacent to a production building which is actually Italy’s largest producer of lemon juice and lemon extracts / essences. The brief was for a sequence of flexible spaces to house the reception area, staff offices, meeting spaces and canteen, along with a swimming pool and a fitness centre. The interior of the building reacts to the requirement to keep the spaces fluid and able to change their use over time. The project is currently on site and scheduled for completion in Spring 2008. In terms of research questions investigated, the key ones were how to develop new techniques of modulation design and structural design in what is a highly active earthquake zone, and then – given this crucial demand – how to create a new kind of flexible spatial organisation for a rapidly evolving company. In its design processes, the Lemon Factory has to be understood as part of a line of projects being carried out by the UFO practice and by similar entities – such as Ocean or Foreign Office Architects – into free-form, fluid and linear architectural forms, allying to this the pursuit of new forms of digital design and manufacturing in architecture. This project has been exhibited like other UFO project in important events such as the 2004 Venice Biennale, 2006 Beijing Biennale, and also in books like the press through articles such as in Building Design (7 March 2003, pp. 12-15). Urban Future Organization is a collaborative practice in which Martin and Yau are senior design figures, both being equally responsible for designing major projects such as the Lemon Factory near Messina
    • …
    corecore