468,866 research outputs found

    Problems in extremal graph theory

    Get PDF
    We consider a variety of problems in extremal graph and set theory. The {\em chromatic number} of GG, χ(G)\chi(G), is the smallest integer kk such that GG is kk-colorable. The {\it square} of GG, written G2G^2, is the supergraph of GG in which also vertices within distance 2 of each other in GG are adjacent. A graph HH is a {\it minor} of GG if HH can be obtained from a subgraph of GG by contracting edges. We show that the upper bound for χ(G2)\chi(G^2) conjectured by Wegner (1977) for planar graphs holds when GG is a K4K_4-minor-free graph. We also show that χ(G2)\chi(G^2) is equal to the bound only when G2G^2 contains a complete graph of that order. One of the central problems of extremal hypergraph theory is finding the maximum number of edges in a hypergraph that does not contain a specific forbidden structure. We consider as a forbidden structure a fixed number of members that have empty common intersection as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs that do not contain this structure, when the number of vertices is sufficiently large. Our result is strong enough to imply the same sharp upper bound for several other interesting forbidden structures such as the so-called strong simplices and clusters. The {\em nn-dimensional hypercube}, QnQ_n, is the graph whose vertex set is {0,1}n\{0,1\}^n and whose edge set consists of the vertex pairs differing in exactly one coordinate. The generalized Tur\'an problem asks for the maximum number of edges in a subgraph of a graph GG that does not contain a forbidden subgraph HH. We consider the Tur\'an problem where GG is QnQ_n and HH is a cycle of length 4k+24k+2 with k≥3k\geq 3. Confirming a conjecture of Erd{\H o}s (1984), we show that the ratio of the size of such a subgraph of QnQ_n over the number of edges of QnQ_n is o(1)o(1), i.e. in the limit this ratio approaches 0 as nn approaches infinity

    Uniqueness and multiplicity of infinite clusters

    Get PDF
    The Burton--Keane theorem for the almost-sure uniqueness of infinite clusters is a landmark of stochastic geometry. Let μ\mu be a translation-invariant probability measure with the finite-energy property on the edge-set of a dd-dimensional lattice. The theorem states that the number II of infinite components satisfies μ(I∈{0,1})=1\mu(I\in\{0,1\})=1. The proof is an elegant and minimalist combination of zero--one arguments in the presence of amenability. The method may be extended (not without difficulty) to other problems including rigidity and entanglement percolation, as well as to the Gibbs theory of random-cluster measures, and to the central limit theorem for random walks in random reflecting labyrinths. It is a key assumption on the underlying graph that the boundary/volume ratio tends to zero for large boxes, and the picture for non-amenable graphs is quite different.Comment: Published at http://dx.doi.org/10.1214/074921706000000040 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    High-frequency Estimation of the L\'evy-driven Graph Ornstein-Uhlenbeck process

    Full text link
    We consider the Graph Ornstein-Uhlenbeck (GrOU) process observed on a non-uniform discrete time grid and introduce discretised maximum likelihood estimators with parameters specific to the whole graph or specific to each component, or node. Under a high-frequency sampling scheme, we study the asymptotic behaviour of those estimators as the mesh size of the observation grid goes to zero. We prove two stable central limit theorems to the same distribution as in the continuously-observed case under both finite and infinite jump activity for the L\'evy driving noise. When a graph structure is not explicitly available, the stable convergence allows to consider purpose-specific sparse inference procedures, i.e. pruning, on the edges themselves in parallel to the GrOU inference and preserve its asymptotic properties. We apply the new estimators to wind capacity factor measurements, i.e. the ratio between the wind power produced locally compared to its rated peak power, across fifty locations in Northern Spain and Portugal. We show the superiority of those estimators compared to the standard least squares estimator through a simulation study extending known univariate results across graph configurations, noise types and amplitudes

    The eigen-chromatic ratio of classes of graphs : molecular stability, asymptotes and area.

    Get PDF
    Master of Science in Mathematics, University of KwaZulu-Natal, Westville, 2017.This dissertation involves combining the two concepts of energy and the chromatic number of classes of graphs into a new ratio, the eigen-chromatic ratio of a graph G. Associated with this ratio is the importance of its asymptotic convergence in applications, as well as the idea of area involving the Rieman integral of this ratio, when it is a function of the order n of the graph G belonging to a class of graphs. The energy of a graph G, is the sum of the absolute values of the eigenvalues associated with the adjacency matrix of G, and its importance has found its way into many areas of research in graph theory. The chromatic number of a graph G, is the least number of colours required to colour the vertices of the graph, so that no two adjacent vertices receive the same colour. The importance of ratios in graph theory is evident by the vast amount of research articles: Expanders, The central ratio of a graph, Eigen-pair ratio of classes of graphs , Independence and Hall ratios, Tree-cover ratio of graphs, Eigen-energy formation ratio, The eigen-complete difference ratio, The chromatic-cover ratio and "Graph theory and calculus: ratios of classes of graphs". We combine the two concepts of energy and chromatic number (which involves the order n of the graph G) in a ratio, called the eigen-chromatic ratio of a graph. The chromatic number associated with the molecular graph (the atoms are vertices and edges are bonds between the atoms) would involve the partitioning of the atoms into the smallest number of sets of like atoms so that like atoms are not bonded. This ratio would allow for the investigation of the effect of the energy on the atomic partition, when a large number of atoms are involved. The complete graph is associated with the value 1 2 when the eigen-chromatic ratio is investigated when a large number of atoms are involved; this has allowed for the investigation of molecular stability associated with the idea of hypo/hyper energetic graphs. Attaching the average degree to the Riemann integral of this ratio (as a function of n) would result in an area analogue for investigation. Once the ratio is defned the objective is to find the eigen-chromatic ratio of various well known classes of graphs such as the complete graph, bipartite graphs, star graphs with rays of length two, wheels, paths, cycles, dual star graphs, lollipop graphs and caterpillar graphs. Once the ratio of each class of graph are determined the asymptote and area of this ratio are determined and conclusions and conjectures inferred
    • …
    corecore