13,108 research outputs found

    Coastal zone management

    Get PDF
    A panel of federal and state representatives concerned with coastal zone affairs discussed their problems in this area. In addition, several demonstrations of the application of remote sensing technology to coastal zone management were described. These demonstrations were performed by several agencies in a variety of geographical areas

    NASA Earth Resources Survey Symposium. Volume 3: Summary reports

    Get PDF
    This document contains the proceedings and summaries of the earth resources survey symposium, sponsored by the NASA Headquarters Office of Applications and held in Houston, Texas, June 9 to 12, 1975. Topics include the use of remote sensing techniques in agriculture, in geology, for environmental monitoring, for land use planning, and for management of water resources and coastal zones. Details are provided about services available to various users. Significant applications, conclusions, and future needs are also discussed

    Remote sensing and GIS analysis for demarcation of coastal hazard line along the highly eroding Krishna-Godavari delta front

    Get PDF
    Coastal regions, especially river deltas are highly resourceful and hence densely populated; but these extremely low-lying lands are vulnerable to rising sea levels due to global warming threatening the life and property in these regions. Recent IPCC (2013) predictions of 26-82cm global sea level rise are now considered conservative as subsequent investigations such as by Met Office, UK indicated a vertical rise of about 190cm, which would displace 10% of the world’s population living within 10 meters above the sea level. Therefore, predictive models showing the hazard line are necessary for efficient coastal zone management. Remote sensing and GIS technologies form the mainstay of such predictive models on coastal retreat and inundation to future sea-level rise. This study is an attempt to estimate the varying trends along the Krishna–Godavari (K–G) delta region. Detailed maps showing various coastal landforms in the K-G delta region were prepared using the IRS-P6 LISS 3 images. The rate of shoreline shift during a 31-year period along different sectors of the 330km long K-G delta coast was estimated using Landsat-2 and IRS-P6 LISS 3 images between 1977 and 2008. With reference to a selected baseline from along an inland position, End Point Rate (EPR), Shoreline Change Envelope (SCE) and Net Shoreline Movement (NSM) were calculated, using a GIS–based Digital Shoreline Analysis System (DSAS). The results showed that the shoreline migrated landward up to a maximum distance of 3.13km resulting in a net loss of about 42.10km2 area during this 31-year period. Further, considering the nature of landforms and EPR, the future hazard line is predicted for the area, which also indicated a net erosion of about 57.68km2 along the K-G delta coast by 2050 AD

    Pattern recognition of satellite cloud imagery for improved weather prediction

    Get PDF
    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products

    A Statistical Inverse Method for Gridding Passive Microwave Data with Mixed Measurements

    Get PDF
    When a passive microwave footprint intersects objects on the ground with different spectral characteristics, the corresponding observation is mixed. The retrieval of geophysical parameters is limited by this mixture. We propose to partition the study region into objects following an object-based image analysis procedure and then to refine this partition into small cells. Then, we introduce a statistical method to estimate the brightness temperature (TB) of each cell. The method assumes that TB of the cells corresponding to the same object is identically distributed and that the TB heterogeneity within each cell can be neglected. The implementation is based on an iterative expectation-maximization algorithm. We evaluated the proposed method using synthetic images and applied it to grid the TBs of sample AMSR -2 real data over a coastal region in Argentina.Fil: Grimson, Rafael. Universidad Nacional de San MartĂ­n; ArgentinaFil: Bali, Juan Lucas. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Rajngewerc, Mariela. Ministerio de Defensa. Instituto de Investigaciones CientĂ­ficas y TĂ©cnicas para la Defensa; ArgentinaFil: Martin, Laura San. Universidad Nacional de San MartĂ­n; ArgentinaFil: Salvia, Maria Mercedes. Universidad Nacional de San MartĂ­n; Argentina. Consejo Nacional de InvestigaciĂłnes CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂ­a y FĂ­sica del Espacio; Argentin

    Advanced study of coastal zone oceanographic requirements for ERTS E and F

    Get PDF
    Earth Resources Technology Satellites E and F orbits and remote sensor instruments for coastal oceanographic data collectio

    Earth reflector type classification based on multispectral remote sensing image

    Full text link
    Earth’s reflectivity is one of the key parameters of climate change, Earth’s radiation budget research and so on. It is determined by the characteristic of Earth atmosphere components. Earth atmosphere components vary strongly in both spatially and temporally, thus complete spatial mosaics and/or richer time series information are needed. In this study, we developed an Earth Reflector Type Index (ERTI) to discriminate major Earth atmosphere components: clouds, cloud-free ocean, bare and vegetated land. Results show that the probability of the ERTI method with selected thresholds being able to discriminate between cloudy and cloud-free scenes is about 82%. ERTI can be used to interpret global Earth’s reflectivity and its temporal variation.Accepted manuscrip
    • …
    corecore