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Abstract— When a passive microwave footprint intersects
objects on the ground with different spectral characteristics,
the corresponding observation is mixed. The retrieval of geo-
physical parameters is limited by this mixture. We propose to
partition the study region into objects following an object-based
image analysis procedure and then to refine this partition into
small cells. Then, we introduce a statistical method to estimate the
brightness temperature (TB) of each cell. The method assumes
that TB of the cells corresponding to the same object is identically
distributed and that the TB heterogeneity within each cell
can be neglected. The implementation is based on an iterative
expectation–maximization algorithm. We evaluated the proposed
method using synthetic images and applied it to grid the TBs of
sample AMSR −2 real data over a coastal region in Argentina.

Index Terms— Expectation-maximization (EM) algorithms,
inverse problems, passive microwave remote sensing.

I. INTRODUCTION

M ICROWAVE radiometers typically measure the (hor-
izontally or vertically) polarized microwave radiation

emitted at a given frequency from the earth’s surface within
their field of view. These measurements are expressed as
brightness temperatures (TBs). The sensitivity of microwave
measurements to soil and vegetation properties was proven by
several theoretical and experimental investigations [1], [2]. At
lower frequencies, passive microwave observations are highly
sensitive to the surface and subsurface properties such as
soil moisture and soil texture. Because of this sensitivity,
land emissivity estimates are appropriate for the retrieval of
geophysical parameters such as soil moisture estimation [3],
freeze/thaw state [4], land surface temperature [5], flooded area
estimation [6], and vegetation structure [7].
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Spaceborne radiometer systems supply frequent coverage
of the globe. This coverage is provided in all weather con-
ditions and during day and night since the atmosphere is
effectively transparent for most microwaves frequencies and
measurements are independent of solar illumination. Also,
long time series of observations are available since microwave
observations over the globe by different satellite radiometers
started in the 1970s [1], [2].

However, in order to detect the low radiation emitted at a
given frequency, the field of view of passive sensors must be
large enough to integrate sufficient energy. This results in a
low spatial resolution in the order of tens of kilometers for
satellite observations.

Typically, microwave radiometer antennas show a conical
scanning scheme, where the 3-dB contour of the antenna gain
function projects an ellipse on the Earth’s surface with its
minor axis along the scan direction. The size of these ellipses
depends on the sensed frequency and causes a substantial
overlapping of the measurements.

If a footprint intersects objects on the ground with different
spectral characteristics, the corresponding antenna TB will be
contaminated. For instance, an observation whose footprint
intersects a coastline would measure a weighted average of
land and sea TBs. The retrieval of geophysical parameters
from these measurements is limited by the contamination. In
fact, AMSR-2 soil moisture product shows erroneously high
values near coastlines and large lakes, while losses in the
estimation of sea surface temperature caused by land effects
extend as far as 100 km from coastlines [8]. In many cases,
the retrieval of geophysical parameters relies on the use of
indices based on the combination of TBs sensed at different
frequencies, such as the frequency index [9]

FI = 2
(
TBKa

v − TBX
v

)
TBKa

v + TBX
v

(1)

which involves vertically polarized emissions in the Ka- and
X-bands. These indices should not be computed directly from
footprints of different size, since they show different amounts
of contamination. Thus, a technique capable of separating
signals from mixed measurements would be of significant
value for the retrieval of physical parameters in coastal and
border areas.

The main approach taken to address image interpola-
tion and resolution matching consists in the application of
Backus–Gilbert (BG) optimal interpolation theory [10], as
formulated for this class of problems by Stogryn [11] and
first applied to SSM/I data by Poe [12]. Farrar et al. [13]
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used this approach to match the observations acquired at
different frequencies in a multi-frequency analysis and it is still
used by the Japan Aerospace Exploration Agency to compute
AMSR-2 L1R products [8]. BG solution is a compromise
between resolution and noise. The resolution is typically
quantified using an isotropic penalty function that does not
take into account the different spectral objects in the scene.
Thus, the resulting method does not allow the separation of
information from mixed measurements. Consequently, when
BG is directly applied to grid passive microwave data with
mixed measurements, a smoothing effect can be perceived
around the borders of the objects.

There are at least two examples in the literature where
the study region is partitioned into objects following a
ground-based criterion, and then refined into cells with homo-
geneous TBs. Bellerby et al. [14] presented a technique
to separate uncontaminated land and sea TBs from mixed
coastal measurements, combining a model of the antenna
TB with a digitalized cartographic representation of the
coastline. For a small coastal region, they assume that the
sea and land temperature fields are uniform, and consider
the linear system with two unknowns (TLand and TSea)
resulting from nine (3 × 3) measurements in this region.
Then, they use least-squares optimization to obtain the esti-
mates for the actual land and sea TB present in the small
region.

Limaye et al. [15] proposed a technique to estimate
microwave TBs of agricultural fields from airborne mea-
surements taken by the PALS sensor. To apply this tech-
nique, the study region is segmented into spatially contiguous
objects sharing spectral characteristics (agricultural fields) by
an image analyst using optical images. The TB is assumed
to be constant over each segment. This, together with the
antenna model, leads to an overdetermined linear system that
is solved by minimizing the sum of residuals. The successful
application of the deconvolution technique in that study can
be attributed to the relatively large size of the segments
with respect to the sampling resolution and the consequent
observation over-sampling, together with a precise ground-
based tiling of the study region into segments with almost
constant TB.

In this article, we propose to partition the study region
into objects following an object-based image analysis
procedure [16], [17] and refine this partition into cells of
TB. Assuming similar size (Section II-B). Then, assuming a
constant TB over each cell, we introduce the discrete antenna
model. In Section III, we present the statistical inverse method
used to transform the antennas TB into cells TB. This method
assumes that the TB corresponding to cells of the same type
(i.e., that belong to the same object) can be modeled by the
same normal distribution. The most likely parameters of these
distributions are found with an expectation–maximization
(EM) algorithm and then used to estimate the TB of the
cells. In Section IV-A, we use synthetic images to evaluate
the proposed methods by means of Monte Carlo experiments.
Then, we apply the methods to a real case (Section IV-E).
Finally, in Section V, we discuss the potential and limitations
of the proposed methods.

II. DISCRETE MODEL

A. Discretization of Antenna Brightness Temperature Model

Assuming that the microwave emission upwelling from
the study area, TB(ρ), is independent of the measurement
direction (over the angular region of interest) and that its
time variation (during the measurements) may be neglected,
the following equation [11], [12], [18] is valid for a single
measured antenna TB, TA:

TA =
∫

E
G(ρ)TB(ρ)d A + ε. (2)

Here, the variable ε represents the observational error and
the function G represents the projection of the antenna gain
function onto the Earth surface. G may be considered known
since it depends only on the position and characteristics of
the sensor (altitude, incidence angle, and shape of the sensor
antenna response function).

It is evident that the problem of inferring TB from a finite
set of measurements is an underconstrained problem. Usually,
the region is gridded and each cell of the grid is assumed to
have a uniform TB. Assuming constant TB for each cell, (2) is
transformed into a linear equation relating the cells TB with
the measured antenna TB. If the study region is partitioned into
n cells, C1, . . . , Cn , each of them with uniform TB x1, . . . , xn ,
and we have a set of m measurements y1, . . . , ym , then the
corresponding linear system can be expressed as

y = Kx + ε (3)

where y = (y1, . . . , ym) represents the m measured antenna
temperatures, x = (x1, . . . , xn) represents the cells tempera-
tures, K ∈ R

n×m is a kernel or weight matrix where Kij is
the j th cell fractional contribution to the i th measurement,
Kij =

∫
C j

Gi (ρ)d A, and ε is the vector of observational
errors, which are assumed to be independent and identically
distributed normal random variables, εi ∼ N (0, σ 2

obs). In
this model, the variables y1, . . . , ym are observable variables,
whereas the variables x1, . . . , xn are state variables.

The problem of estimating x from the observations is an
inverse problem. In general, a method to solve this inverse
problem must augment the information given by the obser-
vations with some a priori knowledge of the nature of the
solution.

B. Construction of the Retrieval Grid

We assume that the spatial boundaries of the contributing
emitting sources are known a priori and use them to construct
a retrieval grid. We propose to partition the study region
into objects having homogeneous spectral characteristics, as
follows from an object-based image analysis of the study
region. We emphasize that we do not assume that these objects
have constant TB, but that the TB field within each object can
be modeled by a common probabilistic distribution.

These objects may be different surface cover types (such
as land and sea), agricultural fields of a given crop, or any
partition of the scene into homogeneous ecogeomorphologic
objects. We refer to this partition of the study region as the
ground-based partition and label the objects in this partition,
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Fig. 1. Representation of (a) generic study region including three spectrally
different landscapes, (b) its ground-based partition into spectral objects,
and (c) refinement of this partition into a retrieval grid composed of cells
of three different types.

O1, . . . , Ok , for future reference. In Fig. 1(b), a partition into
three objects is shown.

Since the resulting objects may be of different sizes, and,
in particular, too big, we propose to partition these objects into
cells of a similar given size. Each cell is labeled, l1, . . . , ln ,
with li ∈ {O1, . . . , Ok}, to identify its object of origin. We
refer to this refinement of the ground-based partition as the
retrieval grid.

Under the assumption that the TB field is constant over
each cell, we obtain a linear system (as (3)) expressing the
measured TBs as linear combinations of the contributing-cells
TBs.

III. RESOLUTION METHODS

Different methods may be used to solve the inverse problem
over a resolution grid. We first introduce two benchmark
methods that will be compared with the proposed technique.
These two methods do not consider the type of each cell.
Then, we introduce the proposed statistical method. Finally,
we discuss some computational aspects of the algorithms.

A. Least-Squares Method

If the resolution grid is coarse, the resulting linear system
is overdetermined and typically has no solution. In this case,
the system may be solved using least-squares optimization

x̂ = argmin
x
�Kx − y�2. (4)

If the discretization is fine, the system is underdetermined
and has typically infinitely many solutions. The choice of a
solution must include some a priori information.

B. Backus–Gilbert Method

The second benchmark method is the BG method [10].
Consider the problem of estimating the TB xC for a fixed
cell C in the retrieval grid. In our context, the BG approach
proposes to approximate xC as an affine combination of the
measurements yi

xC =
m∑

i=1

ai yi ,

m∑
i=1

ai = 1 (5)

where the coefficients ai are to be determined. Ideally, the ker-
nel resulting from the corresponding combination of the

antenna gain functions should be proportional to the charac-
teristic function of the cell

∑m
i=1 ai Gi ∼ χC . However, with a

finite number of measurements, it is not possible to choose the
coefficients to produce this kernel, so an approximation that
closely produces the ideal behavior is sought. In our case,
we measure the resolution error for a tuple a = (a1, . . . , am)
of coefficients as the contribution of the points out of the cell C
to the kernel, weighted by the distance to the cell C

Q0(a) =
∫ ( m∑

i=1

ai Gi (ρ)

)2

dist2(ρ, C)d A (6)

where dist(ρ, C) is the distance from ρ to the cell C . Other
objective functions were tested, but this resulted in the best
approximation performance, as measured by the root-mean-
squared error (RMSE) (cf. [11]).

Also, in order to measure the propagation of the experimen-
tal errors, BG proposal considers the term

e2 = aSεaT (7)

where Sε is the error covariance matrix of the measurements.
In our case, since we assume that the measurement errors are
independent and identically distributed, Sε is a scalar matrix.

The BG method seeks to minimize an objective function
that results from a compromise between the resolution term (6)
and the error term (7). It is given by

Q = Q0 cos(γ )+ e2ω sin(γ ) (8)

where ω is simply a scale parameter and γ is a fine-tuning
parameter which, when varied from 0 to (π/2), places less
emphasis on the resolution and more on reducing the noise in
the estimate of xC = TB(C). The parameters were chosen to
minimize the RMSE in our synthetic scenarios.

The solution to the minimization problem argmina Q(a)
constrained to

∑m
i=1 ai = 1 is simple. We refer the reader

to [11] for its derivation and closed solution formula.

C. Statistical Approach

In this approach, x, y, and ε are considered random vari-
ables. We propose to model the temperature of each cell with a
univariate normal distribution whose parameters depend only
on the type of the cell, xi ∼ N (μli , σ

2
li
) for i = 1, . . . , n.

Let θ = (μ1, . . . , μk, σ
2
1 , . . . , σ 2

k ) comprise the parameters
of our a priori constraint to the problem, i.e., the mean and
variance of the TBs for each one of the different k cell types.
Hence, for a given θ , the cell temperatures x are modeled
using a multivariate normal distribution with mean vector
μx = (μl1 , . . . , μln ) and a diagonal covariance matrix Sx ,
with diag(Sx) = (σ 2

l1
, . . . , σ 2

ln
).

The errors ε1, . . . , εm are also modeled as independent and
identically distributed, εi ∼ N (0, σ 2

obs). Here, σ 2
obs represents

the observational error variance and is assumed to be known
(though this assumption may be relaxed and a cross-validation
procedure can be used to determine this value).

Using Bayes theorem, we have

p(x| y, θ) = p(y|x) · p(x|θ)

p(y|θ)
∝ p(y|x) · p(x|θ). (9)
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The expression p(y|x) represents the relative likelihood of
having ε = (y − K x) as measurement errors. The variable ε

has a multivariate normal distribution with zero mean and a
scalar covariance matrix, Sε, with the variance of the observa-
tional errors, σ 2

obs, as entries in the diagonal. On the other hand,
p(x|θ) represents the relative likelihood of the temperature
values x for the cells in the image, as stated by the prior with
parameters θ .

If θ is a known parameter, it is not hard to obtain the
posterior distribution p(x| y, θ) for the cell TB, which will
be a multivariate normal [19] with mean

x̂ = (Sx
−1 + K t Sε

−1 K
)−1(Sx

−1μx + K t Sε
−1 y

)
(10)

and covariance matrix

Ŝ = (Sx
−1 + K t Sε

−1 K
)−1

. (11)

To emphasize the origin of the parameters involved in the
computation of Ŝ and x̂, we may write Ŝθ and x̂θ , respectively.

Since θ is typically unknown, we propose to use its
maximum likelihood estimate from the measurements y.
This estimate, θ̂ , is computed using an EM procedure [20].
Here, x is a latent variable. Consider the likelihood function
L(θ) = p(y|θ). Marginalizing the joint distribution p(y, x|θ),
we obtain

L(θ) = p(y|θ) =
∫

p(y, x|θ)d x. (12)

In order to maximize this usually intractable quantity, the EM
procedure proposes an iterative mechanism as follows [21]:

Algorithm 1 Expectation–Maximization
1: t ← 0
2: initialize θt

3: while θt not converged do:
4: Q(θ |θt )← Ex|y,θt (log p(y, x|θ)) (E-step)
5: θt+1← argmaxθ Q(θ |θt ) (M-step)
6: t ← (t + 1)
7: return θt

For the E-step, we need n exapression for p(x| y, θt).
This posterior probability has a multivariate normal distri-
bution with mean x̂θt and covariance matrix Ŝθt given by
(10) and (11).

In the M-step, we have to maximize the expectation of
log p(y, x|θ) = log p(y|x)+ log p(x|θ). Since the first term
does not depend on θ , we can omit it for the maximization.
Hence, we have to maximize E(−(1/2)(x − μx)t Sx

−1(x −
μx)−log(|Sx |)) where x has a multivariate normal distribution
with mean x̂θt and covariance Ŝθt . Completing the square, it is
possible to rewrite this expectation so as to obtain

− log(|Sx |)− tr
(
Sx
−1 Ŝθt

)− (x̂θt − μx)t Sx
−1(x̂θt − μx).

In order to maximize this expression, we differentiate it with
respect to each component of θ = (μ1, . . . , μk, σ

2
1 , . . . , σ 2

k ).
We obtain that the maximum is achieved when

μ j = 1

n j

n j∑
i=1

Pj (x̂θt )

and

σ 2
j =

1

n j

(�Pj (diag(Ŝθt ))�1
+ �Pj (x̂θt − μx)�2

2

)

where n j is the number of cells of type j and Pj : R
n →

R
n j is a projector such that Pj (x) returns the values of x

corresponding to the cells of type j .
This maximization is repeated until convergence of θt .

The EM procedure does not guarantee to reach the global
maximum of the likelihood function, since it can converge to
a local maximum. However, in all the real and synthetic cases
we studied, it gives excellent results and converges to the same
point, independently of the initialization θ0.

Once the previous step has converged, we have an esti-
mation θ̂ for the parameters of each cell type. Using this
estimation in (10), we obtain x̂

θ̂
, an estimation for the TBs of

each cell that maximizes the posterior distribution. This is the
solution of the STAT method.

D. Technical Aspects

The geolocation errors of AMSR-2 products can reach
several kilometers [8]. Given the high sensitivity of the
object-based inverse methods to this kind of errors, a geo-
correction step is performed before processing the images.

For a given displacement in the observations, the immensely
overdetermined linear system (3) resulting from the discretiza-
tion given by the original ground-based partition is solved
with the least-squares (LSQR) method and the error �y −
K x̂� is associated with the displacement. Our geocorrection
algorithm assumes that this error is minimized when the
given displacement compensates the original geolocation error.
Concretely, using one variable for each object in the original
ground-based partition, an LSQR method is run with the
original geolocation and other eight geolocations consisting
of the all possible combinations of 1 km displacements in a
cardinal direction. The displacement leading to the least error
is considered the new initial position and the procedure is
iterated until convergence. Finally, the errors computed at the
nine final positions are interpolated with a quadratic bivariate
error function whose minimum is taken as the geocorrected
position.

In this article, the antenna gain function is approximated by
a bivariate Gaussian on the beam normal plane. Its shape is
determined by the half-power beamwidth of the studied band.
A basic kernel is computed projecting a generic antenna gain
function onto a 1-km grid on the earth surface as done by
Limaye et al. [15]. For the sake of finiteness, this basic kernel
is clipped at 99% and renormalized. The basic kernel is then
shifted and rotated to approximate any particular kernel, Gi .
Given a retrieval grid, the cells are rasterized over the same
1-km grid and the contributing fraction of the cells, G j

i , are
simply computed adding the values of the kernel Gi over the
pixels in the j th cell.

IV. EVALUATION

In this section, we use the proposed technique to grid real
and synthetic AMSR-2 L1B measurements for different fre-
quencies over the Pampa Deprimida, Buenos Aires, Argentina
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Fig. 2. Study region and some of the 3-dB footprints of the measurements used in the examples.

(34◦ 45’ 27” S, 60◦ 7’ 32” W; 38◦ 7’ 45” S, 55◦41’ 56” W). For
this, we assume that the observation error has a normal
distribution, with zero mean and a standard deviation of 1 K,
ε ∼ N (0, 1). The gridding was tested in five AMSR-2 bands
with different half-power beam widths (C-band, 7.3 GHz,
35 km × 61 km; X-band, 10.7 GHz, 24 km × 42 km;
Ku-band, 18.7 GHz, 13 km × 22 km; K-band, 23.8 GHz,
15 km × 26 km; and Ka-band, 36.5 GHz, 7 km × 12 km)
and in both horizontal (H-pol) and vertical polarizations for
each band. The ground-based partition of the study region
consists of two objects, labeled Land and Sea. Their limit
is given by a cartographic digitalization of the coastline from
high-resolution optic imagery. Fig. 2 shows the study area,
the two objects of the ground-based partition, and the 3-dB
footprints of some sample measurements from each analyzed
band.

Three retrieval grid sizes of 12.5, 25, and 50 km were tested
for each band. The former is similar to the sampling interval
of AMSR-2 measurements. The grid of 25 km is standard
for many products from different sources, such as GLDAS,
TMPA, ASCAT, and SMOS. The grids are regular, except in
the coastal area where the ground-based partition intersects
the cells. To keep the size of the coastal cells similar to that
of the regular cells, when a resultant cell is smaller than half
a regular cell, it is merged to the smallest adjacent one.

A. Synthetic Observations

The synthetic scenarios were created over the 12.5, 25 and
50-km grids described in the previous paragraph. A TB value
was assigned to each cell following two mechanisms. The first
mechanism, which we call RAND, assigns a random value to
each cell following a normal distribution whose parameters
depend on the cell type. The TB for i th cell is assigned as
follows:

TB(Ci ) =
{

270+ 10zi , if li = Land

180+ 5zi , if li = Sea
(13)

where zi is a random sample drawn from a standard normally
distributed random variable.

The second mechanism, which we call TRIG, imposes
a smoothness condition following a trigonometric pattern
so that neighboring cells with the same type have similar
values. This mechanism is similar to the one introduced by
Bellerby et al. [14] for their simulations. We assign the truth
value for each cell according to the following equation:

TB(Ci ) =
{

270+ 20 sin
((

cy
i − cx

i

)/
5
)
, if li = Land

180+ 10 sin
((

cy
i + cx

i

)/
5
)
, if li = Sea

(14)

where cy
i and cx

i are the i th cell geographical coordinates.
The constants involved in both mechanisms were selected

so that the mean and standard deviation of the TB values
corresponding to each surface cover type result similar to
the corresponding values of the real scene processed in
Section IV-E. Once the values xi = TB(Ci ) for each cell
are computed (with either one mechanism), we generate a
synthetic observation for each considered band. The simulated
antenna TBs are given by

y = Kx + ε (15)

where K is the kernel matrix corresponding to the simulated
band and ε is a sample random error drawn from the error
distribution described above.

For each combination of retrieval grids (12, 25, and 50 km),
bands (Ka, K, Ku, X, and C), and generation mechanisms
(RAND and TRIG), we obtain a synthetic image and a
corresponding synthetic observation.

To evaluate the methods, we compared the estimated
values, x̂, with the synthetic values, x, computing both the
RMSE, defined as

RMSE =
√√√√1

n

n∑
i=1

(xi − x̂i )2 (16)

and the Pearson correlation coefficient, ρ(x, x̂).
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TABLE I

MEAN AND STANDARD DEVIATION OF THE OBTAINED RMSE AND THE MEAN CORRELATION COEFFICIENT (ρ) FOR THE 100 REPLICATIONS OF THE
(TOP) RAND AND (BOTTOM) TRIG SYNTHETIC EXPERIMENTS, SOLVED OVER (LEFT) 12.5-km AND (RIGHT) 25-km GRIDS, CONSIDERING THE

STAT, BG, AND LSQR METHODS AND THE FIVE BANDS (KA , KU , K, X, AND C)

B. Methods Comparison

The STAT, BG, and LSQR methods were used to obtain
estimates, x̂, for the TB of each cell, for each set of synthetic
observations. Some graphical results are shown in Fig. 3.

For each grid size (12.5 and 25 km.), 10 TRIG and 10
RAND synthetic images were created. For each of these
images, 10 noisy AMSR-2 observations were simulated. The
mean and standard deviation of the obtained RMSE and the
mean correlation values for these experiments are given in
Table I.

From the results of the experiments, we observe that the
LSQR solution presents typically wild oscillations since the
measurement errors are amplified. As can be appreciated
in Fig. 3 and Table I, the noise amplification can be controlled
at the expense of a loss in the information content of the
solution, forcing a gross observation oversampling, i.e., using
large cells compared with the sampling resolution (cf. [15]).
In these cases, the LSQR method gives excellent results.

The BG method is more robust and gives reasonable results
in homogeneous areas. However, it introduces an undesir-
able blurring effect in regions with high TB contrast. The
correlation coefficient shows that the BG solution is highly
correlated with the original image. However, the RMSE shows
an unadmissible level of disagreement for all the images solved
over the 12.5-km retrieval grid and most of the images bands
solved over the 25-km retrieval grid.

In the solutions given by the STAT method, it is remarkable
the removal of the coastal blurring effect. Also, higher corre-
lation coefficients and lower RMSE are obtained, compared
with both benchmark methods.

In the synthetic experiments solved with the STAT method,
we observe that the estimated mean temperature of each cell
type is accurate but the estimated standard deviation suffers a
slight underestimation. This may happen since the maximum
likelihood estimator is generally consistent but not always
unbiased.

TABLE II

MEAN RMSE FOR BORDER AND INTERIOR CELLS FOR THE
100 REPLICATIONS OF THE TRIG SYNTHETIC EXPERIMENT,

SOLVED OVER THE 25-km GRID, CONSIDERING THE

STAT, BG, AND LSQR METHODS AND THE

FIVE BANDS (KA , KU , K, X, AND C)

The retrieval procedure for a single image required less
than 1 s running on a standard desktop computer with an Intel
Quad-Core i7 processor and 16 GB of RAM.

For simplicity, our prior assumes the independence of the
state variables. However, TBs of adjacent cells are typically
correlated. The results of the RAND and TRIG synthetic
experiments (see Table I) suggest that when regional tenden-
cies in the TB field exist, the STAT method improves its
precision.

To further analyze the differences among the three retrieval
methods, in Table II, we present the mean RMSE for the
100 replications of the TRIG experiment over the 25-km grid,
discriminated for interior and coastal cells. The blurring effect
caused by the BG method induces a much higher RMSE in
the coastal cells as compared to the interior cells. The STAT
method outperforms both BG and LSQR methods for both
interior and coastal cells. It is interesting to observe that the
RMSE of STAT method is lower for the coastal cells. This
is a consequence of the merging algorithm for irregular cells,
in the case of 25-km grid, which leads to coastal cells that
are 30% larger than regular cells (on average), increasing the
information available for the retrieval of each coastal cell
TB value. A similar phenomenon can be observed for the
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Fig. 3. Results of (Top)TRIG and (Bottom) RAND synthetic experiments for the three methods (STAT, BG, and LSQR) and three bands (Ka, Ku, and C)
solved over (Left) 12.5-km and (Right) 25-km grids. (Middle) Reference synthetic images.
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LSQR method, where larger coastal cells lead to smaller noise
amplification.

Each band has an adequate retrieval grid size, depending
on the application. Since different bands have the same
spatial sampling frequency, this fact is not related to an
algebraic dimensionality problem and it seems to correspond
to the information content of the observational data, which is
degraded as the size of the footprint increases. For instance,
the kernel matrices corresponding to the synthetic experiments
with resolutions 12.5 km and 25 km have ranks 1465 and 235,
respectively, independent of the processed band. However,
the degrees of freedom for signal [19] which describe the
number of useful independent quantities contained in the
observations and is a measure of information, changes with
the band. For 12.5-km resolution, the observations have 802.2,
355.3, 282.1, 115.0, and 51.2 degrees of freedom for signal for
bands Ka, Ku, K, X, and C, respectively. For 25-km resolution,
the degrees of freedom for signal for the analyzed bands are,
respectively, 228.2, 220.1, 215.1, 158.9, and 89.7.

If we assume an emission model analogous to
RAND or TRIG and admit an expected RMSE of 2 ◦K
in the TB retrieval process, then the Ka-band can be retrieved
in the 12.5-km grid, whereas the Ku- and K-bands should
be retrieved in the 25-km grid (see Table I). The retrieval
X- and C-bands in the 50-km grid would produce RMSE
errors bounded by 0.30 and 0.52, respectively. These
resolutions will depend on the spectral characteristics of the
objects present in the scene and on the microwave radiometer.
The values presented here are valid in this particular context.

C. Influence of Instrument Error on the Solutions

To study the robustness of the different proposed methods
with respect to the instrument noise level, we ran synthetic
experiments varying the observational error standard deviation,
σobs. We present the results of these experiments for the
K-band, solved over a 25-km resolution grid. The results are
analogous for the different grid resolution levels and different
bands discussed in this paper.

Fig. 4 shows the RMSE for the STAT, LSQR, and BG
solution with different noise levels. The RMSE shown is
the average of 10 replications. It can be seen that while
the LSQR method induces an error that is almost linear
in the observational error, both BG and STAT methods are
able to reduce the influence of the observational error on the
RMSE.

The LSQR method has an excellent performance with
low instrumental noise and fine resolution bands. However,
it breaks down as the noise level increases or the observational
resolution decreases (see Table I). The BG method is robust
in the sense that its RMSE is bounded even for high noise
levels, but it underperforms LSQR for low noise levels. In all
tested scenarios, the STAT method outperformed both BG and
LSQR. It has the advantage of both the robustness of BG and
the good performance of LSQR for low noise level and fine
resolution bands.

Fig. 4. RMSE for the solutions computed with STAT, LSQR, and BG
methods for different noise levels. TRIG synthetic image with K-band
observations solved over the 25-km grid.

Fig. 5. Result of geolocation error on the image reconstruction RMSE for
the 25-km grid and TRIG synthetic image solved with the STAT method.

D. Geolocation Error Analysis for STAT

Since the STAT reconstruction method assumes differ-
ent Gaussian models for the different objects in the scene,
a uniform geolocation error in the observations (or in the
underlying ground-based partition) does not translate into a
uniform shift of the reconstructed TB values; it has impact on
the parameters for each cell-type model, affecting the complete
reconstruction procedure.

To study the error induced on the reconstruction of the
cell TBs by geolocation errors, the following analysis was
performed for the STAT method. Geolocation errors were
simulated by shifting a fixed distance the longitude of the
synthetic observations for different bands and solved over
different grids. In Fig. 5, we plotted the RMSE obtained when
using the STAT inverse method over the 25-km retrieval grid
with shifted observations.

When no geolocation error is introduced, the RMSE values
are the ones given by Table I. As the geolocation error
increases, the RMSE also increases at a rate lower than one
degree per kilometer. The experiments suggest that the curve
slope is independent of the band.

This analysis shows that an imperfect ground-based image
partition increases the retrieved solution RMSE. We emphasize
that, as expected, this method works better when the objects’
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Fig. 6. Polarization indices computed for different bands and methods from
real AMSR-2 data from June 2, 2014. (a) Polarization index from raw data,
Ka-band, nearest neighbor. (b) Polarization index from raw data, X-band,
nearest neighbor. (c) Polarization index from STAT solution for Ka-band at
12.5-km resolution grid. (d) Polarization index from STAT solution for X-band
at 25-km resolution grid.

borders are correctly defined and the observations are correctly
geolocated.

E. Real Observations

The statistical inverse method is applied to real AMSR-2
observations (descending orbit 220) acquired on June 2, 2014
at the Pampa Deprimida.

Pampa Deprimida has a very low regional slope (lower
to the east) with numerous depressions caused by eolic
deflation processes during the quaternary dry periods. Water
accumulates in these depressions during rains and is then lost
by evaporation and infiltration. Thus, the drainage network
is endorreic or arreic most of the time and is only inte-
grated during important flooding events. Vegetation is mainly
herbaceous, ranging from grasslands to hydrophytes. This
region is highly channelized and the main activities include
agriculture and cattle farming, according to the flooding
frequency.

The selected scene includes a flooded area that crosses from
the NW corner to the center of the study region, corresponding
to a moderate inundation.

Fig. 6 compares the polarization index (PI = ((TBv−TBh)/
(TBv + TBh))) computed from both the raw data and the
STAT solution for Ka- and X-bands.

A comparison of Fig. 6(a) and (c) shows the improvements
obtained by the STAT method over the original raw data for the

Fig. 7. Comparison of the STAT method (12.5-km resolution) with the
enhanced resolution NSIDC product (3.125-km resolution). Data from June 2,
2014, ascending orbits, H-pol. The values of both images were evaluated over
the same transect and the result plotted in (c). Both products have a good
agreement far from the coast. A blurring effect can be perceived in the NSIDC
product. (a) AMSR-2 Ka-band H-pol data gridded with the STAT method at
12.5 km. (b) SSMIS Ka-band H-pol data gridded with the SIR method at
3.125 km. (c) Transect showing TB values from above images at latitude
37.27◦. Black vertical line: location of the coastline.

Ka-band. The first remarkable difference is the sharp coastline
visible in Fig. 6(c) as opposed to the fuzzy border visible
in Fig. 6(a). The STAT method leads to coastal pixels with
pure land or sea TB values, in contrast to the original mixed
values. This fact is of utmost importance for coastal retrieval
applications. At the same time, we can observe that the STAT
method is able to deconvolve the measurements reobtaining
the extreme values for features present over the land area,
even when their exact boundaries are not designed in the
retrieval grid. This is the case for the shallow lakes present
in the SE portion of the scene and the flooded area in the
NW portion of the study region. Since the X-band footprint is
larger, the X-band observations contain less information and
its retrieval is more difficult. We perform it over the 25-km
grid. A comparison of Fig. 6(b) and (d) shows that the above
mentioned is not dependent on the grid resolution, since both
the sharp coastline and the delineation of the main features
inside the land area also appear in the 25-km grid. We also
observe that Fig. 6(d) is smoother than Fig. 6(b). We interpret
this as a consequence of the blurring effect induced by large
footprints. The STAT method is able to deconvolve the extreme
values present in the scene when solved over an adequate
resolution grid.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

In Fig. 7, we compare the results obtained by the
STAT method with the enhanced-resolution-gridded product
offered by the National Snow and Ice Data center (NSIDC)
(data set ID: NSIDC-0630, see [22]). Fig. 7(a) corresponds to
the AMSR-2 data mentioned above, retrieved with the STAT
method over a 12.5-km grid, while Fig. 7(b) corresponds
to Special Sensor Microwave Image/Sounder (SSMIS) data
resampled using the SIR algorithm at 3.125 km, as proposed
in [23]. Both data sets were acquired on June 2, 2014, with
ascending orbits and H-pol.

A simple visual comparison of Fig. 7(a) and (b) shows,
again in this case, that the STAT method leads to coastal pixels
with pure land or sea TB values, in contrast to the SIR method
that has mixed values.

To further analyze the differences, the values of both images
were evaluated over the same transect and the result is plotted
in Fig. 7(c). We observe that the solid line (STAT) presents
an abrupt change of TB in the coastal area, while the dashed
line (SIR) presents a smooth transition. The figure also shows
that both products have a good agreement far from the coast.

V. CONCLUSION

We introduced a statistical inverse method for gridding pas-
sive microwave data with mixed measurements. The method
uses geospatial information about the spectral objects present
in the scene to allow the computation of accurate TBs near
their edges, avoiding the introduction of artifacts and an
excessive noise amplification. It uses a priori information
consisting on the assumption that there are given different
cell types and that the TB corresponding to the cells of each
type share a common probabilistic distribution. While standard
least-squares regression can be useful for fine-resolution bands
where there is enough information for a proper retrieval, its
noise amplification rapidly renders it inadequate for coarser
bands retrieval. On the other hand, BG method is more robust
but it proved to be quite inefficient regarding its capability
to solve the problem without the introduction of a blurring
effect near the objects’ borders. Our method combines the
advantage of both methodologies: it includes the efficiency
of least squares and the robustness of BG, surpassing both
methods in all scenarios.

In that sense, we have established that the incorporation
of a priori information about the different cell types can be
beneficial for the inverse problem resolution. This information
is usually available but requires an adequate statistical model
to be properly incorporated.

The STAT method can be applied in a variety of situations,
including coastal zones, agricultural fields, floodplains, and
to all regions with an abrupt change in their ecogeomorpho-
logic features. However, the actual boundaries of the different
spectral objects considered in the scene need to be precisely
known. The method may also be used in situations where there
is an object whose limits are not precisely known, but in that
case, the object should not be distinguished in the prior, with
the consequent loss in the retrieval performance. For instance,
if a lake considered in the prior suffers an important increase
on its surface but its border is not updated accordingly, the

retrieval of its TB might lead to inaccurate values. On the
other hand, if the lake is not considered, the retrieval will lead
to blurred temperatures (which may be preferable). The ideal
situation is, of course, to know the precise updated boundary
of the lake.

The STAT method is general and can be applied to any
sensor whose antenna gain function and incidence angle
are known. We applied it to AMSR-2 data to illustrate its
application, but it may be used to grid SMOS, SMAP, SSM/I,
SSMIS, or AMSR-E measurements.

Since our technique can be applied to grid measurements
from different frequencies on the same grid, it offers a solution
to the problem of simultaneously analyzing measurements
acquired at different frequencies by antennas with noncoinci-
dent patterns as is required to compute multifrequency indices.

Ideally, heterogeneity between the cells should be greater
than within each cell. In many cases, this requires the inclusion
of spectral objects smaller than the retrieval grid resolution in
the ground-based segmentation. This can be done, in principle,
especially if these small objects form a pattern of multiple
segments with similar spectral characteristics. Also, the large
sparse objects such as rivers may be included in the partition.
However, the current geolocation errors hinder an adequate
resolution of these situations.

The statistical method cannot be directly applied at large
scales. For instance, to grid a complete AMSR-2 orbit com-
prising almost 500 000 observations, the use of sparse linear
algebra methods would be required.
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