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Abstract

This dissertation involves combining the two concepts of energy and the chromatic number of
classes of graphs into a new ratio, the eigen-chromatic ratio of a graph G. Associated with this
ratio is the importance of its asymptotic convergence in applications, as well as the idea of area
involving the Rieman integral of this ratio, when it is a function of the order n of the graph G
belonging to a class of graphs.

The energy of a graph G, is the sum of the absolute values of the eigenvalues associated with
the adjacency matrix of G, and its importance has found its way into many areas of research
in graph theory. The chromatic number of a graph G, is the least number of colours required
to colour the vertices of the graph, so that no two adjacent vertices receive the same colour.
The importance of ratios in graph theory is evident by the vast amount of research articles:
Expanders, The central ratio of a graph, Eigen-pair ratio of classes of graphs , Independence
and Hall ratios, Tree-cover ratio of graphs, Eigen-energy formation ratio, The eigen-complete
difference ratio, The chromatic-cover ratio and ”Graph theory and calculus: ratios of classes of
graphs”. We combine the two concepts of energy and chromatic number (which involves the
order n of the graph G) in a ratio, called the eigen-chromatic ratio of a graph. The chromatic
number associated with the molecular graph (the atoms are vertices and edges are bonds between
the atoms) would involve the partitioning of the atoms into the smallest number of sets of like
atoms so that like atoms are not bonded. This ratio would allow for the investigation of the
effect of the energy on the atomic partition, when a large number of atoms are involved. The
complete graph is associated with the value 1

2 when the eigen-chromatic ratio is investigated
when a large number of atoms are involved; this has allowed for the investigation of molecular
stability associated with the idea of hypo/hyper energetic graphs. Attaching the average degree
to the Riemann integral of this ratio (as a function of n) would result in an area analogue for
investigation.

Once the ratio is defined the objective is to find the eigen-chromatic ratio of various well known
classes of graphs such as the complete graph, bipartite graphs, star graphs with rays of length
two, wheels, paths, cycles, dual star graphs, lollipop graphs and caterpillar graphs. Once the
ratio of each class of graph are determined the asymptote and area of this ratio are determined
and conclusions and conjectures inferred.

Key words: Eigenvalue; Energy of graphs; Chromatic number; Ratios; Asymptote; Area.
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Chapter 0

0.1 INTRODUCTION

Many problems in discrete mathematics can be stated and solved using Graph Theory (Graph
Theory is the study of graphs, which are mathematical structures used to model pairwise rela-
tions between objects.), therefore Graph Theory is considered by many to be one of the most
important and vibrant fields within discrete mathematics.

Graph theoretical concepts are widely used to study and model various applications, in different
areas. They include, study of molecules, construction of bonds in chemistry and the study of
atoms. Similarly, graph theory is used in sociology for example to measure actor prestige or to
explore diffusion mechanisms. Graph theory is used in biology and conservation efforts where a
vertex represents regions where certain species exist and the edges represent migration path or
movement between the regions. This information is important when looking at breeding patterns
or tracking the spread of disease, parasites and to study the impact of migration that affects
other species. Graph theoretical ideas are highly utilized by computer science applications. This
dissertation mainly focused on important applications in chemistry with the molecular graph.

Graph theory is everywhere, whenever some system can be visualized as a set of elements that
are somehow interconnected. With the advent of computers graph theory has blossomed.

In this dissertation, we present a new ratio associated with classes of graphs, called the eigen-
chromatic ratio, by combining the two graph theoretical concepts of energy and chromatic
number.

The energy of a graph, the sum of the absolute values of the eigenvalues associated with the
adjacency matrix of a graph, arose historically as a result of the energy of the benzene ring being
identical to that of the sum of the absolute values of the eigenvalues of the adjacency matrix of
the cycle graph on n vertices (see [16]).

The chromatic number of a graph is the smallest number of colour classes that we can partition
the vertices of a graph such that each edge of the graph has ends that do not belong to the
same colour class, and applications to the real world abound (see [30]). Applying this idea to
molecular graph theory, for example, the water molecule would have its two hydrogen atoms
coloured with the same colour different to that of the oxygen molecule.

Ratios involving graph theoretical concepts form a large subset of graph theoretical research
(see [1], [13], [53]). The eigen-chromatic ratio of a class of graph provides a form of energy
distribution among the colour classes determined by the chromatic number of such a class of
graphs. The asymptote associated with this eigen-chromatic ratio allows for the behavioural
analysis in terms of stability of molecules in molecular graph theory where a large number of
atoms are involved. This asymptote can be associated with the concept of graphs being hyper
or hypo-energetic (see [53]). The complete graph is associated with the value 1

2 when the eigen-
chromatic ratio is investigated when a large number of atoms are involved; this has allowed for

12



the investigation of molecular stability associated with the idea of hypo/hyper energetic graphs
(see [53]).

This dissertation is organized as follows.

In chapter 1 we present the graph theoretical definitions used in this dissertation, together with
the different classes of graphs which will be investigated. All graphs are simple and loopless and
on n vertices and m edges.

Chapter 2 involves the different methods for finding eigenvalues of the adjacency matrix of a
graph.

In chapter 3 we present the energy of the different classes of graphs discussed in chapter 1.

In chapter 4 we discuss the chromatic number of a graph relevant to our classes of graphs.

Chapter 5 forms the original part of this dissertation (see [56]) where we formally define the
eigen-chromatic ratio and asymptote of classes of graph. As is line with previous research
involving area of classes of graphs (see [49], [50] and [54]) we attach the average degree of a class
of graphs to the Riemann integral of the eigen-chromatic ratio (as a function of the number
of vertices n involved) so as to provide a comparative analysis of classes of graphs via their
eigen-chromatic ratio.

In chapter 6 we discuss our results and conclude this dissertation with possible further research
involving this new ratio.
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Chapter 1

GRAPH THEORY DEFINITIONS
AND CLASSES OF GRAPHS

In this chapter we provided some basic notions of Graph theory which will be required later
in this thesis. We have used the graph theoretical notation of Harris, Hirst, and Mossimghoff
(see [25]). We introduced many classes of graphs in this chapter which will be the basis of our
research later.

1.1 Graphs, Subgraphs, Complement, and Clique

Definition 1.1. Graphs

A graph G = (V, E) is an ordered pair of finite sets, V and E. Each elements of V is called
vertex or node, and elements of E ⊆ V ×V are called edges or arcs. We refer to V as the vertex
set of G, with E being the edge set. The vertex set of a graph G is denoted by V (G), and the
edge set is denoted by E(G).We may refer to these sets simply as V and E if the context makes
the particular graph clear. The cardinality of V denoted | V |, is called the order of G, and | E |
is called the size of G.

One can label a graph by attaching labels to its vertices. If (v1,v2) ∈ E is an edge of a graph
G = (V, E), we say that v1 and v2 are adjacent vertices. For ease of notation, we can write the
edges (v1,v2) as v1v2. The edge v1v2 is also said to be incident with the vertices v1 and v2.

Here is an example of a graph:

v1 v2 v3 v4

v5 v6 v7

v8

Figure 1.1: An example of a graph

We have:
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V = {v1, v2, v3, v4, v5, v6, v7, v8}

E = {(v1,v2), (v1,v5), (v1,v6), (v2,v3), (v3,v4), (v4,v6), (v4,v7), (v6,v8)}.

Definition 1.2. Neighborhood

The neighborhood (or open neighborhood) of a

(i) vertex v, denoted by N(v), is the set of vertices adjacent to v:

N(v) = {x ∈ V/vx ∈ E}.

(ii) set S of vertices, denoted by N(S), is the union of the neighborhoods of the vertices in S.

The closed neighborhood of a vertex v, denoted by N [v], is simply the set {v} ∪N(v), while the
closed neighborhood of S, denoted by N [S], is defined to be S ∪N(S).

Definition 1.3. Degree

The degree of v, denoted by deg(v), is the number of edges incident with v. In simple graphs,
this is the same as the cardinality of the (open) neighborhood of v.
A vertex of degree one is called a pendent vertex.

The maximum degree of a graph G, denoted by 4(G), is defined to be

4(G) = max{deg(v)/v ∈ V (G)}.

Similarly, the minimum degree of a graph G, denoted by δ(G), is defined to be

δ(G) = min{deg(v)/v ∈ V (G)}.

The degree sequence of a graph G of order n is the n−term sequence (usually written in des-
cending order) of the vertex degrees.

Let’s use the graph G in the example above, to illustrate some of these concepts: G has order
8 and size 8; vertices v1 and v5 are adjacent while vertices v1 and v8 are nonadjacent;
N(v4) = {v3, v6, v7}, N [v4] = {v3, v4, v6, v7}; ∆(G) = 3, δ(G) = 1; and the degree sequence is
3, 3, 3, 2, 2, 1, 1, 1.

Theorem 1.1 (J. Gross and J. Yellen.[23]) In a graph G, the sum of the degrees of the
vertices is equal to twice the number of edges. Consequently, the number of vertices with odd
degree is even.

Proof . Let S =
∑

v∈V deg(v). Notice that in counting S, we count each edge exactly twice.
Thus, S = 2 | E | (the sum of the degrees is twice the number of edges). Since S is even, it
must be that the number of vertices with odd degrees is even.

Definition 1.4. Weighted graphs

Sometimes, we will use edges to denote a connection between a pair of nodes where the con-
nection has a capacity or weight. For example, we might be interested in the capacity of an
Internet fiber between a pair of computers, the resistance of a wire between a pair of terminals,
the tension of a spring connecting a pair of devices in a dynamical system, the tension of a bond
between a pair of atoms in a molecule, or the distance of a highway between a pair of cities.
In such cases, it is useful to represent the system with a weighted − edge graph. A weighted
graph is the same as a simple graph except that we associate a real number (that is, the weight)
with each edge in the graph.
Mathematically speaking, a weighted graph is a graph for which each edge has an associated
weight, usually given by a weight function w: E → R.
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2.14

2.15

4.01

2.5

6.3

5.01

3.5

Figure 1.2: A weighted graph

Definition 1.5. Directed graphs (Digraphs)

A directed edge is an edge such that one vertex incident with it is designated as the head vertex
and the other incident vertex is designated as the tail vertex. A directed edge uv is said to be
directed from its tail u to its head v. A directed graph or digraph G is a graph such that each of
its edges is directed. The indegree of a vertex v ∈ V (G) counts the number of edges such that
v is the head of those edges. The outdegree of a vertex v ∈ V (G) is the number of edges such
that v is the tail of those edges.

Figure 1.3: A directed graph

Definition 1.6. Multigraphs.

A multigraph is a graph in which there are multiple edges between a pair of vertices. A multi-
undirected graph is a multigraph that is undirected. Similarly, a multi-digraph is a directed
multigraph. Here is an example:

Figure 1.4: A multigraph
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Definition 1.7. Simple graphs

A simple graph is a graph with no self-loops and no multiple edges.

Definition 1.8. Complete Graph.

A complete graph is a graph G = (V , E) where | V |= n, | E |= n(n − 1)/2 and every pair of
vertices are adjacent. Below a comple graph on 6 vertices,

v1

v2

v3

v4

v5

v6

Figure 1.5: Complete Graph with 6 vertices

Theorem 1.2 Euler If G = (V, E) is a graph, then
∑

v∈V deg(v) = 2 | E |.

Definition 1.9. Isomorphism

Two graphs that look the same might actually be different in a formal sense. For example, two
graphs are both simple cycles with 4 vertices, but one graph has vertex set {a, b, c, d} while
the other has vertex set {1, 2, 3, 4}. Strictly speaking, these graphs are different mathematical
objects, but this is a frustrating distinction since the graphs look the same! Fortunately, we can
neatly capture the idea of looks the same through the notion of graph isomorphism.

If G1 = (V1, E1) and G2 = (V2, E2) are two graphs, then we say that G1 is isomorphic to G2

iif there exists a bijection f : V1 −→ V2 such that for every pair of vertices
u, v ∈ V1:

{u,v} ∈ E1 iif {f(u), f(v)} ∈ E2.

Then function f is called an isomorphism between G1 and G2.

In other words, two graphs are isomorphic if they are the same up to relabeling of their vertices.

Definition 1.10. Subgraphs

Let G be a graph with vertex set V(G) and edge set E(G). Consider a graph H such that
V (H) ⊆ V (G) and E(H) ⊆ E(G). Furthermore, if uv ∈ E(H) then u, v ∈ V (H). Then H is
called a subgraph of G and G is referred to as a supergraph of H.

Definition 1.11. Induced Subgraphs

Given a graph G and a subset S of the vertex set, the subgraph of G induced by S, denoted G〈S〉
or G[S], is the subgraph with vertex set S and with edge set {uv/u,v ∈ S and uv ∈ E(G)}. So,
G〈S〉 contains all vertices of S and all edges of G whose end vertices are both in S.
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Definition 1.12. Complement of a Graph

The Complement, G, of a graph G is a graph whose vertex set is the same as G and

e ∈ E(G)⇔ e /∈ E(G)

Definition 1.13. Independent Set - Independence number

An independent set is a set of vertices in a graph, such that no two vertices of the graph
G = (V ,E) are adjacent. In other words, it is a set I ⊆ V such that for every two vertices in
I, there is no edge connecting the two. Equivalently, each edge in the graph has at most one
endpoint in I.

A maximum independent set is an independent set in a graph G such that, no other independent
set in G has larger cardinality. It is called maximal if it is contained in on larger independent
set.

An independence number of a graph G is the number of vertices in a maximum independent set
in G, and is denoted α(G).

Definition 1.14. Clique of a Graph

A clique, C, in an undirected graph G = (V ,E) is a subset of the vertices, C ⊆ V , such that
every two distinct vertices are adjacent. This is equivalent to the condition that the subgraph
of G induced by C is complete. The term clique may also refer to the subgraph directly in some
cases.

A maximal clique is a clique that cannot be extended by including one more adjacent vertex,
that is, a clique which does not exist exclusively within the vertex set of a larger clique.

A maximum clique of a graph G, is a clique, such that there is no clique with more vertices.

The clique number ω(G) of a graph G is the number of vertices in a maximum clique in G.

The intersection number of G is the smallest number of cliques that together cover all edges of
G.

The clique cover number of a graph G is the smallest number of cliques of G whose union covers
V (G). The opposite of a clique in an independent set, in the sense that every clique corresponds
to an independent set in the complement graph. The clique cover problem concerns finding as
few cliques as possible that include every vertex in the graph.

1.2 Paths, Cycle, Connectedness, Components, Cut-vertex

Definition 1.15. Paths and walks

(i) A walk in a graph G is a sequence of vertices

v0, v1, ...,vk

and edges

{v0, v1}, {v1, v2},...,{vk−1, vk}

such that {vi, vi+1} is an edge of G for all i where 0 ≤ i < k. The walk is said to start
at v0 and to end at vk, and the length of the walk is defined to be k. An edge, {u,v}, is
traversed n time by the walk if there are n different values of i such that
{vi, vi+1} = {u,v}.
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(ii) A path is a walk where all the vertices vi are different, that is, i 6= j implies vi 6= vj .

A path is a simple graph whose vertices can be ordered so that two vertices are adjacent
if and only if they are consecutive in the ordering. A path which begins at vertex u and
ends at vertex v is called a u− v path. Here is a path with 6 vertices:

v0 v1 v2 v3

v4 v5

Figure 1.6: A path with 6 vertices

Definition 1.16. Cycle.

A cycle is a simple graph whose vertices can be cyclically ordered so that two vertices are adja-
cent if and only if they are consecutive in the cyclic ordering. A graph is acyclic if it does not
contain any cycles.

v1

v2

v3

v4

v5

v6

Figure 1.7: A Cycle with 6 vertices

We usually think of paths and cycles as subgraphs within some larger graph.
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Definition 1.17. Connectedness

A graph G is connected if for every u, v ∈ V (G) there exists a u, v-path in G. Otherwise G is
called disconnected. In the diagram below, the graph on the left has two pieces, while the graph
on the right has just one. So, only the graph on the right is connected.

Figure 1.8: Connectivity

Definition 1.18. Components

The maximal connected subgraphs of G are called its components.

Theorem 1.3 (J. Gross and J. Yellen.[23])

(i) If a graph G = (V, E) is acyclic, then | E |≤| V | −1

(ii) If a graph G = (V, E) is connected, then | E |≥| V | −1

Proof

We only prove part(i) of the Theorem; part(ii) can be proven by a similar reasoning. We use
induction on | V |. Since the theorem trivially holds for | V |= 2, we may state our induction-
hypothesis that the theorem is true for each graph on | V |= n − 1 vertices. we have to show
that the theorem then also holds for each graph on n vertices.

Suppose to the contrary that there exists an acyclic graph G = (V , E) on n vertices with
E ≥| V |= n. If G contains a vertex with degree equal to zero or one, then we just remove this
vertex and the corresponding edge (in case of degree one) and obtain an acyclic graph on n− 1
vertices with at least n− 1 edges, which contradicts the induction-hypothesis. Hence, we know
that each vertex then must have degree at least equal to two. Since the graph is assumed to be
acyclic, we can travel from each vertex to another one that we have not visited before. But after
having traversed n− 1 edges, we have visited each vertex. We are then in a vertex with degree
at least two, so we can leave this vertex through an edge that we have not traversed before and
that must be incident to a vertex that we have already visited, which implies that G contains a
cycle. this contradiction proves part(i) of Theorem 1.3.

Definition 1.19. A Cut-vertex of a connected graph.

A cut-vertex is a vertex, whose removal from a connected graph, would disconnect the graph.
In others words, a cut-vertex of a connected graph G = (V ,E) is a vertex whose removal from
V , increases the number of components in G.
And a vertex separator is a collection of vertices, whose removal from a connected graph, would
disconnect the graph.
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1.3 Strong cliques, Co-cliques and Colouring

Definition 1.20. Strong cliques

A strong clique is a subgraph of G which is a maximal clique and has at least one cut-vertex.

Definition 1.21. Co-cliques

A set of vertices of a graph G which are non-adjacent in G is a co-clique of G. The order of the
largest co-clique of G is called the co-clique number of G.

Definition 1.22. Colouring and Chromatic number

A proper colouring of the vertices of a graph G is an assignment of colours to the vertices so
that no two adjacent vertices receive the same colour. The least number of colours required to
form a proper colouring of a graph is called the chromatic number of G and is denoted by χ(G).

1.4 Distance in graph and Adjacency matrix

Definition 1.23. Distance in graph

Let G = (V , E) be a connected graph. We define the distance of two vertices v1,v2 ∈ V (G),
denoted by dG(v1,v2), as the length of a shortest path from v1 to v2 in G.

Hence dG is a function, dG: V ×V → R, and it is called the distance function or the

metric of the graph G. The metric of G has the following properties:

1. dG(v1,v2) ≥ 0, and dG(v1,v2) = 0 if and only if v1 = v2,

2. dG(v1,v2) = dG(v2,v1) for any pair of vertices v1, v2;

3. dG(v1,v3) ≤ dG(v1,v2) + dG(v2,v3) for any three vertices v1, v2, v3 ∈ V (G). The validity
of these statements can be readily checked from the definition of the distance function
dG(v1,v2). Each mapping d: V × V → R with properties 1-3 is called a metric on the set
V, and the set V together with such a mapping d is called a metric space. The distance
fuction dG of a graph has, moreover, the following special properties:

4. dG(v1,v2) is a nonnegative integer for any two vertices v1, v2;

5. if dG(v1,v3) > 1 then there exists a vertex v2, v1 6= v2 6= v3, such that
dG(v1,v2) + dG(v2,v3) = dG(v1,v3).

Conditions 1-5 already characterize functions arising as distance functions of graphs with
vertex set V.

Graph representations

We have seen representations of graphs by drawings, and also by out a list of vertices and edges.
Graphs can also be represented in many others ways. Some of them become particularly import-
ant if we want to store and manipulate graphs in a computer. A very basic and very common
representation is by an adjacency matrix:

Definition 1.24. Adjacency matrix

Let G = (V , E) be a graph with n vertices. Denote the vertices by v1, v2,...,vn (in some arbitrary
order). The adjacency matrix of G, with respect to the chosen vertex numbering, in an n × n
matrix A(G) = (aij)

n
i;j=1 defined by the following rule:

21



aij =

1 if (vi,vj) ∈ E,

0 otherwise.

The adjacency matrix of a graph is always a symmetric square matrix with entries 0
and 1, with 0s on the main diagonal. Conversely, each matrix with these properties
is the adjacency matrix of some graph.

Exemple. The graph G given in section 1.1. has the adjacency matrix

A(G) =



0 1 0 0 1 1 0 0

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 0 1 1 0

1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0


Proposition 1.1 Let G = (V, E) be a graph with vertex set V = {v1, v2,...,vn} and let
A = A(G) be its adjacency matrix. Let Ak denote the k−th power of the adjacency matrix (the

matrices are multiplied as is usual in linear algebra). let a
(k)
ij denote the element of the matrix

Ak at position (i,j). Then a
(k)
ij is the number of walks of length exactly k from the vertex vi to

the vertex vj in the graph G.

Corollary 1.1 The distance of any two vertices vi, vj satisfies

dG(vi,vj) = min{k ≥ 1 : a
(k)
ij 6= 0}.

1.5 Laplace and signless Laplace matrix

Given a graph G with n vertices, the degree matrix D(G) in a n× n diagonal matrix defined as

dij =

deg(vi) if i = j

0 otherwise.

The Laplace matrix of G is defined as the n× n matrix L(G), where

L(G) = D(G)−A(G),

i.e., it is the difference between the degree matrix D(G) and the adjacency matrix A(G) of the
graph. From the definitions it follows that L(G) is defined as

lij =


deg(vi) if i = j

−1 if i 6= j, and vi adjacent to vj

0 otherwise
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where deg(vi) is degree of the vertex vi.

The matrix A(G) +D(G) is called the signless Laplace matrix of G.

1.6 Trees and Forests

Recall, a path in a graph G = (V , E) whose start and end vertices are the same is called a cycle.
We say G is acyclic, or a forest, if it has no cycles. A vertex of a forest of degree one is called
an endpoint or a leaf. A connected forest is a tree.

Definition 1.25. Trees.

A tree T = (V, E) is a connected acyclic graph. It contains a unique path between each pair of
vertices. Here is an example of a tree:

Figure 1.9: A Tree

The graph shown above would no longer be a tree if any edge were removed, because it would
no longer be connected. The graph would also not remain a tree if any edge were added between
two of its vertices, because then it would contain a cycle.

Theorem 1.4 The following conditions are all equivalent for a graph G = (V, E):

(i) G is a tree.

(ii) For every two vertices x, y ∈ V , there exists exactly one path from x to y.

(iii) The graph G is connected, and deleting any of its edges gives rise to a disconnected graph.

(iv) The graph G contains no cycle, and any graph arising from G by adding an edge already
contains a cycle.

(v) G is connectec and | V |=| E | +1

Note that this theorem not only describe various properties of trees, such as: any
tree on n vertices has n − 1 edges, but also lists properties equivalent to definition
1.25., so for instance it says: A graph on n vertices is a tree if and only if it is
connected and has n− 1 edges.

Definition 1.26 Spanning Tree
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Let G be a connected graph on n vertices. Then a spanning tree in G is a subgraph, SG, of G
that includes every vertex and is also a tree on n vertices. Below, we have, at the left the graph
G, and at the right a spanning tree of G

Figure 1.10: A spanning tree

Theorem 1.5 Every connected graph G = (V ,E) contains a spanning tree.

Proof Let T = (V ,E
′
) be a connected subgraph of G with the smallest number of edges. We

show that T is acyclic by contradiction. So suppose that T has a cycle with the following edges:

v0 − v2, v1 − v2, ..., vn − v0

Suppose that we remove the last edge, vn − v0. If a pair of vertices x and y was joined by a
path not containing vn− v0, then they remain joined by that path. On the other hand, if x and
y were joined by a path containing vn − v0, then they remain joined by a path containing the
remainder of the cycle. This is a contradiction, since T was defined to be a connected subgraph
of G with the smallest number of edges. Therefore, T is acyclic.

Definition 1.27. The Forest

If every connected component of a graph G is a tree, then G is a forest. So a forest is a set of
trees.

Definition 1.28. The Leaf

One of the first things we will notice about trees is that they tend to have a lot of nodes with
degree one. Such nodes are called leaves. So the leaf is a node with degree 1 in a tree (or forest).
For example, the tree in Figure 1.9. contains 11 leaves.

1.7 Union of graphs, Subdivision graph and Join of graphs

Let G and H be two graphs with vertex sets V (G), V (H) and edge sets E(G), E(H) respectively.

Definition 1.29. The Union of G and H, denoted by G ∪ H, is the graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H).

Definition 1.30. The subdivision graph of a graph G, denoted by S(G), is the graph obtained
by inserting a new vertex into every edges of G.

Definition 1.31. The join of G and H, denoted by G⊕H, is formed when every vertex in G
is joined to every vertex in H.

Definition 1.32. The SG− vertex join of G and H, denoted by G♦H, is the graph obtained
from S(G) ∪G and H by joining every vertex of V (G) to every vertex of V (H).
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1.8 Classes of Graphs

In this section We define and show some different types of graphs.

1.8.1 Complete graph Kn

A complete graph Kn is a connected graph on n vertices where all vertices are of degree n− 1,

i.e. there is an edge between a vertex and every other vertex. A complete graph has
n(n− 1)

2
edges. Below a complete graph K8,

Figure 1.11: A complete graph K8

1.8.2 Empty graphs En

The empty graph on n vertices denoted by En, is the graph of order n and of size 0. So an empty
graph has no edges. See below an example of an empty graph on 8 vertices,

Figure 1.12: Empty graph E8
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1.8.3 Complete bi-partite graph Km,n

A bipartite graph is a graph on (m + n) vertices where the vertices are partitioned into two
independent sets, V1 (containing m disconnected vertices) and V2 (containing n disconnected
vertices), such that there are no edges between vertices in the same set. A complete bipartite
graph Km,n is a bipartite graph in which there is an edge between every vertex in V1 and every
vertex in V2 . Below a complete bi-partite graph K3,4

Figure 1.13: A complete bi-partite graph K3,4

1.8.4 The Complete Split-bipartite Graph Kn
2
,n
2

A split graph is a graph in which the vertices can be partitioned into a clique and an independent
set.

The double split graphs is a family of graphs derived from split graphs by doubling every vertex.

The complete split-bipartite graph is when we split the vertex-set of the complete bipartite graph
into identical parts of size n

2 .

1.8.5 Path graph Pn

A path graph Pn is a connected graph of n vertices where 2 vertices are pendant and the other
n−2 vertices are of degree 2 . A path has n−2 edges. The following graph is a Path on 7 vertices,

Figure 1.14: A Path P7
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1.8.6 Cycle graph Cn

A cycle graph Cn is a connected graph on n vertices where all vertices are of degree 2. A cycle
graph can be created from a path graph by connecting the two pendant vertices in the path by
an edge. A cycle has an equal number of vertices and edges. Below a C8,

Figure 1.15: A Cycle C8

1.8.7 Wheel graph Wn

A wheel graph Wn is a connected graph on n vertices, constructed by taking a cycle on n − 1
vertices, together with a single centre vertex, and joining each vertex in the cycle with the centre
vertex. In other words, the wheel graph Wn is the join of K1 and Cn. The wheel graph Wn has
(2n− 2) edges.

Figure 1.16: A wheel W9
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1.8.8 Lollipop graph LPn

A lollipop graph LPn is a connected graph on n vertices, comprising of the complete graph Kn−1
on n− 1 vertices, joined to a single end vertex x2 by an edge x1x2, with x1 ∈ Kn−1 and n ≥ 3.
A lollipop graph LPn has (n− 1)(n− 2) + 1 edges.

Figure 1.17: A Lollipop LP4

1.8.9 Regular graph

A graph G is regular of degree (or valency) k, if every vertex has the same degree. So, G is said
to be regular of degree k (or k-regular) if deg(v) = k, for all v ∈ G, i.e. all its vertices have
degree exactly k.
Empty graphs are regular of degree 0, and the complete graphs on n vertices are regular of
degree n− 1. See in figure below examples of regular graphs,

4− regular graph 3− regular graph

Figure 1.18: Examples of regular graphs.
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1.8.10 Star graph Sn−1,1 with n− 1 rays of length 1

A star graph Sn−1,1 is a connected graph on n vertices where one vertex has degree n − 1 and
the other n − 1 vertices have degree 1. A star graph is a special case of a complete bipartite
graph in which one set has 1 vertex and the other set has n− 1 vertices. A star graph has n− 1
edges.

Figure 1.19: Star graph S8,1

1.8.11 Star graph Sn−1
2

,2 with n−1
2

rays of length 2

A star graph Sn−1
2

,2 is a connected graph on n vertices, n odd and n ≥ 7, where one vertex has

degree n−1
2 , n−12 vertices have degree 2, and n−1

2 vertices have degree 1. A star graph with n−1
2

rays of length 2, has n− 1 edges.

A star graph on n vertices with k = n−1
2 rays of length 2, denoted by Sk,2 or Sn,k(2), is obtained

from the star graph with rays of length 1 by inserting a vertex in each edge i.e. by subdividing
each edge with a vertex.

Figure 1.20: Star graph S8,2

29



1.8.12 Dual star graph DuSn

A dual star graph DuSn is a connected graph on n vertices, comprising of two star graphs with
m rays of length 1 (each on n

2 vertices) joined by an edge (its center edge) connecting the centers
of the two star graphs.

Figure 1.21: Dual star graph

1.8.13 Generalized Sun graph SG(h,p)

The generalized sun graph SG(h,p) is a graph which consists of the base graph G on p vertices,
with h end vertices appended to each of the p vertices in the graph G.

For a simple undirected graph G with n vertices and m edges, the sun graph of order 2n is a
cycle Cn with an edge terminating in a pendent vertex attached to each vertex, and it is denoted
by SGn. Here is an example of SGn:

Figure 1.22: Sun graph SG4

The Complete sun graph is a complete graph on n
2 vertices with end appended to each vertex.
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The double Comb graph

The double comb graph is a complete-split bipartite graph on n
2 vertices with end vertex appended

to each of its vertices. The double comb graph is a generalized sun graph with base graph the
complete split bipartite graph.

l− regular caterpillar graph CT (k, l)

A caterpillargraph is a tree with the property that the removal of its end points leaves a path.
The caterpillar graph is a generalized sun graph with base graph a path.

A l − regularcaterpillargraph is obtained by attaching l pendant edges to each vertex of the
path Pk. It is denoted by CT (k, l) where k and l denote the number of vertices on the path
and the number of pendant edges respectively. This graph will have n = k(l + 1) vertices and
k(l + 1)− 1 edges.

Figure 1.23: l− regular caterpillar graph CT (4,2)

1.8.14 Friendship graph Fn−1
2

A friendship graph Fn−1
2

(also called the n−1
2 -fan) is a graph with n vertices and 3n−3

2 edges,

constructed by joining n−1
2 copies of the cycle graph C3, with a common vertex. Friendship

graph F4 is shown in the following figure.

Figure 1.24: The Friendship graph F4
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1.8.15 Planar Graph

A planar graph, G, is a graph that can be drawn in the plane in such a way that pairs of edges
intersect only at vertices, if at all. In other words, it can be drawn in such a way that no edges
cross each other. If G has no such representation, G is called nonplanar. A ddrawing of a planar
graph G in the plane in which edges intersect only at vertices is called a planar representation
(or a planar embedding) of G.

Figure 1.25: Examples of planar graphs

1.8.16 Strongly Regular Graph

Let G = (V ,E) be a regular graph with v vertices and degree k. Then G is a strongly regular
graph if there are also integers λ and µ such that[11]:

• every two adjacent vertices have λ common neighbours;

• every two non-adjacent vertices have µ common neighbours.

A graph of this kind is sometimes denoted by srg(v, k, λ, µ).

1.8.17 The Line Graph of the Complete graph

The line graph of a graph G, denoted by L(G), is defined as a graph that has the following
properties:

• there is a vertex in L(G) for every edge of G;

• two vertices of L(G) are adjacent if and only if they correspond to two edges of G with a
common end vertex.

The line graph of a complete graph L(Kn) has p = n(n−1)
2 vertices, and also the number of edges

q of L(Kn) is half the sum of the squares of degrees of the vertices of Kn minus the number of
edges of Kn (see Brualdi [12]). Thus:

q =
n(n− 1)2

2
− n(n− 1)

2

⇒ q =
n(n− 1)(n− 2)

2
.
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Chapter 2

LINEAR ALGEBRA AND
METHODS OF FINDING
EIGENVALUES

2.1 Introduction

In this chapter we review certain basic concepts from linear algebra to be applied in graph
theory. We consider only real matrices. There are two important square matrices commonly
associated to graphs: the adjacency matrix of the graph, and the (finite or combinatorial)
Laplacian. Algebraic methods are applied to problems about graphs; This is in contrast to
geometric, combinatoric, or algorithmic approaches. We illustrate a few techniques of finding
eigenvalues of graphs by applying them to determine the eigenvalues of some classes of graphs
discussed in chapter 1.

2.2 Basic Linear Algebra

The topics of linear equations, matrices, vectors, and of the algebraic structure known as a
vector space, are intimately linked, and this area of mathematics is known as linear algebra.
In this section we present the main results on vector spaces and matrices that will be needed in
the rest of the dissertation. The notation and terminology of [25](J. M. Harris, J. L. Hirst. and
M. Mossinghoff,Combinatorics and Graph Theory) will be used.

2.2.1 Matrices

A Matrix is any rectangular array of numbers. If a matrix A has m rows and n columns, we
call A an m × n matrix. We refer to mxn as the order of the matrix. A typical m × n matrix
A may be written as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


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The number in the ith row and jth column of A is called the ijth element of A and is written
aij .
Sometimes we use the notation A = (aij) to indicate that A is the matrix whose ijth element is
aij .
A matrix for which m = n is a square matrix of order n.
The diagonal of a square matrix A = (aij) consists of the entries aij down the leading (top-left
to bottom-right) diagonal.

2.2.2 Operations on Matrices

The Scalar Multiple of a Matrix

Given any matrix A = (aij) and any number k (a number is sometimes referred to as a scalar),
we can define the scalar multiple kA = (kaij); note that 1A = A.

Addition of two Matrices

Let A = (aij) and B = (bij) be two matrices with the same order (say, m× n). We define their
sum A + B to be the matrix C = (cij), where cij = aij + bij ; matrix addition is commutative
and associative.

Matrix Multiplication

Given an m× k matrix A = (aij) and a k × n matrix B = (bij), we define their product AB to
be the m× n matrix C = (cij), where cij =

∑
k aikbkj .

Matrix multiplication is associative, but not commutative in general. The matrix product AA
is written A2, with similar notation for higher powers of A.

Kronecker Product of two Matrices

Given two matrices A = (aij) and B = (bij) of the same size, we define their Kronecker product
A⊗B to be the matrix C = (cij), where cij = aijbij .

The transpose of a Matrix

Given an m× n matrix

A = (aij) =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


we can interchange the rows and columns to form the nxm matrix

AT = (aji) =


a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1n a2n · · · amn


called its transpose. It follows that

(AT )T = A and (kA)T = k(A)T , for any scalar k,

and that, for matrices A and B of appropriate sizes,

(A+B)T = AT +BT and (AB)T = BTAT .
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Trace of a square matrix

The trace tr(A) of a square matrix A is the sum of the diagonal entries of A. In other words,
the trace of the square matrix A = (aij) is defined as

tr(A) =
n∑
i=1

aii.

For matrices A and B of appropriate sizes,

tr(A+B) = tr(A) + tr(B) and tr(AB) = tr(BA).

Convergence of a sequence of matrices

Let A(1), A(2), A(3),. . . be a sequence of matrices in Rm×n. We say that the sequence of matrices

converges to a matrix A ∈ Rm×n if the sequence A
(k)
ij of real numbers converges to Aij for every

pair 1 ≤ i ≤ m, 1 ≤ j ≤ n, as k approaches infinity. That is, a sequence of matrices converges
if the sequences given by each entry of matrix all converge.

2.2.3 Types of Matrices

A zero matrix.
A zero matrix O is a matrix in which each entry is 0; for matrices A and O of the same size,
A+O = O +A = A.
An all-1 matrix J is a matrix in which each entry is 1.
For example, below we have

O2,3 =

[
0 0 0

0 0 0

]
a zero matrix and J2,3 =

[
1 1 1

1 1 1

]
an all-1 matrix.

A symmetric matrix.
A square matrix A = (aij) is symmetric if AT = A and anti-symmetric or skew-symmetric if
AT = −A

A symmetric minor of a square matrix A is a submatrix B obtaining by deleting some rows
and the corresponding columns.

Diagonal matrix.
A diagonal matrix is a square matrix in which every non-diagonal entry is 0, and is denoted by
diag(a11,a22, . . . , ann).
The identity matrix I is the diagonal matrix with 1s on its diagonal;
for square matrices A and I of the same order, AI = IA = A.
A permutation matrix is a matrix obtained from I by permuting the rows or columns.

An upper triangular matrix is a square matrix in which every entry belong and to the left
of the diagonal is 0; a lower triangular matrix is defined similarly.

A circulant matrix
A circulant matrix A = (aij) is an n × n matrix in which each successive row is obtained by
moving the preceding row by one position to the right; thus, for each i and j, aij = ai+1,j+1,
where the subscripts are taken modulo n.

Inverse of a matrix
A square matrix A is invertible if there is a matrix B for which AB = BA = I; the matrix B is
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the inverse of A, denoted by A−1. Note that (A−1)−1 = A, and that for square matrices A and
B of the same order, (AB)−1 = B−1A−1.

Orthogonal matrix
An orthogonal matrix A is a symmetric matrix, where A−1 = AT , where the columns are
orthogonal, and have unit length.

2.2.4 The QR decomposition of a matrix

The QR decomposition of a matrix A is the representation of A as a product

A = QR

where Q is is an orthogonal matrix and R is an upper triangular matrix with positive diagonal
entries.

2.2.5 Quadratic forms

A quadratic form is an expression of the form q(x) = xTAx, where x is a column vector and A
is a symmetric matrix; for example,

q(x) = 2x21 + 3x22 − 4x23 + x1x2 − 6x1x3

is a quadratic form corresponding to the symmetric matrix

A =

 2 1
2 −3

1
2 3 0

−3 0 −4

 .
A quadratic form q is positive definite if q(x) > 0 and positive semidefinite if q(x) ≥ 0, for every
non-zero vector x.

2.3 Eigenvalues and Eigenvector

Eigenvalues and eigenvectors play an important part in the applications of linear algebra.

2.3.1 Definitions

Eigenvalues, Eigenvector and Spectrum

Let A be an n × n real matrix. An eigenvector of A is a vector such that Ax is parallel to
x; in other words, Ax = λx for some real or complex number λ. This number λ is called the
eigenvalue of A belonging to eigenvector v. Clearly λ is an eigenvalue of the matrix A if and
only if det(A− λI) = 0. This is an algebraic equation of degree n for λ, and hence has n roots
(with multiplicity).

The spectrum of A, denoted by Spec(A), is the set of eigenvalues of A.

If the matrix A is symmetric, then its eigenvalues and eigenvectors are particularly well behaved.
All the eigenvalues are real. Furthermore, there is an orthogonal basis v1, . . . , vn of the space
consisting of eigenvectors of A, so that the corresponding eigenvalues λ1, . . . , λn are precisely

36



the roots of det(A−λI) = 0. We may assume that | v1 |= . . . =| vn |= 1; then A can be written
as

A =

n∑
i+1

λiviv
T
i .

Another way of saying this is that every symmetric matrix can be written as P TDP , where P
is an orthogonal matrix and D is a diagonal matrix. The eigenvalues of A are just the diagonal
entries of D.

Characteristic polynomial

If A is a square matrix, then the polynomial

PA(λ) = det(A− λI)

is the characteristic polynomial of A and the equation

det(A− λI) = 0

is its characteristic equation. The roots of this equation are the eigenvalues of A; a repeated
root is a multiple eigenvalue, and a non-repeated root is a simple eigenvalue.

Trace of matrix

The trace of A is the sum of the eigenvalues of A, each taken with the same multiplicity as it
occurs among the roots of the equation det(A− λI) = 0.

The A(G)-coronal of a graph G

Let G be a graph on n vertices, and A(G) its adjacency matrix. The matrix xI − A(G) is
invertible because det(xI −A(G)) = PA(G)(x) 6= 0. The A(G)-coronal, ΓA(G)(x) of G is defined
to be the sum of the entries of the matrix (xI −A(G))−1. This can be calculated as

ΓA(G)(x) = 1Tn (xI −A(G))−11n

where 1n is a vector with all entries equal to 1 (see C. McLeman and E. McNicholas [63]).

2.3.2 Naive method of finding the eigenvalues

Procedure of finding the eigenvalues of the n× n matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


and their associated eigenvectors:

1. Solve for the real roots of the characteristic equation f(λ) = det(A− λI) = 0. These real
roots λ1, λ2,. . . , λn are the eigenvalues of A.
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2. Solve for the homogeneous system (A−λiI)x = 0, i = 1, 2,. . . , n . The nontrivial (nonzero)
solutions are the eigenvectors associated with the eigenvalues λi.

Theorem 2.2.1 Let x1, x2,. . . , xk be the eigenvectors of a n × n matrix A associated with
distinct eigenvalues λ1, λ2,. . . , λk , respectively, k ≤ n. Then, x1, x2,. . . , xk are linearly
independent.

Corollary 2.2.1 If a n×n matrix A has n distinct eigenvalues, then A has n linearly independent
eigenvectors.

Theorem 2.2.2 (Interlacing eigenvalues) Let A be an n× n symmetric matrix with eigen-
values λ1 ≥ λ2 ≥ . . . ≥ λn, and B be an (n−k)× (n−k) symmetric minor of A with eigenvalues
µ1 ≥ µ2 ≥ . . . ≥ µn−k. Then

λi ≤ µi ≤ λi+k.

2.3.3 Important properties

1. Suppose A is an n × n matrix with eigenvalues λ1, λ2, . . . ,λn ( including the repeats if
there is any). Then:

(i) det(A) =
∏n
i=1 λi = λ1.λ2. . . . λn

(ii) tr(A) = (
∑n

i=1 aii) = λ1 + λ2 + · · ·+ λn

2. Suppose A is an n× n matrix with an eigenvalue λ and associated eigenvector x. Then:

(i) A−1 (the inverse of A if it exists) has an eigenvalue
1

λ
with associated eigenvector x.

(ii) the matrix (A− kI) has an eigenvalue (λ− k) and associated eigenvector x. Here k
is any real number.

3. Let A be an n× n matrix with eigenvalues λ1, λ2,. . . , λn. Then:

(i) 2A has eigenvalues 2λ1, 2λ2,. . . , 2λn,

(ii) A2 has eigenvalues λ21, λ
2
2,. . . , λ2n.

4. The Cayley-Hamilton Theorem. If

PA(λ) = det(A− λI) = λn + cn−1λ
n−1 + . . .+ c1λ+ c0

is the characteristic polynomial of A, then

PA(A) = An + cn−1A
n−1 + . . .+ c1A+ c0I = 0.

2.3.4 Diagonalisation

An n× n matrix A is said to be diagonalizable if there is an invertible matrix P such that the
result of the transformation D = P−1AP is a diagonal matrix. The product D = P−1AP is a
diagonal matrix, and its nonzero entries are the eigenvalues of A. The matrix P is formed by
eigenvectors of A.
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2.3.5 Power of a matrix

If an n× n matrix A is diagonalizable then

Ak = PDkP−1.

Note that Dk = diag(λk1, λk2, . . . , λkn), with λ1, λ2, . . . , λn the eigenvalues of A.

2.4 Semidefinite matrices

A square matrix A is called positive semidefinite, if it is symmetric and all of its eigenvalues are
non-negative. This property is denoted by A � 0. And a symmetric n× n matrix A is positive
definite, we write A � 0, if all of its eigenvalues are positive.

Proposition 2.4.1 Let A be a real symmetric n× n matrix, the following are equivalent:

(i) A is positive semidefinite;

(ii) The quadratic form xTAx is non-negative for every x ∈ Rn;

(iii) The determinant of every symmetric minor of A is non-negative.

Proposition 2.4.2 If two matrices A and B are positive semidefinite, then tr(AB) ≥ 0, and
tr(AB) = 0 iff AB = 0.

Proposition 2.4.3 A matrix A is positive semidefinite iff AB ≥ 0 for every positive semidefinite
matrix B.

2.5 Eigenvalues of Graphs

For a graph G = (V , E) with n vertices , we define its eigenvalues as the eigenvalues of its
adjacency matrix A(G) = (aij)

n
i;j=1.

2.5.1 Theorem used for finding Eigenvalues

We apply the Lollipop theorem to find eigenvalues in general way of special graphs defined in
chapter 1.

Theorem 2.5.1 (Lollipop Theorem) Let xi be a vertex of degree one in the graph G on n
vertices, and let xj be the vertex adjacent to xi. Let G1 be the subgraph obtained from G by
deleting the vertex xi, and let G2 be the subgraph obtained from G by deleting both vertices xi
and xj . Then

PA(G)(λ) = λPA(G1)(λ)− PA(G2)(λ)

See Bian[8]

Proof Without loss of generality, let i < j, so row i comes before row j in

PA(G)(λ) = det(A(G)− λI).

Then we have,
(A(G)− λI)i,i = λ;

(A(G)− λI)i,j = −1;
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(A(G)− λI)i,j = 0 for 1 ≤ k ≤ n and k 6= i and k 6= j.

Expand the determinant of (A(G) − λI) along the ith row, where there are only two nonzero
entries as defined above. Then,

PA(G)(λ) = (−1)i+jλMi,i + (−1)i+j(−1)Mi,j

now,
Mi,i = det(A(G1)− λI)

so,
PA(G)(λ) = λPA(G1)(λ) + (−1)i+j+1Mi,j .

Now expand Mi,j along the ith column, which only has one nonzero entry of −1 in the (j−1)th
row as xi has degree one and is only adjacent to xj . So,

PA(G)(λ) = λPA(G1)(λ) + (−1)i+j+1(−1)i+j−1(−1)det(A(G2)− λI)

= λPA(G1)(λ)− PA(G2)(λ)

�

2.5.2 Eigenvalues of a graph which is the join of two graphs

1) Eigenvalues of a graph which is the join of two graphs whose adjacency matrices
are both circulant matrices

The following theorem gives the eigenvalues and eigenvectors of a matrix which is the adjacency
matrix of the join of two graphs, whose adjacency matrices are both circulant matrices.

Theorem 2.5.2 Let
UTk = (Iρ1m,k Iρ2m,k . . . Iρ

(m−1)
m,k )

and
V T
j = (Iρ1n,j Iρ2n,j . . . Iρ

(n−1)
n,j )

where

ρm,k = e

2πk

m for 1 ≤ k ≤ m− 1 and ρn,j = e

2πj

n for 1 ≤ j ≤ n− 1.

Let square matrices A = (a1, a2, . . . , am) and B = (b1, b2, . . . , bn) be two circulant matrices.
Then

1. A⊕B =

[
A Jm,n

(Jm,n)T B

]
2. CSET (A⊕B) = {W1, W2, . . . , Wm+n} (CSET (A⊕B): Set of eigenvectors of A⊕B )

where

W T
k = (01,m, V T

k ) if 1 ≤ k ≤ n− 1;

W T
n+k = (UTk , 01,n) if 1 ≤ k ≤ m− 1;

{W T
n ,W T

n+m} = {(J1,m, αJ1,n) \ nα2 + α(dA − dB)−m = 0}

where dA = a1 + a2 + · · ·+ am and dB = b1 + b2 + · · ·+ bn
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3. The eigenvalues λk of A⊕B are given by:

λk = b1 + b2ρ
k
n + b3ρ

2k
n + · · ·+ bnρ

(n−1)k
n for 1 ≤ k ≤ n− 1;

λk+n = a1 + a2ρ
k
m + a3ρ

2k
m + · · ·+ amρ

(m−1)k
m for 1 ≤ k ≤ m− 1;

{λn,λn+m} = {nα+ dA \ nα2 + α(dA − dB)−m = 0}

See Gross and Yellen[23], Lee and Yeh[31]

Proof To show that W T
k = (01,m,V T

k ) is not an eigenvector for k = 0, we let

C = A⊕B =

[
A Jm,n

(Jm,n)T B

]

so that,

CW T
0 =

[
A Jm,n

(Jm,n)T B

]
(01,m,V T

0 ) =

[
A Jm,n

(Jm,n)T B

]


0

0

...

1

1





m

m

.

db

db

.

db


= λ(01,m,V T

0 ) = λ



0

0

...

1

1


,

which means m = 0 is impossible. Therefore W T
k = (01,m,V T

k ) is not an eigenvector for k = 0.

To show that

W T
k = (01,j ,V

T
j ) = (000 · · · 001ρ1n,j ρ2n,j · · · ρ

(n−1)
n,j )T ; 1 ≤ j ≤ n− 1

is an eigenvector of C, consider:

CW T
j =

[
A Jm,n

(Jm,n)T B

]
(000 · · · 001ρ1n,j ρ2n,j · · · ρ

(n−1)
n,j )T .

The first m rows look like:
n−1∑
k=0

ρkn,j

n−1∑
k=0

ρkn,j · · ·
n−1∑
k=0

ρkn,j .

Then, from Corollary 2.1.1 of Jessop’s thesis (see[28]),

n−1∑
k=0

ρkn,j = 0, so the first m rows of CW T
j are 0.

The next n rows look like:

b1 + b2ρ
1
n,j + b3ρ

2
n,j + · · ·+ bnρ

(n−1)
n,j ; 1 ≤ j ≤ n− 1

which, from Theorem 2.1.1 of Jessop’s thesis (see[28]), is the eigenvalue corresponding to eigen-
vector

(1 , ρ1n,j , ρ2n,j , . . . , ρ
(n−1)
n,j ); for 1 ≤ j ≤ n− 1.
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Thus we have proved that

W T
j = (01,m , V T

j ) = (000 . . . 001ρ1n,j ρ2n,j . . . ρ
(n−1)
n,j )T ; for 1 ≤ j ≤ n− 1

is an eigenvector of C = A⊕B.

Applying the same method, we can show that W T
n+j = (UTj , 01,n) for 1 ≤ j ≤ m − 1 are

eigenvectors of C = A⊕B.

To determine the first set of eigenvalues of A⊕B, we set v =
(
01,m , xT

)T
where

xT = (x1, x2, . . . , xn) and solve for (A ⊕ B)v = λv. We specifically select v to be of this form
as we understand the join of subgrasphs A and B, and this vector isolates the edges in B.

Solving (A⊕B)v = λv, we get[
Am,m Jm,n

(Jm,n)T Bn,n

][
0m,1

xn,1

]
= λ

[
0m,1

xn,1

]
⇒

[
Jm,nxn,1

Bn,nxn,1

]
= λ

[
0m,1

xn,1

]
.

Solving Bx = λx, we get eigenvalues of B, which are, as per Theorem 2.1.1 of Jessop’s thesis
(see[28])

λk = b1 + b2ρj + b3ρ
2
j + · · ·+ bmρ

n−1
j ; 1 ≤ k ≤ n− 1.

To determine the next set of eigenvalues of A⊕B, we set v =
(
xT , 01,n

)T
where

xT = (x1, x2, . . . , xn) and solve for (A ⊕ B)v = λv. We specifically select v to be of this form
as we understand the join of subgrasphs A and B, and this vector isolates the edges in A.

Solving (A⊕B)v = λv, we get[
Am,m Jm,n

(Jm,n)T Bn,n

][
xm,1

0n,1

]
= λ

[
xm,1

0n,1

]
⇒

[
Am,mxm,1

(Jm,n)Txm,1

]
= λ

[
xm,1

0n,1

]
.

SolvingAx = λx, we get eigenvalues of A, which are, as per Theorem 2.1.1 of Jessop’s thesis(see[28])

λn+k = a1 + a2ρj + a3ρ
2
j + · · ·+ amρ

m−1
j ; 1 ≤ k ≤ m− 1.

To find the eigenvalues λn and λn+m ofA⊕B, we solve (A⊕B) v = λv, where v =
(
J1,m , αJ1,n

)T
.

The edges between the two graphs A and B, which form the join between the subgraphs, are
significant in the determining of the conjugate eigen-pair of the adjacency matrix of the resultant
graph. We use the factor of α in the vector v to assist in obtaining the conjugate eigenvalues as
follows:[

Am,m Jm,n

(Jm,n)T Bn,n

][
Jm,1

αn,1

]
= λ

[
Jm,1

αn,1

]
⇒

[
(dA + nα)m,1

(m+ αdB)n,1

]
= λ

[
Jm,1

αJn,1

]
.

dA + nα = λ
m+ αdB = λα.
Therefore,

m+αdB = (dA+nα)α⇒ nα2+α(dA−dB)−m = 0⇒ α =
−(dA − dB)±

√
(dA − dB)2 + 4nm

2n

So, the conjugate pair of eigenvalues are

λ = n

(
−(dA − dB)±

√
(dA − dB)2 + 4nm

2n

)
+ dA �
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2) Eigenvalues of a graph which is the join of two regular graphs

Theorem 2.5.3. (see R. P. Varghese and K. R. Kumar [64])

Let Gi be a ki-regular graph on ni vertices and mi edges, for i = 1, 2. Then the spectrum of
G1♦G2 consists of

(i) λj(G2), for j = 2, . . . , n2;

(ii)
λj(G1)±

√
(λj(G1) + 2)2 + 4(k1 − 1)

2
, for j = 2, . . . , n1;

(iii) 0 ( with multiplicity (m1 − n1));

(iv) Three roots of the equation x3 − (k1 + k2)x
2 + (k1k2 − 2k1 − n1n2)x+ 2k1k2 = 0.

Proof. We just have to prove that

PA(G1♦G2)(x) = PA(G2)(x)xm1−n1(x2 − k1x− 2k1 − n1xΓA(G2)(x))

n1∏
i=2

(x2 − λix− (λi + k1))

where,
ΓA(G2)(x) = 1Tn (xI −A(G))−11n

is the A(G2)−coronal of G2 (see section 2.3.1).

In fact, the adjacency matrix A = A(G1♦G2) of G1♦G2 can be written (by a proper labeling of
vertices) as

A =

 A1 R Jn1×n2

RT Om1 Om1×n2

Jn2×n1 On2×n1 A2


where A1 = A(G1) and A2 = A(G2) are the adjacency matrix of G1 and G2 respectively, and R
is the incidence matrix of G1.

The characteristic polynomial of G1♦G2 is

PA(G1♦G2)(x) =

∣∣∣∣∣∣∣
xIn1 −A1 −R −Jn1×n2

−RT xIm1 Om1×n2

−Jn2×n1 On2×n1 xIn2 −A2

∣∣∣∣∣∣∣
= det(xIn2 −A2)det(S)

where

S =

[
xIn1 −A1 −R

−RT xIm1

]
−

[
−Jn1×n2

O

]
(xIn2 −A2)

−1(−Jn2×n1 O)

=

[
xIn1 −A1 −R

−RT xIm1

]
−

[
ΓA2(x)Jn1×n1 O

O O

]

=

[
xIn1 −A1 − ΓA2(x)Jn1×n1 −R

−RT xIm1

]
;
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So, the determinant of S is

det(S) = det(xIm1)det(xIn1 −A1 − ΓA2(x)Jn1×n1 −R(xIm1)−1RT )

= xm1det

(
xIn1 −A1 − ΓA2(x)J − RRT

x

)

= xm1det

(
xIn1 − (A1 +

RRT

x
)− ΓA2(x)J

)

= xm1det

(
xIn1 − (A1 +

RRT

x
)

)
(1− ΓA2(x)Γ

A1+
RRT

x

(x))

G1 is k1-regular and the row sum of RRT is 2k1. Row sum of A1 + RRT

x is k1 + 2k1
x ;

Γ
A1+

RRT

x

(x) =
n1

x− k1 − 2k1x
=

xn1
x2 − xk1 − 2k1

.

So,

det(S) = xm1det

(
xIn1 −A1 −

A1 + k1In1

x

)
(1− ΓA2(x)

xn1
x2 − xk1 − 2k1

)

= xm1−n1det
(
x2In1 − xA1 −A1 − k1In1

)(x2 − xk1 − 2k1 − xn1ΓA2(x)

x2 − xk1 − 2k1

)

= xm1−n1

(
x2 − xk1 − 2k1 − xn1ΓA2(x)

x2 − xk1 − 2k1

) n1∏
i=1

(x2 − λix− (λi + k1)).

Using the property that λi(G1) = k1; Then,

det(S) = xm1−n1(x2 − k1x− 2k1 − n1xΓA2(x))

n1∏
i=1

(x2 − λix− (λi + k1)).

Finally, we get

PA(G1♦G2)(x) = PA(G2)(x)xm1−n1(x2−k1x−2k1−n1xΓA(G2)(x))

n1∏
i=2

(x2−λix−(λi+k1)). �

2.5.3 Eigenvalues of Complete Graphs

Generally, the complete graph Kn has an adjacency matrix A(Kn) which is given bellow as

A(Kn) = (aij) =



0 1 1 · · · 1

1 0 1 · · · 1

1 1 0 · · · 1

...
...

...
. . .

...

1 1 1 · · · 0


.
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where aij = 1 when i 6= j; aij = 0 when i = j.

lemma 2.5.1 Let Hn be the n× n matrix, with n ≥ 2, such that

Hn =



−1 −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ


n×n

, then det(Hn) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)(λ+1)n−1.

Proof By induction, assume

Pn =



λ −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ


n×n

, then

For n = 2, H2 =

[
−1 −1

−1 λ

]
⇒ det(H2) ≡

∣∣∣∣∣ −1 −1

−1 λ

∣∣∣∣∣ = −λ− 1 = (−1)(λ+ 1)1

For n = 3, H3 =

 −1 −1 −1

−1 λ −1

−1 −1 λ

 and,

det(H3) ≡

∣∣∣∣∣∣∣
−1 −1 −1

−1 λ −1

−1 −1 λ

∣∣∣∣∣∣∣ = −

∣∣∣∣∣ λ −1

−1 λ

∣∣∣∣∣+

∣∣∣∣∣ −1 −1

−1 λ

∣∣∣∣∣−
∣∣∣∣∣ −1 λ

−1 −1

∣∣∣∣∣
= −

∣∣∣∣∣ λ −1

−1 λ

∣∣∣∣∣+

∣∣∣∣∣ −1 −1

−1 λ

∣∣∣∣∣+

∣∣∣∣∣ −1 −1

−1 λ

∣∣∣∣∣
= −

∣∣∣∣∣ λ −1

−1 λ

∣∣∣∣∣+ 2

∣∣∣∣∣ −1 −1

−1 λ

∣∣∣∣∣ = −det(P2) + 2det(H2)

= −1(λ2 − 1) + 2(−λ− 1)

= (−1)(λ+ 1)2
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For n = 4, H4 =


−1 −1 −1 −1

−1 λ −1 −1

−1 −1 λ −1

−1 −1 −1 λ

 and,

det(H4) ≡

∣∣∣∣∣∣∣∣∣
−1 −1 −1 −1

−1 λ −1 −1

−1 −1 λ −1

−1 −1 −1 λ

∣∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
λ −1 −1

−1 λ −1

−1 −1 λ

∣∣∣∣∣∣∣+ 3

∣∣∣∣∣∣∣
−1 −1 −1

−1 λ −1

−1 −1 λ

∣∣∣∣∣∣∣ = −det(P3) + 3det(H3)

= −(λdet(P2) + 2det(H2)) + 3det(H3)

= −(λ(λ2 − 1)− 2(λ+ 1))− 3(λ+ 1)2

= −(λ(λ2 − 1)− 2(λ+ 1) + 3(λ+ 1)2)

= −(λ+ 1)(λ2 + 2λ+ 1)

= −(λ+ 1)(λ+ 1)2

= (−1)(λ+ 1)3

Assume the hypothesis it is true for n = k, i.e. det(Hk) = (−1)(λ+ 1)k−1.

Then, for n = k + 1, we have,

Hk+1 =



−1 −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ


(k+1)×(k+1)

and then, expanding along the first row,

det(Hk+1) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(k+1)×(k+1)

= (−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

+ (−1)(−1)[(k + 1)− 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

The first term is obtained from the expansion of the first column (in the first row ) and the
second term is from the the [(k + 1) − 1] identical terms obtained from the expansion of the
second to [(k + 1)− 1]th columns.
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Let Pk = λI−A(Kk) =



λ −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ


k×k

andHk =



−1 −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ


k×k

.

Then,

det(Hk+1) = −det(Pk) + kdet(Hk)

= −[λdet(Pk−1) + (k − 1)det(Hk−1)] + kdet(Hk)

= −[λ2det(Pk−2) + λ(k − 2)det(Hk−2) + (k − 1)det(Hk−1)] + kdet(Hk)

= −[λ3det(Pk−3) + λ2(k − 3)det(Hk−3) + λ(k − 2)det(Hk−2) + (k − 1)det(Hk−1)] + kdet(Hk)

Now, the leading λ must have power (k − 2) so that we get det(Pk−(k−2)) and det(Hk−(k−2))
which are both known. so, continuing,

det(Hk+1) = −[λk−2det(Pk−(k−2)) + λk−32det(H2) + λk−43det(H3) + λk−54det(H4) + · · ·

· · ·+ λ2(k − 3)det(Hk−3) + λ(k − 2)det(Hk−2) + (k − 1)det(Hk−1)] + kdet(Hk)

Substituting det(P2) = λ2− 1 = (λ+ 1)(λ− 1) and det(Hk) = −(λ+ 1)k−1 for all k ≤ n, we get

det(Hk+1) = −[λk−2(λ+ 1)(λ− 1)− λk−32(λ+ 1)− λk−43(λ+ 1)2 − λk−54(λ+ 1)3 + · · ·

· · · − λ2(k − 3)(λ+ 1)k−4 − λ(k − 2)(λ+ 1)k−3 − (k − 1)(λ+ 1)k−2]− k(λ+ 1)k−1

Factorizing (λ+ 1) out of the k terms in the square brackets, we get

det(Hk+1) = −(λ+ 1)[(λk−2(λ− 1)− λk−32− λk−43(λ+ 1)1 − λk−54(λ+ 1)2 + · · ·

· · · − λ2(k − 3)(λ+ 1)k−5 − λ(k − 2)(λ+ 1)k−4 − (k − 1)(λ+ 1)k−3)]− k(λ+ 1)k−1

Working with the first two terms in square brackets, we get
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det(Hk+1) = −(λ+ 1)[(λk−3(λ2 − λ)− λk−32− λk−43(λ+ 1)1 − λk−54(λ+ 1)2 + · · ·

· · · − λ2(k − 3)(λ+ 1)k−5 − λ(k − 2)(λ+ 1)k−4 − (k − 1)(λ+ 1)k−3)]− k(λ+ 1)k−1

= −(λ+ 1)[(λk−3(λ2 − λ− 2)− λk−43(λ+ 1)1 − λk−54(λ+ 1)2 + · · ·

· · · − λ2(k − 3)(λ+ 1)k−5 − λ(k − 2)(λ+ 1)k−4 − (k − 1)(λ+ 1)k−3)]− k(λ+ 1)k−1

= −(λ+ 1)[(λk−3(λ+ 1)(λ− 2)− λk−43(λ+ 1)1 − λk−54(λ+ 1)2 + · · ·

· · · − λ2(k − 3)(λ+ 1)k−5 − λ(k − 2)(λ+ 1)k−4 − (k − 1)(λ+ 1)k−3)]− k(λ+ 1)k−1

Taking out the next factor of (λ+ 1) from inside the square brackets, we get

det(Hk+1) = −(λ+ 1)2[(λk−3(λ− 2)− λk−43− λk−54(λ+ 1)1 + · · ·

· · · − λ2(k − 3)(λ+ 1)k−6 − λ(k − 2)(λ+ 1)k−5 − (k − 1)(λ+ 1)k−4)]− k(λ+ 1)k−1

Working with the first two terms in square brackets, we get (∗)

det(Hk+1) = −(λ+ 1)2[(λk−4(λ2 − 2λ)− λk−43− λk−54(λ+ 1)1 + · · ·

· · · − λ2(k − 3)(λ+ 1)k−6 − λ(k − 2)(λ+ 1)k−5 − (k − 1)(λ+ 1)k−4)]− k(λ+ 1)k−1

= −(λ+ 1)2[(λk−4(λ2 − 2λ− 3)− λk−54(λ+ 1)1 + · · ·

· · · − λ2(k − 3)(λ+ 1)k−6 − λ(k − 2)(λ+ 1)k−5 − (k − 1)(λ+ 1)k−4)]− k(λ+ 1)k−1

= −(λ+ 1)2[(λk−4(λ+ 1)(λ− 3)− λk−54(λ+ 1)1 + · · ·

· · · − λ2(k − 3)(λ+ 1)k−6 − λ(k − 2)(λ+ 1)k−5 − (k − 1)(λ+ 1)k−4)]− k(λ+ 1)k−1

Note that the first term in the square brackets comprises of (λ+ 1)λk−t(λ− (t− 1)).

We do the step (∗) above a total of (k − 3) times, tacking out the factor (λ+ 1)k−3 to get

det(Hk+1) = −(λ+ 1)k−3[λ(λ+ 1)(λ− (k − 2))− (k − 1)(λ+ 1)]− k(λ+ 1)k−1

Note that the power of λ in the first term in the square brackets is (k − 2) − (k − 3) = 1 and
the power of (λ + 1) in the second term in the square brackets is also (k − 2) − (k − 3) = 1.
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Simplifying, we get

det(Hk+1) = −(λ+ 1)k−3[(λ+ 1)(λ2 − λ(k − 2)− (k − 1))]− k(λ+ 1)k−1

= −(λ+ 1)k−2[(λ2 − λ(k − 2)− (k − 1))]− k(λ+ 1)k−1

= −(λ+ 1)k−2[(λ− 1)(λ− (k − 1))]− k(λ+ 1)k−1

= −(λ+ 1)k−1[(λ− (k − 1))]− k(λ+ 1)k−1

= −(λ+ 1)k−1[(λ− (k − 1))− k]

= −(λ+ 1)k−1[(λ+ 1)]

= −(λ+ k)k

This concludes the proof, by induction, that

det(Hn) = (−1)(λ+ 1)n−1, for all n ≥ 2. �

Theorem 2.5.4 Any complete graph Kn has the eigenvalues (n− 1), with multiplicity 1,
and −1, with multiplicity (n− 1). Hence

PA(Kn)(λ) ≡ det(λI −A(Kn)) = (λ− (n− 1))(λ+ 1)n−1.

Proof By induction,

Let A(Kn) =



0 1 1 · · · 1

1 0 1 · · · 1

1 1 0 · · · 1

...
...

...
. . .

...

1 1 1 · · · 0


n×n

be the adjacency matrix of the complete graph Kn

For n = 2,

A(K2) =

[
0 1

1 0

]
.

det(λI −A(K2)) =

∣∣∣∣∣ λ −1

−1 λ

∣∣∣∣∣
= λ2 − 1

= (λ+ 1)(λ− 1)

Note that the eigenvalues of A(K2) are λ = −1 (multiplicity (2− 1) = 1) and
λ = (2− 1) = 1 (multiplicity 1).
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Assume the hypothesis it true for n = k, i.e.,

det(λI −A(Kk)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

= (λ+ 1)k−1(λ− (k − 1))

i.e., λ = −1, (multiplicity (k − 1)), and λ = (k − 1) (multiplicity 1)

Then, for n = k + 1,

det(λI −A(Kk+1)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(k+1)×(k+1)

= λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

+ k

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 · · · −1

−1 λ −1 · · · −1

−1 −1 λ · · · −1

...
...

...
. . .

...

−1 −1 −1 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

= λdet(λI −A(Kk)) + kdet(Hk)

Now applying the inductive hypothesis for det(λI − A(Kk)), and Lemma 2.5.1 for det(Hk), we
get

det(λI −A(Kk+1)) = λ(λ+ 1)k−1(λ− (k − 1)) + k(−1)(λ+ 1)k−1

= (λ+ 1)k−1(λ2 − λ(k − 1)− k)

= (λ+ 1)k−1(λ+ 1)(λ− k)

= (λ+ 1)k(λ− k)

i.e., λ = −1 ( multiplicity (k + 1)− 1 ) and λ = (k + 1)− 1 (multiplicity 1).

so we have proved that λ = −1 (multiplicity (n−1)), and λ = n−1 (multiplicity 1), are the eigen-
values of the adjacency matrix of the complete graph A(Kn). And the characteristic polynomial
is PA(Kn)(λ) = (λ+1)n−1(λ−(n−1)). �
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2.5.4 Eigenvalues of Complete Bipartite Graphs

Let Km,n be the complete bipartite graph on (m + n) vertices, with partition (V1,V2), where
| V1 |= m and | V2 |= n.

Theorem 2.5.5 The eigenvalues of Km,n are 0 (with multiplicity (m + n − 2)), +
√
mn (with

multiplicity 1), and −
√
mn (with multiplicity 1). Hence

PA(Km,n)(λ) = λm+n−2(λ−
√
mn)(λ+

√
mn).

Proof

The adjacency matrix of Km,n can be written as the block matrix

A(Km,n) =

[
Om,m Jm,n

(Jm,n)T On,n

]

This matrix has rank 2, since the first m rows are the same, the last n rows are the same, and
the first and the last rows are linearly independent. Thus Km,n has nullity (m + n − 2), and
hence has eigenvalues 0 with multiplicity m+ n− 2. See Anton[4].

Now let v ∈ Rm+n be the vector whose first m entries are x and last n entries are y, i.e.,
v = (x, x, . . . , x, y, y, . . . ,y) with x occurring m times, and y occurring n times. The edges
jointing the two partitions of the bipartite graph are significant in determining the eigenvalues,
and suggest the splitting of the eigenvector into two parts relating to the bipartition. this
definition of v facilitates finding the eigenvalues as follows

A(Km,n)v =

[
Om,m Jm,n

(Jm,n)T On,n

]
v = (ny, ny, . . . , ny, mx, mx, . . . ,mx) with ny occurring x

times, and mx occurring n times. To get eigenvalues, we solve Av = λv. so,

(ny, . . . , ny, mx, . . . ,mx) = λ(x, . . . , x, y, . . . ,y) = (λx, . . . , λx, λy, . . . ,λy)

whit λx occurring m times, and λy occurring n times.

Therefore ny = λx and mx = λy. So,

n
(mx
λ

)
= λx⇒ λ2 = mn⇒ λ = ±

√
mn.

Hence the eigenvalues of A(Km,n) are 0 (multiplicity m + n − 2),
√
mn (multiplicity 1) and

−
√
mn (multiplicity 1); And

PA(Km,n)(λ) = λm+n−2(λ−
√
mn)(λ+

√
mn)

is the characteristic polynomial ofA(Km,n). �

2.5.5 Eigenvalues of star Graphs

Theorem 2.5.6 The eigenvalues of the star graph with m = n−1 rays of length 1 on n vertices,
denoted Sn−1,1, are: 0 (with multiplicity n − 2),

√
n− 1 (with multiplicity 1) and −

√
n− 1

(with multiplicity 1). Hence

PA(Sm,1)(λ) = λn−2(λ−
√
n− 1)(λ+

√
n− 1)

is the characteristic polynomial of the adjacency matrix of the star graph Sn−1, 1.
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Proof By induction.

The theorem is true for a star graph with rays of length 1 on 2 and 3 vertices (See[25]).

Assume
det(λI −AS(n−1)

) = λn−3(λ2 − (n− 2))

where λn−3(λ2− (n− 2)) is the characteristic polynomial of a star graph on n− 1 vertices. The
characteristic polynomial of the star graph of rays of length 1 on n vertices is

det(λI −ASn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 −1 · · · −1

−1 λ 0 0 · · · 0

−1 0 λ 0 · · · 0

−1 0 0 λ · · · 0

...
...

...
...

. . .
...

−1 0 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Using cofactor expansion along the second row, we have the determinant as:

det(λI −AS(n−1)
) = M21 + λM22

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 · · · −1

0 λ 0 · · · 0

0 0 λ · · · 0

...
...

...
. . .

...

0 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 · · · −1

−1 λ 0 · · · 0

−1 0 λ · · · 0

...
...

...
. . .

...

−1 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
It is obvious that M22 is the determinant of the matrix (λI−AS(n−1)

). Now let M21 be B. Then,

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 · · · −1

0 λ 0 · · · 0

0 0 λ · · · 0

...
...

...
. . .

...

0 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
Using cofactor expansion of B along the first column, we get

B = (−1)M11 = (−1)

∣∣∣∣∣∣∣∣∣∣

λ 0 · · · 0

0 λ · · · 0

...
...

. . .
...

0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣
.

But M11 = det(λIn−2), where In−2 is the n− 2 identity matrix. Therefore,
B = −λn−2 and

det(λI −ASn) = −(−1)(−λn−2) + λdet(λI −AS(n−1)
)

= λdet(λI −AS(n−1)
)− λn−2.
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Using the inductive hypothesis, we have

det(λI −ASn) = λ(λn−3(λ2 − (n− 2)))− λn−2

= λn−2(λ2 − (n− 2))− λn−2

= λn−2(λ2 − (n− 2)− 1)

= λn−2(λ2 − n+ 1)

= λn−2(λ2 − (n− 1))

Now, let

det(λI −ASn) = 0⇒ λn−2(λ2 − (n− 1)) = 0

⇒ λn−2 = 0 or λ2 − (n− 1) = 0

⇒ λ = 0(multiplicity n− 2) or λ = ±
√
n− 1

Thus by induction the eigenvalues of a star graph of rays of length 1 on n vertices are: λ = 0
(multiplicity n−2), λ =

√
n− 1 (multiplicity 1) and λ = −

√
n− 1 (multiplicity 1). �

Theorem 2.5.7 The eigenvalues of the star graph Sm,2 with m = n−1
2 rays of length 2 on n

vertices are: 1 and −1, each of multiplicity m−1 =
n− 3

2
, one eigenvalue 0, and two eigenvalues

λ = ±
√
m+ 1 = ±

√
n+ 1

2
.

Hence

PA(Sm,2)(λ) = λ(λ− 1)
n−3
2 (λ+ 1)

n−3
2 (λ−

√
n+ 1

2
)(λ+

√
n+ 1

2
)

is the characteristic polynomial of the adjacency matrix of the star graph Sn−1
2

, 2.

Proof

The adjacency matrix of a star graph Sm,2 with m = n−1
2 rays of length 2 on n vertices is

A(Sm,2) =

 O1,1 J1,m O1,m

Jm,1 Om,m Im,m

Om,1 Im,m Om,m


(2m+1)×(2m+1)

.

The characteristic polynomial is

det(λI −A(Sm,2)) =

∣∣∣∣∣∣∣
λ −J1,m O1,m

−Jm,1 λIm,m −Im,m

Om,1 −Im,m λIm,m

∣∣∣∣∣∣∣
(2m+1)×(2m+1)

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 −J1,m−1 0 O1,m−1

−1 λ O1,m−1 −1 O1,m−1

−Jm−1,1 Om−1,1 λIm−1,m−1 Om−1,1 −Im−1,m−1
0 −1 O1,m−1 λ Om−1,1

Om−1,1 Om−1,1 −Im−1,m−1 Om−1,1 λIm−1,m−1

∣∣∣∣∣∣∣∣∣∣∣∣
53



Expanding the determinant using the first row, we get

det(λI −A(Sm,2))

= λ

∣∣∣∣∣ λIm,m −Im,m

−Im,m λIm,m

∣∣∣∣∣
2m×2m

+m

∣∣∣∣∣∣∣∣∣
−1 O1,m−1 −1 O1,m−1

−Jm−1,1 λIm−1,m−1 Om−1,1 −Im−1,m−1
0 O1,m−1 λ Om−1,1

Om−1,1 −Im−1,m−1 Om−1,1 λIm−1,m−1

∣∣∣∣∣∣∣∣∣
There are m occurrences of the second term in the expression above, as the expansion of all the
m nonzero entries in the first row yield the same minor as above, with alternating signs.

Now expanding the determinant of the second term using the (m+ 1)th row, we get

det(λI −A(Sm,2))

= λ

∣∣∣∣∣ λIm,m −Im,m

−Im,m λIm,m

∣∣∣∣∣
2m×2m

+m(−1)m+1+m+1λ

∣∣∣∣∣∣∣
−1 O1,m−1 O1,m−1

−Jm−1,1 λIm−1,m−1 −Im−1,m−1
Om−1,1 −Im−1,m−1 λIm−1,m−1

∣∣∣∣∣∣∣
(2m−1)×(2m−1)

Now expanding the determinant in the second term using the first row, we get

det(λI −A(Sm,2))

= λ

∣∣∣∣∣ λIm,m −Im,m

−Im,m λIm,m

∣∣∣∣∣
2m×2m

+m(−1)m+1+m+1λ(−1)

∣∣∣∣∣ λIm−1,m−1 −Im−1,m−1
−Im−1,m−1 λIm−1,m−1

∣∣∣∣∣
(2m−2)×(2m−2)

⇒ det(λI −A(Sm,2))

= λ

∣∣∣∣∣ λIm,m −Im,m

−Im,m λIm,m

∣∣∣∣∣
2m×2m

+mλ

∣∣∣∣∣ λIm−1,m−1 −Im−1,m−1
−Im−1,m−1 λIm−1,m−1

∣∣∣∣∣
(2m−2)×(2m−2)

The determinant in the first term comes from the circulant matrix with eigenvalues

exp

(
2πij

2m

)m
; 0 ≤ j ≤ 2m− 1,

which yields eigenvalues: λ = 1 (multiplicity m) and λ = −1 (multiplicity m).

The determinant in the second term comes from the circulant matrix with eigenvalues

(exp

(
2πij

2m− 2

)
)m−1; 0 ≤ j ≤ 2m− 1,

which yields eigenvalues: λ = 1 (multiplicity (m− 1)) and λ = −1 (multiplicity (m− 1)).

This yields the characteristic polynomial of A(Sm,2):

det(λI −A(Sm,2)) = λ(λ− 1)m(λ+ 1)m −mλ(λ− 1)m−1(λ+ 1)m−1

= λ(λ− 1)m−1(λ+ 1)m−1((λ− 1)(λ+ 1)−m)

= λ(λ− 1)m−1(λ+ 1)m−1(λ2 − (m+ 1)).
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⇒ det(λI −A(Sm,2)) ≡ PA(Sm,2)(λ) = λ(λ− 1)m−1(λ+ 1)m−1(λ2 − (m+ 1)).

Thus the eigenvalues of the adjacency matrix A(Sm,2) of a star graph with m rays of length 2
are:

• λ = 0 with multiplicity 1,

• λ = 1 with multiplicity m− 1,

• λ = −1 with multiplicity m− 1,

• λ =
√
m+ 1 with multiplicity 1 and

• λ = −
√
m+ 1 with multiplicity 1. �

2.5.6 Eigenvalues of the Cycle Graph

The adjacency matrix A(Cn) of the cycle graph Cn on n vertices has the form:

A(Cn) =



0 1 0 0 0 · · · 0 0 1

1 0 1 0 0 · · · 0 0 0

0 1 0 1 0 · · · 0 0 0

0 0 1 0 1 · · · 0 0 0

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 · · · 0 1 0

0 0 0 0 0 · · · 1 0 1

1 0 0 0 0 · · · 0 1 0


.

Lemma 2.5.2 The linear homogeneous recurrence equation
xi−1 + xi+1 = λxi for 2 ≤ i ≤ n− 1, and initial conditions x0 = xn and xn+1 = x1 has solutions

λj = 2cos

(
2πj

n

)
; 0 ≤ j ≤ n− 1 (See[28]).

Theorem 2.5.8 Let A(Cn) be the adjacency matrix of the cycle graph Cn. The eigenvalues of
A(Cn) are:

λj = 2cos

(
2πj

n

)
; for j = 0, 1, 2, 3, . . . , (n− 1), for n ≥ 3.

Proof Let xn = (x1, x2,. . . , xn) be the eigenvector. Then,

A(Cn)xn = λnxn

⇒



0 1 0 0 0 · · · 0 0 1

1 0 1 0 0 · · · 0 0 0

0 1 0 1 0 · · · 0 0 0

0 0 1 0 1 · · · 0 0 0

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 · · · 0 1 0

0 0 0 0 0 · · · 1 0 1

1 0 0 0 0 · · · 0 1 0





x1

x2

x3

x4
...

xn−2

xn−1

xn


= λn



x1

x2

x3

x4
...

xn−2

xn−1

xn


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⇒



x2 + xn

x1 + x3

x2 + x4

x3 + x5
...

xn−3 + xn−1

xn−2 + xn

x1 + xn−1


= λn



x1

x2

x3

x4
...

xn−2

xn−1

xn


i.e., xi−1 + xi+1 = λnxi for 1 ≤ i ≤ n, and initial conditions x0 = xn and xn+1 = x1

From Lemma 2.5.2, this linear homogeneous recurrence equation has solution

λj = 2cos

(
2πj

n

)
; 0 ≤ j ≤ n− 1.

Therefore, the eigenvalues of the adjacency matrix of the cycle graph Cn on n vertices are

λj = 2cos

(
2πj

n

)
; 0 ≤ j ≤ n− 1 for n ≥ 3. �

2.5.7 Eigenvalues of the Path Graph

The adjacency matrix A(Pn) of the path graph Pn has the form:

A(Pn) =



0 1 0 0 0 · · · 0 0 0

1 0 1 0 0 · · · 0 0 0

0 1 0 1 0 · · · 0 0 0

0 0 1 0 1 · · · 0 0 0

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 · · · 0 1 0

0 0 0 0 0 · · · 1 0 1

0 0 0 0 0 · · · 0 1 0


.

Lemma 2.5.3 The linear homogeneous recurrence relation

xi−1 + xi+1 = λxi for 2 ≤ i ≤ n− 1, and initial conditions x0 = 0 and xn+1 = 0

has solutions λj = 2cos

(
πj

n+ 1

)
; 1 ≤ j ≤ n (See[28]).

Theorem 2.5.9 Let A(Pn) be the adjacency matrix of the path graph Pn. The eigenvalue of
A(Pn) are:

λj = 2cos

(
πj

n+ 1

)
; for j = 1, 2, . . . , n and n ≥ 2.

Proof Let xn = (x1, x2,. . . , xn) be the eigenvector. Then,

A(Pn)xn = λnxn
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⇒



0 1 0 0 0 · · · 0 0 0

1 0 1 0 0 · · · 0 0 0

0 1 0 1 0 · · · 0 0 0

0 0 1 0 1 · · · 0 0 0

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 · · · 0 1 0

0 0 0 0 0 · · · 1 0 1

0 0 0 0 0 · · · 0 1 0





x1

x2

x3

x4
...

xn−2

xn−1

xn


= λn



x1

x2

x3

x4
...

xn−2

xn−1

xn



⇒



x2

x1 + x3

x2 + x4

x3 + x5
...

xn−3 + xn−1

xn−2 + xn

xn−1


= λn



x1

x2

x3

x4
...

xn−2

xn−1

xn


i.e., xi−1 + xi+1 = λnxi for 1 ≤ i ≤ n, and initial conditions x0 = 0 and xn+1 = 0

From Lemma 2.5.3, this linear homogeneous recurrence equation has solution

λj = 2cos

(
πj

n+ 1

)
; 1 ≤ j ≤ n.

Therefore, the eigenvalues of the adjacency matrix of the path graph Pn on n vertices are

λj = 2cos

(
πj

n+ 1

)
; 1 ≤ j ≤ n for n ≥ 2. �

2.5.8 Eigenvalues of the Wheel Graph

corollary 2.5.1. The eigenvalues of the wheel graph Wn on n vertices, n ≥ 4, are: 0, 1 ±
√
n

(each with multiplicity 1), and λj = 2cos
2πj

n− 1
; j = 1,. . . ,n− 2 (each with multiplicity 1)

Proof. Since the wheel graph Wn is the join of two regular graphs G1 = K1 and G2 = Cn−1, we
use the theorem 2.5.3. G1 = K1 is 0-regular on 1 vertex, so, k1 = 0 and n1 = 1; G2 = Cn−1 is
2-regular on n− 1 vertices, so, k2 = 2 and n2 = n− 1. Wn = K1♦Cn−1.
We know that, K1 has as eigenvalue λ = 0, and the eigenvalues of the cycle graph Cn−1 are :

λj = 2cos
2πj

n− 1
; j = 0,. . . ,n−2 (each with multiplicity 1). Then the spectrum of Wn = K1♦Cn−1

consists of

(i) λj = 2cos
2πj

n− 1
; j = 1,. . . ,n− 2;

(ii)
0±

√
(0 + 2)2 + 4(0− 1)

2
= 0;

(iii) Three roots of the equation x3 − (0 + 2)x2 + (0− 0− 1(n− 1))x+ 0 = 0.

⇒ x3−2x2 + (n−1)x = 0⇒ x = 0 and x = 1±
√
n. �
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2.5.9 Eigenvalues of the Dual-star Graph

Let DuSn be the dual star graph defined as two star graphs with m rays of length 1 (each on n
2

vertices) joined by an edge (its center edge) connecting their centers. This graph has 4 nonzero
eigenvalues found as solutions of the following equation (see Winter and Jessop [51]):

x4 − (2m+ 1)x2 +m2 = 0⇒ x4 − (n− 1)x2 +
(n− 2)2

4
= 0⇒ x2 =

(n− 1)±
√

2n− 3

2

x = ±

√
(n− 1) +

√
2n− 3

2
or x = ±

√
(n− 1)−

√
2n− 3

2

Thus, the eigenvalues of the dual star graph DuSn are:

λ1 =

√
(n− 1) +

√
2n− 3

2
, λ2 = −

√
(n− 1) +

√
2n− 3

2
,

λ3 =

√
(n− 1)−

√
2n− 3

2
and λ4 = −

√
(n− 1)−

√
2n− 3

2

each with multiplicity 1.

2.5.10 Eigenvalues of the Lollipop Graph

In previously published papers, there is an error on the application of lollipop theorem for finding
the eigenvalues of the lollipop graph. The characteristic polynomial is incorrect and must be
(λ+ 1)n−3[λ3 − λ2(n− 3)− λ(n− 1) + (n− 3)].

Theorem 2.5.10. let G be the lollipop graph on n vertices, denoted by LPn, comprising of the
complete graph Kn−1 on (n− 1) vertices, joined to a single end vertex x2 by an edge x1x2, with
n ≥ 3. And let G′ be the subgraph of G induced by removing the vertex x1, and let G′′ be the
subgraph of G by removing the vertex x2. Then the eigenvalues of G are:

λ = −1 (multiplicity n− 3).

Proof. The bulk of this proof is my original work.

We use the Lollipop theorem (see Theorem 2.5.1).

PA(G)(λ) = λPA(G′)(λ)− PA(G′′)(λ)

PA(LPn)(λ) = λPA(Kn−1)(λ)− PA(Kn−2)(λ)

= λ(λ+ 1)n−2(λ− (n− 2))− (λ+ 1)n−3(λ− (n− 3))

⇒ PA(LPn)(λ) = (λ+ 1)n−3[λ3 − λ2(n− 3)− λ(n− 1) + (n− 3)] is the characteristic polynomial
of the adjacency matrix of LPn.

we have (λ+ 1)n−3 = 0 and λ3 − λ2(n− 3)− λ(n− 1) + (n− 3) = 0.

(i) (λ+ 1)n−3 = 0⇒ λ = −1 (multiplicity n− 3)
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(ii) To solve the cubic equation λ3−λ2(n−3)−λ(n−1)+(n−3) = 0, we apply the substitution

λ = y +
n− 3

3
,

multiplying out and simplifying, to obtain

y3 +

[
1− n− (n− 3)2

3

]
y +

[
n− 3− 2(n− 3)3

27
− (n− 3)(n− 1)

3

]
= 0.

⇒ y3 +Ay = B

where

A =

[
1− n− (n− 3)2

3

]
=

1

3
(3n− n2 − 6)

B = −
[
n− 3− 2(n− 3)3

27
− (n− 3)(n− 1)

3

]
=

(n− 3)

27

(
2n2 − 3n− 18

)
.

We find s and t so that

3st = A (1)

s3 − t3 = B. (2)

It turns out that y = s− t will be a solution of the equation y3 +Ay = B.

Solving the equation (1) for s and substituting into (2) yields:(
A

3t

)3

− t3 = B.

Simplifying, this turns into the equation

t6 +Bt3 − A3

27
= 0,

which using the substitution u = t3 becomes the quadratic equation

u2 +Bu− A3

27
= 0.

Using the quadratic formula, we obtain that

u = t3 =
−3
√

3B ±
√

27B2 + 4A3

6
√

3
.

and

t =
3

√
−3
√

3B ±
√

27B2 + 4A3

6
√

3
.

By equation (2),

s3 = B + t3 = B +
−3
√

3B ±
√

27B2 + 4A3

6
√

3
;
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⇒ s =
3

√
B +

−3
√

3B ±
√

27B2 + 4A3

6
√

3
.

So that

y = s− t =
3

√
B +

−3
√

3B ±
√

27B2 + 4A3

6
√

3
− 3

√
−3
√

3B ±
√

27B2 + 4A3

6
√

3
;

and the solution to our original cubic equation is given by

λ = y +
n− 3

3
=

3

√
B +

−3
√

3B ±
√

27B2 + 4A3

6
√

3
− 3

√
−3
√

3B ±
√

27B2 + 4A3

6
√

3
+
n− 3

3
;

i.e

λ = 3

√
B

2
± 1

6
√

3

√
27B2 + 4A3 − 3

√
−B
2
± 1

6
√

3

√
27B2 + 4A3 +

n− 3

3
;

where

A =
1

3
(3n− n2 − 6)

B =
(n− 3)

27

(
2n2 − 3n− 18

)
.

Notice that, for

A =
1

3
(3n− n2 − 6)

B =
(n− 3)

27

(
2n2 − 3n− 18

)
;

27B2 + 4A3 < 0, for all n ≥ 3.

Therefore, we obtain two imaginary roots.

Furthermore, using Cardan formula for finding a root of polynomial y3 +Ay +B; if

4A3 + 27B2 ≥ 0,

we have

y =
3

√
−B

2
− 1

2

√
4A3 + 27B2

27
+

3

√
−B

2
+

1

2

√
4A3 + 27B2

27
;

i.e

y = 3

√
−B

2
− 1

6
√

3

√
4A3 + 27B2 + 3

√
−B

2
+

1

6
√

3

√
4A3 + 27B2;

where

A =
1

3
(3n− n2 − 6)

B = − 1

27

(
(n− 3)(2n2 − 3n− 18)

)
=

(n− 3)

27

(
3n− 2n2 + 18

)
;

So that,

λ = y +
n− 3

3
.

But, in our case,
4A3 + 27B2 < 0.

Thus, this root, λ, is also imaginary. Finally, we have only one real root:

λ = −1( multiplicity n− 3). �
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2.5.11 Eigenvalues of the Line Graph of the complete graph Kn

The line graph of the complete graph Kn denoted by L(Kn) has p =
n(n− 1)

2
vertices (see

Brualdi[12]). The number q of edges is the sum of the square of the degrees minus the number
of edges of Kn. Thus,

q =
n(n− 1)2

2
− n(n− 1)

2
=
n(n− 1)(n− 2)

2
.

Also,

2n2 − 6n =
4n(n− 1)

2
− 4n = 4p− 4n⇒ n2 − n− 2p = 0⇒ n =

1±
√

1 + 8p

2
=

1 +
√

1 + 8p

2
.

Lemma 2.5.4. Suppose that G is a k−regular graph of order n. Then the characteristic
polynomial of L(G) is

PA(L(G))(λ) = (λ+ 2)n(k−2)/2PA(G)(λ− k + 2).

Theorem 2.5.11. The Eigenvalues of the Line Graph of the complete graph Kn are: λ = −2,
with multiplicity n(n−3)

2 ; λ = 2n−4, with multiplicity 1, and λ = n−4, with multiplicity (n−1).

Proof. applying Lemma 2.5.4, since Kn is a (n− 1)-regular graph of order n, we have

PA(L(Kn))(λ) = (λ+ 2)n((n−1)−2)/2PA(Kn)(λ− (n− 1) + 2)

= (λ+ 2)n(n−3)/2PA(Kn)(λ− n+ 3)

= (λ+ 2)n(n−3)/2((λ− n+ 3)− (n− 1))((λ− n+ 3) + 1)n−1

= (λ+ 2)n(n−3)/2(λ− (2n− 4))(λ− (n− 4)n−1 �

2.5.12 Eigenvalues of The Friendship Graph

Theorem 2.5.12. The eigenvalues of a friendship graph Fp on n vertices, where p = n−1
2 ,

are λ = −1 (with multiplicity p), λ = 1 (with multiplicity (p − 1)), λ =
1±
√

1 + 8p

2
(with

multiplicity 1 each).

See M.R. Rajesh Kanna And All [35], and J. R. Vermette [43].

Proof. The adjacency matrix of a friendship Fp is

A(Fp) =



0 1 1 0 · · · 0 0

1 0 1 0 · · · 0 0

1 1 0 1 · · · 1 1

0 0 1 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 1 0 · · · 0 1

0 0 1 0 · · · 1 0


(2p+1)×(2p+1)

.
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The characteristic equation of A(Fp) is

(λ+ 1)p(λ− 1)p−1(λ2 − λ− 2p) = 0.

Eigenvalues are λ = −1 (with multiplicity p), λ = 1 (with multiplicity (p−1)), λ =
1±
√

1 + 8p

2
(with multiplicity 1 each)

2.6 Sectra of graphs with end vertices appended to each vertex
in a graph

In this section, we determinate the spectra of graphs obtained by appending h end vertex to all
vertices of a defined class of graphs called the base graph.

Let the generalized sun graph SG(h,p) be a graph which consists of the base graph G on p
vertices, with h end vertices appended to each of the p vertices in the graph G. Then the graph
SG(h,p) has n = p(h+ 1) vertices, and the n× n adjacency matrix of SG(h,p) is:

A(SG(h,p)) =


A(G) Ip,p · · · Ip,p

Ip,p Op,p · · · Op,p
...

...
. . .

...

Ip,p Op,p · · · Op,p

 .

And

det(A(SG(h,p))) =

∣∣∣∣∣∣∣∣∣∣

A(G) Ip,p · · · Ip,p

Ip,p Op,p · · · Op,p
...

...
. . .

...

Ip,p Op,p · · · Op,p

∣∣∣∣∣∣∣∣∣∣
=


1 for h = 1 and p even

−1 for h = 1 and p odd

0 otherwise.

See Winter and Jessop[53]

Theorem 2.6.1

If αj are the eigenvalues of A(G), 1 ≤ j ≤ p, then

λ2j−1 =
αj +

√
α2
j + 4h

2
and λ2j =

αj −
√
α2
j + 4h

2

are two eigenvalues of A(SG(h,p)), 1 ≤ j ≤ p. The remaining p(h−1) eigenvalues of A(SG(h,p))
are λ = 0.

See Winter and Jessop[53]

2.6.1 Eigenvalues of the L-regular caterpillar Graph and the Caterpillar Graph

A caterpillar graph is denoted by CT (k,l) where k and l denote the number of vertices on the
path and the number of pendent edges respectively. This graph will have n = k(l + 1) vertices

62



and the adjacency matrix of the caterpillar graph is an n×n matrix, and takes the general form:

A(CT (k,l)) =



A(Pk) Ik,k Ik,k · · · Ik,k

Ik,k Ok,k Ok,k · · · Ok,k

Ik,k Ok,k Ok,k · · · Ok,k
...

...
...

. . .
...

Ik,k Ok,k Ok,k · · · Ok,k


,

where Ik,k is repeated l times horizontally an l times vertically.

Lemma 2.6.1. The Laplacian eigenvalues of the caterpillar graph CT (k,l) are λ = 1, with
multiplicity k(l − 1) and the eigenvalues of the (2k)× (2k) matrix

G(l) =



A(l) F

F B(l) F

F
. . .

. . .

. . . B(l) F

F A(l)


,

where A(l) =

[
1

√
l

√
l l + 1

]
, B(l) =

[
1

√
l

√
l l + 2

]
, and F =

[
0 0

0 1

]
.

The eigenvalues of G(l) are

λj = 1
2

[
l + 3 + σj −

√
σ2j + 2(l + 1)σj + (l2 + 6l + 1)

]
and

λk+j = 1
2

[
l + 3 + σj +

√
σ2j + 2(l + 1)σj + (l2 + 6l + 1)

]
where σj = 2cos

[
(k + 1− j)π

k

]
for j = 1, . . . , k.

See Rojo[37].

Lemma 2.6.2. If G is a bipartite graph and if λ is a nonzero Laplacien eigenvalue of G then
λ− 2 is an eigenvalue of L(G) (see Rojo[37]).

Proof. Since CT (k,l) is a bipartite graph, the eigenvalues of L(CT (k,l)) can be derived from
the Laplacian eigenvalues of CT (k,l) (see Lemma 2.6.1 for these eigenvalues), namely:

λi = λ− 2 = 1− 2 = −1 with multiplicity k(l − 1),

λj = λi − 2 =
1

2

[
l − 1 + σj −

√
σ2 + 2(l + 1)σj + (l2 + 6l)

]
,

where

σj = 2cos

[
(k + 1− j)π

k

]
, for 2 ≤ j ≤ k and

µk+j = λj − 2 =
1

2

[
l − 1 + σj +

√
σ2 + 2(l + 1)σj + (l2 + 6l)

]
,

where

σj = 2cos

[
(k + 1− j)π

k

]
, for 1 ≤ j ≤ k. �

63



2.6.2 Eigenvalues of the Complete Sun Graph

Let CompSun(h,p) be the complete sun graph which consists of the complete graph Kp, with
h end vertices appended to each of the p vertices in Kp. Then CompSun(h,p) has n = (h+ 1)p

vertices and p

(
p− 1

2
+ h

)
edges. Then the (n× n) adjacency matrix of CompSun(h,p) is:

A(CompSun(h,p)) =


A(Kp) Ip,p · · · Ip,p

Ip,p On,n · · · On,n
...

...
. . .

...

Ip,p On,n · · · On,n

 .

See Winter and Jessop [53].

Theorem 2.6.2. The eigenvalues of CompSun(h,p) are

λ =
−1±

√
1 + 4h

2
with multiplicity (p− 1),

λ =
(p− 1)±

√
(p− 1)2 + 4h

2
with multiplicity 1, and

λ = 0 with multiplicity p(h− 1).

Proof. The eigenvalues of A(Kp) are α = −1 with multiplicity p − 1, and α = p − 1 with
multiplicity 1. See Jessop [28]. Therefore, from Theorem 2.6.1, the eigenvalues of CompSun(h,p)
are

λ =
−1±

√
1 + 4h

2
with multiplicity (p− 1),

λ =
(p− 1)±

√
(p− 1)2 + 4h

2
with multiplicity 1,

And the remaining p(h+1)−2p = p(h−1) eigenvalues of CompSun(h,p) are 0. �

2.6.3 Eigenvalues of the Complete Split-bipartite Sun Graph

Let BipSun(h,p) be the complete split-bipartite sun graph which consists of the complete split-
bipartite graph K p

2
, p
2
, with h end vertices appended to each of the p vertices in K p

2
, p
2
. Then

BipSun(h,p) has n = (h+ 1)p vertices and
p2

4
+ ph edges. Then the (n× n) adjacency matrix

of BipSun(h,p) is:

A(BipSun(h,p)) =


A(K p

2
, p
2
) Ip,p · · · Ip,p

Ip,p Op,p · · · Op,p
...

...
. . .

...

Ip,p Op,p · · · Op,p

 .

See Winter and Jessop [53].
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Theorem 2.6.3. The eigenvalues of BipSun(h,p) are

λ =
p±

√
p2 + 16h

4
with multiplicity 1,

λ =
(−p±

√
p2 + 16h

4
with multiplicity 1,

λ = ±
√
h with multiplicity p− 2, and

λ = 0 with multiplicity p(h− 1).

Proof. The eigenvalues of K p
2
, p
2

are α = ±p
2 with multiplicity 1, and α = 0 with multiplicity

p− 2. See Jessop [28]. Therefore, from Theorem 2.6.1, the eigenvalues of BipSun(h,p) are

λ =

p

2
±
√(p

2

)2
+ 4h

2
=
p±

√
p2 + 16h

4
with multiplicity 1,

λ =

−p
2
±

√(
−p
2

)2

+ 4h

2
=
−p±

√
p2 + 16h

4
with multiplicity 1,

λ =
(0)±

√
(0)2 + 4h

2
= ±
√
h with multiplicity p− 2.

And the remaining p(h+1)−2p = p(h−1) eigenvalues of BipSun(h,p) are 0. �

2.6.4 Eigenvalues of the Wheel Sun Graph

Let WheelSun(h,p) be the wheel sun graph which consists of the wheel graph Wp, with h end
vertices appended to each of the p vertices in Wp. Then WheelSun(h,p) has n = (h + 1)p
vertices and (h+ 2)(p− 1) + h edges. Then the (n× n) adjacency matrix of WheelSun(h,p) is:

A(WheelSun(h,p)) =


A(Wp) Ip,p · · · Ip,p

Ip,p Op,p · · · Op,p
...

...
. . .

...

Ip,p Op,p · · · Op,p

 .

See Winter and Jessop [53].
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Theorem 2.6.4. The eigenvalues of A(WheelSun(h,p)) are

λ = cos

(
2πk

p− 1

)
±

√
cos2

(
2πk

p− 1

)
+ h where k = 1, . . . ,p− 2,

λ =
(1 +

√
p)±

√
(1 +

√
p)2 + 4h

2
with multiplicity 1 each,

λ =
(1−√p)±

√
(1−√p)2 + 4h

2
with multiplicity 1 each, and

λ = 0 with multiplicity p(h− 1).

Proof. The eigenvalues of A(Wp) are α = 2cos
(

2πk
p−1

)
1 ≤ k ≤ p− 2, and α = 1±√p with multi-

plicity 1. See Jessop [28]. Therefore, from Theorem 2.6.1, the eigenvalues of A(WheelSun(h,p))
are

λ =
2cos

(
2πk
p−1

)
±
√(

2cos
(

2πk
p−1

))2
+ 4h

2
= cos

(
2πk

p− 1

)
±

√
cos2

(
2πk

p− 1

)
+ h, 1 ≤ k ≤ p− 2,

λ =
(1 +

√
p)±

√
(1 +

√
p)2 + 4h

2
with multiplicity 1, and

λ =
(1−√p)±

√
(1−√p)2 + 4h

2
with multiplicity 1.

The remaining p(h+1)−2p = p(h−1) eigenvalues ofA(WheelSun(h,p)) are 0. �

2.6.5 Eigenvalues of the Star Sun Graph

Let StarSun(h,p) be the star sun graph which consists of the star graph Sp−1,1, with h end
vertices appended to each of the p vertices in Sp−1,1 . Then StarSun(h,p) has n = (h + 1)p
vertices and (h+ 1)(p− 1) + h edges. Then the (n× n) adjacency matrix of StarSun(h,p) is:

A(StarSun(h,p)) =


A(Sp−1,1) Ip,p · · · Ip,p

Ip,p Op,p · · · Op,p
...

...
. . .

...

Ip,p Op,p · · · Op,p

 .

See Winter and Jessop [53].
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Theorem 2.6.5. The eigenvalues of A(StarSun(h,p)) are

λ =

√
p− 1±

√
p− 1 + 4h

2
with multiplicity 1,

λ =
−
√
p− 1±

√
p− 1 + 4h

2
with multiplicity 1,

λ = ±
√
h with multiplicity (p− 2), and

λ = 0 with multiplicity p(h− 1).

Proof. The eigenvalues of A(Sp−1,1) are α = ±
√
p− 1,with multiplicity 1 and α = 0, with multi-

plicity p−2. See Jessop [28]. Therefore, from Theorem 2.6.1, the eigenvalues of A(StarSun(h,p))
are

λ =

√
p− 1±

√
(
√
p− 1)2 + 4h

2

=

√
p− 1±

√
p− 1 + 4h

2
with multiplicity 1,

λ =
−
√
p− 1±

√
(−
√
p− 1)2 + 4h

2

=
−
√
p− 1±

√
p− 1 + 4h

2
with multiplicity 1,

λ =
0±

√
(0)2 + 4h

2

= ±
√
h with multiplicity p− 2,

The remaining p(h+1)−2p = p(h−1) eigenvalues of A(StarSun(h,p)) are 0. �

2.6.6 Eigenvalues of the Cycle Sun Graph

Let CycleSun(h,p) be the cycle sun graph which consists of the cycle graph Cp, with h end
vertices appended to each of the p vertices in Cp . Then CycleSun(h,p) has n = (h + 1)p
vertices and (h+ 1)p edges. Then the (n× n) adjacency matrix of CycleSun(h,p) is:

A(CycleSun(h,p)) =


A(Cp) Ip,p · · · Ip,p

Ip,p Op,p · · · Op,p
...

...
. . .

...

Ip,p Op,p · · · Op,p

 .

See Winter and Jessop [53].
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Theorem 2.6.6. The eigenvalues of A(CycleSun(h,p)) are

λ = cos

(
2πk

p

)
±

√
cos2

(
2πk

p

)
+ h, where k = 0,1, . . . ,p− 1, and

λ = 0 with multiplicity p(h− 1).

Proof. The eigenvalues of A(Cp) are α = 2cos

(
2πk

p

)
0 ≤ k ≤ p− 1. See Jessop [28]. Therefore,

from Theorem 2.6.1, the eigenvalues of A(CycleSun(h,p)) are

λ =

2cos

(
2πk

p

)
±

√(
2cos

(
2πk

2

))2

+ 4h

2
= cos

(
2πk

p

)
±

√
cos2

(
2πk

p

)
+ h, 0 ≤ k ≤ p− 1.

The remaining p(h+1)−2p = p(h−1) eigenvalues ofA(CycleSun(h,p)) are 0. �

2.7 Eigenvalues of Complement of regular graph

We remind that the complement G of the graph G is the graph with the same vertex set as G,
where two distinct vertices are adjacent whenever they are nonadjacent in G; And a graph G is
called regular of degree k, when every vertex has precisely k neighbors.

Lemma 2.7.1 (see [17] and[19]). If G is k-regular, with n vertices, and k = λ1 ≥ λ2 ≥ . . . ≥
λn are the eigenvalues of G, then the eigenvalues of its complement, G, are n− 1− k, −1− λn,
. . . ,−1− λ2.

Theorem 2.7.1 (see[19]). If G is a regular graph of degree k (or a k-regular) with n vertices,
then

PA(G)(λ) = (−1)n
λ− n+ k + 1

λ+ k + 1
PA(G)(−λ− 1)

where PA(G) is the characteristic polynomial of the complement, G, of the graph G.

Proof. From lemma 2.7.1 above

PA(G)(λ) = (λ− k)

n∏
i=2

(λ− λi)

and

PA(G)(λ) = (λ− (n− 1− k))
n∏
i=2

(λ− (−1− λi)).
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We have:

PA(G)(λ) = (λ− n+ 1 + k)

n∏
i=2

(λ+ 1 + λi)

= (−1)n(λ− n+ k + 1)(−1)
n∏
i=2

(−λ− 1− λi)

PA(G)(−λ− 1) = (−λ− 1− k)
n∏
i=2

(−λ− 1− λi)

=⇒ (−1)

n∏
i=2

(−λ− 1− λi) =
PA(G)(−λ− 1)

λ+ 1 + k
.

So that:

PA(G)(λ) = (−1)n
λ− n+ k + 1

λ+ k + 1
PA(G)(−λ− 1) �

Example 2.7.1. We use the formula above to find the formula for the spectra of complete
graphs. The complement of a complete graph Kn is a graph of n isolated vertices. Let Kn

denote the complement of a complete graph on n vertices. The adjacency matrix of Kn is:

A(Kn) =



0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0


.

Thus, the characteristic polynomial of the complement of Kn is Pn = λn and the eigenvalues
are λ = 0 (with multiplicity n).

Let PA(G)(λ) be the characteristic polynomial of Kn and PA(G)(λ) be the characteristic polyno-
mial of the complement of Kn. We have:

PA(G)(λ) = (−1)n
λ− n+ k + 1

λ+ k + 1
PA(G)(−λ− 1)

PA(Kn)(λ) = (−1)n
λ− n+ k + 1

λ+ k + 1
PA(Kn)

(−λ− 1)

= (−1)n
λ− n+ 1

λ+ 1
PA(Kn)

(−λ− 1) (k = 0, because Kn is 0-regular)

PA(Kn)(λ) =
λ− n+ 1

λ+ 1
PA(Kn)

(λ+ 1)

=
λ− n+ 1

λ+ 1
(λ+ 1)n

= (λ− n+ 1)(λ+ 1)n−1.
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Since
PA(Kn)(λ) = (λ− (n− 1))(λ+ 1)n−1

any complete graph Kn has the eigenvalues (n− 1), with multiplicity 1,
and −1, with multiplicity (n− 1).

Example 2.7.2. Eigenvalues of the complement of the Cycle graph

The cycle graph, Cn, is a 2-regular graph. And, let Cn be its complement, with n ≥ 3, then Cn
is (n− 3)-regular graph, and has as eigenvalues:

n− 3, − 1− 2 cos

(
2πj

n

)
;

j = 1, . . . , (n− 1), each with multiplicity 1.

2.8 Conclusion

This chapter is devoted to define eigenvalues of graph and how we apply this to the adjacency
matrix of graph. We presented different techniques used to find the eigenvalues for certain classes
of graphs so that we can determine their energies in the next chapter. Some techniques use the
definition of the eigenvalues of the adjacency matrix of a graph while others used known results
or theorems such as lollipop theorem. And we showed that we can use the idea of complements
to find the spectrum of some regular graphs as a complete graph.
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Chapter 3

ENERGY OF CLASSES OF
GRAPHS

3.1 Introduction

The energy of graph was first defined by Ivan Gustman in 1978 [24]. However, the motivation
for his definition appeared much earlier, in the 1930’s, when Erich Hückel proposed the famous
Hückel Molecular Orbital Theory.

The energy of graph is defined as the sum of absolute values of the eigenvalues of the adjacency
matrix of the graph in consideration. This quantity is studied in the context of spectral graph
theory.

Given the importance of the energy of graph in chemical context, finding a simple expression for
the energy of a class of graphs is necessary and can be trivial, especially if the eigenvalues are
integral (for the complete graph, for example). We determinate the energy of different classes
of graphs using the eigenvalues determined in the previous chapter.

Definition 3.1.1

The energy of graph G is the sum of the absolute values of the adjacency matrix of G, i.e.,
for an n− vertex graph G, with adjacency matrix A, having eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn,
the energy of G, denoted by E(G), is defined as:

E(G) =

n∑
i=1

| λi | .

Lemma 3.1.1 If {λi : λi > 0} are all the positive eigenvalues of a graph G, and {λi : λi < 0}
all its negative eigenvalues. Then, the energy of G is

E(G) = 2
∑
{λi : λi > 0} = −2

∑
{λi : λi < 0}.

Proof. let λ1,λ2, . . . , λs be all the positive eigenvalues, and λs+1, . . . , λn all the negative
eigenvalues. We have

E(G) =

n∑
i=1

| λi |⇒
s∑
i=1

λi = −
n∑

i=s+1

λi =
E(G)

2
.

⇒ E(G) = 2
s∑
i=1

λi = −2
n∑

i=s+1

λi �
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3.2 Analytical Methods to obtain the Energy of Graphs

This section is based on the article by Winter and Jessop[52]. We require the following results
for the analysis of the energy of paths, cycles and wheels.

Theorem 3.2.1 (See Winter and Jessop [52]).

Let n ≥ 2.

1. For n even, then
n
2∑
j=1

2cos

(
πj

n

)
= cot

( π
2n

)
− 1;

2. For n odd, then
n−1
2∑
j=1

2cos

(
πj

n

)
= cosec

( π
2n

)
− 1;

3. For n odd and n = 2t+ 1, for t even, then

n−1
4∑
j=1

2cos

(
2πj

n

)
=

1

2
cosec

( π
2n

)
− 1 and

4. For n odd and n = 2t+ 1, for t odd and t > 1, then

n−3
4∑
j=1

2cos

(
2πj

n

)
=

1

2
cosec

( π
2n

)
− 1.

Proof

1. Let

C =

k
2∑
j=1

2cos

(
πj

n

)
; S =

k
2∑
j=1

2sin

(
πj

n

)
, we suppose k is even,

and
γ = cos

(π
n

)
+ isin

(π
n

)
;

so that

γ
k
2 =

[
cos
(π
n

)
+ isin

(π
n

)] k
2

= cos

(
π

n

k

2

)
+ isin

(
π

n

k

2

)
.

Then

C + iS =
(

2cos
π

n
+ 2isin

π

n

)
+

(
2cos

2π

n
+ 2isin

2π

n

)
+ · · ·+

(
2cos

π

n

k

2
+ 2isin

π

n

k

2

)

= 2γ + 2γ2 + · · ·+ 2γ
k
2

= 2γ
(

1 + γ + · · ·+ γ
k
2
−1
)

= 2γ
1− γ

k
2

1− γ
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= 2γ

[
1−

(
cos

(
π

n

k

2

)
+ isin

(
π

n

k

2

))]
(

1− cos
(π
n

))
− isin

(π
n

)

= 2
(
cos

π

n
+ isin

π

n

) [(1− cos
(
π

n

k

2

))
− isin

(
π

n

k

2

)]
(

1− cosπ
n

)
− isinπ

n

×

(
1− cosπ

n

)
+ isin

π

n(
1− cosπ

n

)
+ isin

π

n

= 2

[
cos

π

n
+ isin

π

n

] [(
1− cosπ

n

)
+ isin

π

n

] [(
1− cos

(
π

n

k

2

))
− isin

(
π

n

k

2

)]
(

1− cosπ
n

)2
+ sin2

π

n

=

2
[(
cos

π

n
− 1
)

+ i
(
sin

π

n
− cosπ

n
sin

π

n
+ cos

π

n
sin

π

n

)] [(
1− cos

(
π

n

k

2

))
− isin

(
π

n

k

2

)]
2− 2cos

π

n

=

[(
cos

π

n
− 1
)

+ isin
π

n

] [(
1− cos

(
π

n

k

2

))
− isin

(
π

n

k

2

)]
1− cosπ

n

=

[(
cos

π

n
− 1
)

+ isin
π

n

] [(
1− cos

(
π

n

k

2

))
− isin

(
π

n

k

2

)]
1−

(
cos2

π

2n
− sin2 π

2n

)

=

[(
cos

π

n
− 1
)

+ isin
π

n

] [(
1− cos

(
π

n

k

2

))
− isin

(
π

n

k

2

)]
(

2sin2
π

2n

)
Taking the real parts:

C =

k
2∑
j=1

2cos

(
πj

n

)

=

[(
cos

π

n
− 1
)(

1− cos
(
π

n

k

2

))
+
(
sin

π

n

)
sin

(
π

n

k

2

)]
(

2sin2
π

2n

)

=

[
cos

π

n
− 1− cos

(
π

n
+
π

n

k

2

)
+ cos

(
π

n

k

2

)]
(

2sin2
π

2n

)
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For k = n, we get

C =

n
2∑
j=1

2cos

(
πj

n

)

=

[
cos

π

n
− 1− cos

(π
n

+
π

2

)
+ cos

(π
2

)]
(

2sin2
π

2n

)

=

[
cos

π

n
− 1− cos

(π
n

+
π

2

)]
(

2sin2
π

2n

)

=

[
cos2

π

2n
− sin2 π

2n
− 1− cos

(π
n

+
π

2

)]
(

2sin2
π

2n

)

=

[
−2sin2

π

2n
+ sin

(π
n

)]
(

2sin2
π

2n

)

=

[
−2sin2

π

2n
+ 2sin

( π
2n

)
cos
( π

2n

)]
(

2sin2
π

2n

)
= cot

( π
2n

)
− 1.

This gives result (1) of theorem 3.2.1.

2. Recall from Theorem 3.2.1, result (1), that

C =

k
2∑
j=1

2cos

(
πj

n

)

=

[
cos

π

n
− 1− cos

(
π

n
+
π

n

k

2

)
+ cos

(
π

n

k

2

)]
(

2sin2
π

2n

)
For k = n− 1, we get
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C =

n−1
2∑
j=1

2cos

(
πj

n

)

=

[
cos

π

n
− 1− cos

(
π

n
+
π

n

n− 1

2

)
+ cos

(
π

n

n− 1

2

)]
(

2sin2
π

2n

)

=

[
cos

π

n
− 1− cos

(
π

n

n+ 1

2

)
+ cos

(
π

n

n− 1

2

)]
(

2sin2
π

2n

)

=

[(
cos

π

n
− 1
)
−
(
−sin

( π
2n

))
+
(
sin
( π

2n

))]
(

2sin2
π

2n

)

=

[(
cos

π

n
− 1
)

+ 2sin
( π

2n

)]
(

2sin2
π

2n

)

=

[
−2sin2

( π
2n

)
+ 2sin

( π
2n

)]
(

2sin2
π

2n

)
= cosec

( π
2n

)
− 1.

3. Recall from Theorem 3.2.1, result (1), that

C =

k
2∑
j=1

2cos

(
πj

n

)
=

[
cos

π

n
− 1− cos

(
π

n
+
π

n

k

2

)
+ cos

(
π

n

k

2

)]
(

2sin2
π

2n

)
So let

D =

k
2∑
j=1

2cos

(
2πj

n

)
, then

D =

k
2∑
j=1

2cos

(
2πj

n

)
=

[
cos

2π

n
− 1− cos

(
2π

n
+

2π

n

k

2

)
+ cos

(
2π

n

k

2

)]
(

2sin2
π

n

)
For k =

n− 1

2
, we get
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D =

n−1
4∑
j=1

2cos

(
2πj

n

)

=

[
cos

2π

n
− 1− cos

(
2π

n
+

2π

n

n− 1

4

)
+ cos

(
2π

n

n− 1

4

)]
(

2sin2
π

n

)

=

[
cos

2π

n
− 1− cos

(
2π

n

n+ 3

4

)
+ cos

(
2π

n

n− 1

4

)]
(

2sin2
π

n

)

=

[
−2sin2

π

n
−
(
cos

π

2
cos

3π

2n
− sinπ

2
sin

3π

2n

)
+
(
cos

π

2
cos

π

2n
+ sin

π

2
sin

π

2n

)]
(

2sin2
π

n

)

= −1 +

[
sin

(
3π

2n

)
+ sin

( π
2n

)]
(

2sin2
π

n

)

= −1 +

[
sin
(π
n

+
π

2n

)
+ sin

( π
2n

)]
(

2sin2
π

n

)

= −1 +

[
sinπncos

π
2n + cosπnsin

π
2n + sin π

2n

](
2sin2

π

n

)

= −1 +

[
2sin π

2ncos
π
2ncos

π
2n + sin π

2n

(
cosπn + 1

)](
2sin2

π

n

)

= −1 +

[
2sin π

2ncos
π
2ncos

π
2n + sin π

2n

(
cos2 π

2n − cos
2 π
2n + 1

)](
2sin2

π

n

)

= −1 +

[
2sin

( π
2n

)
cos
( π

2n

)
cos
( π

2n

)
+ sin

( π
2n

)
2cos2

( π
2n

)]
(

2sin2
π

n

)

= −1 +

[
4sin

( π
2n

)
cos2

( π
2n

)]
(

8sin2
( π

2n

)
cos2

( π
2n

))

=
1

2
cosec

( π
2n

)
− 1.
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4. Recall from theorem 3.2.1, result (3), that

D =

k
2∑
j=1

2cos

(
2πj

n

)

=

[
cos

2π

n
− 1− cos

(
2π

n
+

2π

n

k

2

)
+ cos

(
2π

n

k

2

)]
(

2sin2
π

n

)

For k =
n− 3

2
, we get

D =

n−3
4∑
j=1

2cos

(
2πj

n

)

=

[
cos

2π

n
− 1− cos

(
2π

n
+

2π

n

n− 3

4

)
+ cos

(
2π

n

n− 3

4

)]
(

2sin2
π

n

)

=

[
cos

2π

n
− 1− cos

(
2π

n

n+ 1

4

)
+ cos

(
2π

n

n− 3

4

)]
(

2sin2
π

n

)

=

[
−2sin2

π

2
−
(
cos

π

2
cos

π

2n
− sinπ

2
sin

π

2n

)
+

(
cos

π

2
cos

3π

2n
+ sin

π

2
sin

3π

2n

)]
(

2sin2
π

n

)

= −1 +

[
sin
( π

2n

)
+ sin

(
3π

2n

)]
(

2sin2
π

n

)

= −1 +

[
sin
( π

2n

)
+ sin

(π
n

)
cos
( π

2n

)
+ cos

(π
n

)
sin
( π

2n

)]
(

2sin2
π

n

)

= −1 +

[
sin
( π

2n

)
+ 2sin

( π
2n

)
cos2

( π
2n

)
+
(
cos2

( π
2n

)
− sin2

( π
2n

))
sin
( π

2n

)]
(

2sin2
π

n

)
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= −1 +

[
sin
( π

2n

)
+ 2sin

( π
2n

)
cos2

( π
2n

)
+
(
cos2

( π
2n

)
−
(
1− cos2 π

2n

))
sin
( π

2n

)]
(

2sin2
π

n

)

= −1 +

[
sin
( π

2n

)
+ 2sin

( π
2n

)
cos2

( π
2n

)
+
(

2cos2
( π

2n

)
− 1
)
sin
( π

2n

)]
(

2sin2
π

n

)

= −1 +
4sin

π

2n
cos2

π

2n

8sin2
π

2n
cos2

π

2n

=
1

2
cosec

π

2n
− 1. �

3.2.1 Energy of The Path Graph

Let Pn be the path on n vertices, and with n− 1 edges.

Lemma 3.2.1. The eigenvalues of the path graph Pn are λj = 2cos

(
πj

n+ 1

)
; 1 ≤ j ≤ n (each

with multiplicity 1) for n ≥ 2 (See Jessop [28] and section 2.5.7).

Theorem 3.2.2. The energy of the path is for :

1. n even,

E(Pn) =
n∑
j=1

∣∣∣∣2cos( πj

n+ 1

)∣∣∣∣ = 2

[
cosec

π

2(n+ 1)
− 1

]
;

2. n odd,

E(Pn) =

n∑
j=1

∣∣∣∣2cos( πj

n+ 1

)∣∣∣∣ = 2

[
cot

π

2(n+ 1)
− 1

]

Proof

As per Lemma 3.2.1, the eigenvalues of the path graph Pn are λj = 2cos
πj

n+ 1
; 1 ≤ j ≤ n, so

E(Pn) =
n∑
j=1

|λj | =
n∑
j=1

∣∣∣∣2cos( πj

n+ 1

)∣∣∣∣ .
1. Now let n be even, i.e. n = 2t, t ∈ N. Then

E(Pn) =

n∑
j=1

∣∣∣∣2cos( πj

n+ 1

)∣∣∣∣

=
2t∑
j=1

∣∣∣∣2cos( πj

2t+ 1

)∣∣∣∣
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=
t∑

j=1

[∣∣∣∣2cos( πj

2t+ 1

)∣∣∣∣+

∣∣∣∣2cos(π (2t+ 1− j)
2t+ 1

)∣∣∣∣]

=
t∑

j=1

[
2

∣∣∣∣cos( πj

2t+ 1

)∣∣∣∣+ 2

∣∣∣∣cos(π (2t+ 1)

2t+ 1

)
cos

(
πj

2t+ 1

)
+ sin

(
π (2t+ 1)

2t+ 1

)
sin

(
πj

2t+ 1

)∣∣∣∣]

=

t∑
j=1

[
2

∣∣∣∣cos( πj

2t+ 1

)∣∣∣∣+ 2

∣∣∣∣cos (π) cos

(
πj

2t+ 1

)
+ sin (π) sin

(
πj

2t+ 1

)∣∣∣∣]

=
t∑

j=1

[
2

∣∣∣∣cos( πj

2t+ 1

)∣∣∣∣+ 2

∣∣∣∣−cos( πj

2t+ 1

)∣∣∣∣]

Now
j

2t+ 1
< 0.5 for 1 ≤ j ≤ t, so cos

(
πj

2t+ 1

)
≥ 0. Therefore

E(Pn) =
t∑

j=1

[
2cos

(
πj

2t+ 1

)
+ 2cos

(
πj

2t+ 1

)]

= 2

t∑
j=1

2cos

(
πj

2t+ 1

)

= 2

n
2∑
j=1

2cos

(
πj

n+ 1

)

Setting k = n+ 1, we get

E(Pn) = 2

k−1
2∑
j=1

2cos

(
πj

k

)
Now applying result 2 from Theorem 3.2.1, we get

E(Pn) = 2
(
cosec

( π
2k

)
− 1
)

= 2

(
cosec

π

2(n+ 1)
− 1

)
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2. Now let n be odd, i.e. n = 2t+ 1, t ∈ N. Then

E(Pn) =

n∑
j=1

∣∣∣∣2cos( πj

n+ 1

)∣∣∣∣

=
2t+1∑
j=1

∣∣∣∣2cos( πj

2t+ 2

)∣∣∣∣

=
t∑

j=1

[∣∣∣∣2cos( πj

2t+ 2

)∣∣∣∣+

∣∣∣∣2cos(π(2t+ 2− j)
2t+ 2

)∣∣∣∣]+

∣∣∣∣2cos(π(t+ 1)

2t+ 2

)∣∣∣∣

=

t∑
j=1

[
2

∣∣∣∣cos( πj

2t+ 2

)∣∣∣∣+ 2

∣∣∣∣cos(π(2t+ 2)

2t+ 2

)
cos

(
πj

2t+ 2

)
+ sin

(
π(2t+ 2)

2t+ 2

)
sin

(
πj

2t+ 2

)∣∣∣∣]

+ 2cos
(π

2

)

=
t∑

j=1

[
2

∣∣∣∣cos( πj

2t+ 2

)∣∣∣∣+ 2

∣∣∣∣cos (π) cos

(
πj

2t+ 2

)
+ sin (π) sin

(
πj

2t+ 2

)∣∣∣∣]

=

t∑
j=1

[
2

∣∣∣∣cos( πj

2t+ 2

)∣∣∣∣+ 2

∣∣∣∣−cos( πj

2t+ 2

)∣∣∣∣]

Now
j

2t+ 2
< 0.5 for 1 ≤ j ≤ t, so cos

(
πj

2t+ 2

)
≥ 0. Therefore

E(Pn) =
t∑

j=1

[
2cos

(
πj

2t+ 2

)
+ 2cos

(
πj

2t+ 2

)]

= 2

t∑
j=1

2cos

(
πj

2t+ 2

)

= 2

n−1
2∑
j=1

2cos

(
πj

n+ 1

)
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Setting k = n+ 1, we get

E(Pn) = 2

k−2
2∑
j=1

2cos

(
πj

k

)

= 2

k
2
−1∑
j=1

2cos

(
πj

k

)
+ 2cos

(
π

k

k

2

)

= 2

k
2∑
j=1

2cos

(
πj

k

)

Now applying result 1 from Theorem 3.2.1, we get

E(Pn) = 2
(
cot
( π

2k

)
− 1
)

= 2

(
cot

π

2(n+ 1)
− 1

)
�

3.2.2 Energy of The Cycle Graph

Let Cn be the cycle graph on n vertices, and with n edges.

Lemma 3.2.2. The eigenvalues of the cycle graph Cn are λj = 2cos

(
2πj

n

)
; j = 0,. . . ,n− 1

(each with multiplicity 1), for n ≥ 3 (See Jessop [27] and section 2.5.6)

The following observation will be used to solve Theorem 3.2.3 below

Lemma 3.2.3

2

[
cos

π

2t+ 1
+ cos

3π

2t+ 1
+ · · ·+ cos

(2t− 1)π

2t+ 1

]
= 2

t∑
r=1

cos
π(2t− 2r + 1)

2t+ 1
= 1; t = 1,2, . . .

(See Winter, Jessop and Adewusi [48]).

Theorem 3.2.3 (see Winter and Jessop [52])

1. Let q ∈ N and n = 4q + 1, then

2q∑
j=q+1

∣∣∣∣cos(2πj

n

)∣∣∣∣ =

q∑
j=1

∣∣∣∣cos(2πj

n

)∣∣∣∣+
1

2
.

2. Let q ∈ N and n = 4q + 3, then

2q+1∑
j=q+1

∣∣∣∣cos(2πj

n

)∣∣∣∣ =

q∑
j=1

∣∣∣∣cos(2πj

n

)∣∣∣∣+
1

2
.
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Proof

1. From Lemma 3.2.2, for n odd and t even, i.e. n = 2t + 1, t = 2q, and n = 4q + 1; and for
q = 1,2,. . . , we have

2
t∑

r=1

cos

(
π(2t− 2r + 1)

2t+ 1

)
= 1; t = 2, 3, 4 . . .

⇒
2q∑
r=1

cos

(
π(4q − 2r + 1)

4q + 1

)
=

1

2
;

⇒
[
cos

π

4q + 1
+ cos

3π

4q + 1
+ cos

5π

4q + 1
+ · · ·+ cos

(2q − 1)π

4q + 1

]
+[

cos
(2q + 1)π

4q + 1
+ cos

(2q + 3)π

4q + 1
+ cos

(2q + 5)π

4q + 1
+ · · ·+ cos

(4q − 1)π

4q + 1

]
= [A] + [B] =

1

2

where

A = cos
π

4q + 1
+ cos

3π

4q + 1
+ cos

5π

4q + 1
+ · · ·+ cos

(2q − 1)π

4q + 1
(q terms), and

B = cos
(2q + 1)π

4q + 1
+ cos

(2q + 3)π

4q + 1
+ cos

(2q + 5)π

4q + 1
+ · · ·+ cos

(4q − 1)π

4q + 1
(q terms).

All terms in [A] are positive. Now

A = cos
π

4q + 1
+ cos

3π

4q + 1
+ cos

5π

4q + 1
+ · · ·+ cos

(2q − 1)π

4q + 1

= cos
((4q + 1)− 4q)π

4q + 1
+ cos

((4q + 1)− (4q − 2))π

4q + 1
+ cos

((4q + 1)− (4q − 4))π

4q + 1
+ · · ·

+ cos
((4q + 1)− (2q + 2))π

4q + 1

= −cos (4q)π

4q + 1
− cos(4q − 2)π

4q + 1
− cos(4q − 4)π

4q + 1
− · · · − cos(2q + 2)π

4q + 1

A = −
2q∑

j=q+1

cos
2πj

4q + 1

B = cos
(2q + 1)π

4q + 1
+ cos

(2q + 3)π

4q + 1
+ cos

(2q + 5)π

4q + 1
+ · · ·+ cos

(4q − 1)π

4q + 1

= cos
((4q + 1)− (2q))π

4q + 1
+ cos

((4q + 1)− (2q − 2))π

4q + 1
+ cos

((4q + 1)− (2q − 4))π

4q + 1
+ · · ·

+ cos
((4q + 1)− (2))π

4q + 1

= −cos (2q)π

4q + 1
− cos(2q − 2)π

4q + 1
− cos(2q − 4)π

4q + 1
− · · · − cos (2)π

4q + 1

B = −C
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Where

C = cos
(2q)π

4q + 1
+ cos

(2q − 2)π

4q + 1
+ cos

(2q − 4)π

4q + 1
+ · · ·+ cos

(2)π

4q + 1
=

q∑
j=1

cos
(2j)π

4q + 1

and all term in C are positive. Therefore

A+B =
1

2
⇒ A = C +

1

2
.

Then

−
2q∑

j=q+1

cos
2πj

4q + 1
=

q∑
j=1

cos
2πj

4q + 1
+

1

2

Taking absolute values of both sides, we get

2q∑
j=q+1

∣∣∣∣cos 2πj

4q + 1

∣∣∣∣ =

q∑
j=1

∣∣∣∣cos 2πj

4q + 1

∣∣∣∣+
1

2

2. From Lemma 3.2.2, for n odd and t odd, i.e. n = 2t+ 1, t = 2q + 1, and n = 4q + 3; and for
q = 1,2,. . . , we have

2
t∑

r=1

cos

(
π(2t− 2r + 1)

2t+ 1

)
= 1; t = 3, 4, 5 . . .

⇒
2q+1∑
r=1

cos

(
π(4q + 2− 2r + 1)

4q + 3

)
=

1

2
;

⇒
[
cos

π

4q + 3
+ cos

3π

4q + 3
+ cos

5π

4q + 3
+ · · ·+ cos

(2q + 1)π

4q + 3

]
+[

cos
(2q + 3)π

4q + 3
+ cos

(2q + 5)π

4q + 3
+ cos

(2q + 7)π

4q + 3
+ · · ·+ cos

(4q + 1)π

4q + 3

]
= [A] + [B] =

1

2

where

A = cos
π

4q + 3
+ cos

3π

4q + 3
+ cos

5π

4q + 3
+ · · ·+ cos

(2q + 1)π

4q + 3
(q + 1 terms), and

B = cos
(2q + 3)π

4q + 3
+ cos

(2q + 5)π

4q + 3
+ cos

(2q + 7)π

4q + 3
+ · · ·+ cos

(4q + 1)π

4q + 3
(q terms).

All terms in [A] are positive. Indeed, the first term in A is cos
π

4q + 3
which is positive, since

π
4q+3 is clearly in the first quadrant; the last term is cos

(2q + 1)π

4q + 3
, this is positive, because

0 <
(2q + 1)π

4q + 3
<

2qπ

4q + 3
<

2qπ

4q
=

1

2
π.

So cos
(2q + 1)π

4q + 3
is in the first quadrant as well. Hence cos

(2q + 1)π

4q + 3
> 0
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Now

A = cos
π

4q + 3
+ cos

3π

4q + 3
+ cos

5π

4q + 3
+ · · ·+ cos

(2q + 1)π

4q + 3

= cos
((4q + 3)− (4q + 2))π

4q + 3
+ cos

((4q + 3)− (4q))π

4q + 3
+ cos

((4q + 3)− (4q − 2))π

4q + 3
+ · · ·

+ cos
((4q + 3)− (2q + 2))π

4q + 3

= −cos(4q + 2)π

4q + 3
− cos (4q)π

4q + 3
− cos(4q − 2)π

4q + 3
− · · · − cos(2q + 2)π

4q + 3

A = −
2q+1∑
j=q+1

cos
2πj

4q + 3

B = cos
(2q + 3)π

4q + 3
+ cos

(2q + 5)π

4q + 3
+ cos

(2q + 7)π

4q + 3
+ · · ·+ cos

(4q + 1)π

4q + 3

= cos
((4q + 3)− (2q))π

4q + 3
+ cos

((4q + 3)− (2q − 2))π

4q + 3
+ cos

((4q + 3)− (2q − 4))π

4q + 3
+ · · ·

+ cos
((4q + 3)− (2))π

4q + 3

= −cos (2q)π

4q + 3
− cos(2q − 2)π

4q + 3
− cos(2q − 4)π

4q + 3
− · · · − cos (2)π

4q + 3

B = −C

Where

C = cos
(2q)π

4q + 3
+ cos

(2q − 2)π

4q + 3
+ cos

(2q − 4)π

4q + 3
+ · · ·+ cos

(2)π

4q + 3
=

q∑
j=1

cos
(2j)π

4q + 3

and all terms in C are positive. Therefore

A+B =
1

2

⇒ A = C +
1

2

⇒ −
2q+1∑
j=q+1

cos
2πj

4q + 3
=

q∑
j=1

cos
2πj

4q + 3
+

1

2

Taking absolute values of both sides, we get

2q+1∑
j=q+1

∣∣∣∣cos 2πj

4q + 3

∣∣∣∣ =

q∑
j=1

∣∣∣∣cos 2πj

4q + 3

∣∣∣∣+
1

2

�
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Theorem 3.2.4. The energy of the cycle graph Cn is given by:

1. For n even, and n = 2t,

1.1 For t even, then

E(Cn) =
n−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣ = 4cot
(π
n

)
.

1.2 For t odd, then

E(Cn) =
n−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣ = 4cosec
(π
n

)
.

2. For n odd, and n = 2t+ 1,

2.1 For t even, then

E(Cn) =
n−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣ = 2cosec
( π

2n

)
.

2.2 For t odd, then

E(Cn) =
n−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣ = 2cosec
( π

2n

)
.

Proof. From Lemma 3.2.2, the eigenvalues of the cycle graph Cn are λj = 2cos
2πj

n
; j = 0,1,. . . ,

n− 1, so

E(Cn) =

n∑
i=1

|λi| =
n−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣
1. Now let n be even, i.e. n = 2t. Then

E(Cn) =
n−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣
=

2t−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣
= 2

[∣∣∣∣cos( 0

n

)∣∣∣∣+

∣∣∣∣cos(2π

n

)∣∣∣∣+

∣∣∣∣cos(4π

n

)∣∣∣∣+ · · ·+
∣∣∣∣cos(2πt

n

)∣∣∣∣]
+ 2

[∣∣∣∣cos(2π(t+ 1)

n

)∣∣∣∣+ · · ·+
∣∣∣∣cos(2π(2t− 1)

n

)∣∣∣∣]

= 2
t−1∑
k=0

[∣∣∣∣cos(2πk

n

)∣∣∣∣+

∣∣∣∣cos(2π(k + t)

n

)∣∣∣∣]

= 2

t−1∑
k=0

[∣∣∣∣cos(2πk

2t

)∣∣∣∣+

∣∣∣∣cos(2πk

2t
+

2πt

2t

)∣∣∣∣]
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= 2
t−1∑
k=0

[∣∣∣∣cos(2πk

2t

)∣∣∣∣+

∣∣∣∣cos(2πk

2t

)
cos(π)− sin

(
2πk

2t

)
sin(π)

∣∣∣∣]

= 2

t−1∑
k=0

[∣∣∣∣cos(2πk

2t

)∣∣∣∣+

∣∣∣∣−cos(2πk

2t

)∣∣∣∣]

= 2

t−1∑
k=0

∣∣∣∣2cos(2πk

2t

)∣∣∣∣
⇒ E(Cn) = 2

t−1∑
k=0

∣∣∣∣2cos(2πk

2t

)∣∣∣∣
Now,

E(Cn) =
2t−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣
= 2

t−1∑
k=0

∣∣∣∣2cos(2πk

2t

)∣∣∣∣
= 2

t−1∑
k=0

∣∣∣∣2cos(πkt
)∣∣∣∣

= 2

[
|2cos(0)|+

t−1∑
k=1

∣∣∣∣2cos(πkt
)∣∣∣∣
]

= 2

[
2 +

t−1∑
k=1

∣∣∣∣2cos(πkt
)∣∣∣∣
]

⇒ E(Cn) = 2

[
2 +

t−1∑
k=1

∣∣∣∣2cos(πkt
)∣∣∣∣
]

Set l = t− 1, then

E(Cn) = 2

[
2 +

l∑
k=1

∣∣∣∣2cos( πk

l + 1

)∣∣∣∣
]
.

1.1 For t even and l odd, we have from Theorem 3.2.1 result 2,

l∑
k=1

∣∣∣∣2cos( πk

l + 1

)∣∣∣∣ = 2

(
cot

(
π

2(l + 1)

)
− 1

)
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So

E(Cn) = 2

[
2 +

l∑
k=1

∣∣∣∣2cos( πk

l + 1

)∣∣∣∣
]

= 2

[
2 + 2

(
cot

(
π

2(l + 1)

)
− 1

)]

= 4
[
1 + cot

( π
2t

)
− 1
]

= 4cot
( π

2t

)
= 4cot

(π
n

)
⇒ E(Cn) = 4cot

(π
n

)
1.2 For t odd and l even, we have from Theorem 3.2.1 result 1,

l∑
k=1

∣∣∣∣2cos( πk

l + 1

)∣∣∣∣ = 2

(
cosec

(
π

2(l + 1)

)
− 1

)
So

E(Cn) = 2

[
2 +

l∑
k=1

∣∣∣∣2cos( πk

l + 1

)∣∣∣∣
]

= 2

[
2 + 2

(
cosec

(
π

2(l + 1)

)
− 1

)]

= 4
[
1 + cosec

( π
2t

)
− 1
]

= 4cosec
( π

2t

)
= 4cosec

(π
n

)

⇒ E(Cn) = 4cosec
(π
n

)
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2. Now let n be odd, i.e. n = 2t+ 1. Then

E(Cn) =
2t∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣
=

∣∣∣∣2cos( 0

n

)∣∣∣∣+
2t∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣
=

∣∣∣∣2cos( 0

n

)∣∣∣∣+
t∑

j=1

[∣∣∣∣2cos( 2πj

2t+ 1

)∣∣∣∣+

∣∣∣∣2cos(2π(2t+ 1− j)
2t+ 1

)∣∣∣∣]

= 2 +
t∑

j=1

[∣∣∣∣2cos( 2πj

2t+ 1

)∣∣∣∣+

∣∣∣∣2cos(2π − 2πj

2t+ 1

)∣∣∣∣]

= 2 +
t∑

j=1

[∣∣∣∣2cos( 2πj

2t+ 1

)∣∣∣∣+

∣∣∣∣2cos(2π)cos

(
2πj

2t+ 1

)
+ 2sin(2π)sin

(
2πj

2t+ 1

)∣∣∣∣]

= 2 +

t∑
j=1

[∣∣∣∣2cos( 2πj

2t+ 1

)∣∣∣∣+

∣∣∣∣2cos( 2πj

2t+ 1

)∣∣∣∣]

= 2 + 2

t∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣
⇒ E(Cn) = 2 + 2

t∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣
2.1 Now for t even, we get

E(Cn) = 2 + 2
t∑

j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣

= 2 + 2

 t
2∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣+
t∑

j= t
2
+1

∣∣∣∣2cos(2πj

n

)∣∣∣∣


Now from Theorem 3.2.3, for t even (t = 2q and q ∈ N),

t∑
j= t

2
+1

∣∣∣∣cos(2πj

n

)∣∣∣∣ =

t
2∑
j=1

∣∣∣∣cos(2πj

n

)∣∣∣∣+
1

2
.
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so,

E(Cn) = 2 + 2

 t
2∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣+

t
2∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣+ 1



= 4 + 4

t
2∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣
Now for 1 ≤ j ≤ t

2
, 2cos

(
2πk

n

)
≥ 0, so

E(Cn) = 4 + 4

t
2∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣ = 4 + 4

t
2∑
j=1

2cos

(
2πj

n

)
= 4 + 4

n−1
4∑
j=1

2cos

(
2πj

n

)
.

Now from Theorem 3.2.1 result 3,

n−1
4∑
j=1

2cos

(
2πj

n

)
=

1

2
cosec

( π
2n

)
− 1;

so

E(Cn) = 4 + 4

(
1

2
cosec

( π
2n

)
− 1

)
= 2cosec

( π
2n

)
.

2.2 Now for t odd, we get

E(Cn) = 2 + 2
t∑

j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣

= 2 + 2

 t−1
2∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣+
t∑

j= t−1
2

+1

∣∣∣∣2cos(2πj

n

)∣∣∣∣


Now from Theorem 3.2.3, for t odd (t = 2q + 1 and q ∈ N),

t∑
j= t−1

2
+1

∣∣∣∣cos(2πj

n

)∣∣∣∣ =

t−1
2∑
j=1

∣∣∣∣cos(2πj

n

)∣∣∣∣+
1

2
.

So,

E(Cn) = 2 + 2

 t−1
2∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣+

t−1
2∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣+ 1



= 4 + 4

t−1
2∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣
Now for 1 ≤ j ≤ t

2
, 2cos

(
2πk

n

)
≥ 0, so

E(Cn) = 4 + 4

t−1
2∑
j=1

∣∣∣∣2cos(2πj

n

)∣∣∣∣ = 4 + 4

t−1
2∑
j=1

2cos

(
2πj

n

)
= 4 + 4

n−3
4∑
j=1

2cos

(
2πj

n

)
.
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Now from Theorem 3.2.1 result 4,

n−3
4∑
j=1

2cos

(
2πj

n

)
=

1

2
cosec

( π
2n

)
− 1;

so

E(Cn) = 4 + 4

(
1

2
cosec

( π
2n

)
− 1

)
= 2cosec

( π
2n

)
. �

3.2.3 Energy of The Wheel Graph

Theorem 3.2.5. (See Winter and Jessop [52])

The energy of the wheel graph Wn is

1. For n even,

E(Wn) = 2
√
n− 2 + 2cosec

(
π

2(n− 1)

)
.

2. For n odd, and n = 2t+ 1,

2.1 For t even, then

E(Wn) = 2
√
n− 2 + 4cot

(
π

n− 1

)
.

2.2 For t odd, then

E(Wn) = 2
√
n− 2 + 4cosec

(
π

n− 1

)
.

Proof. We know (see corollary 2.5.1) that the eigenvalues of the wheel graph Wn are: 0, 1±
√
n

(each with multiplicity 1), and λj = 2cos
2πj

n− 1
; j = 1,. . . ,n− 2 (each with multiplicity 1).

For n ≥ 4, we have

E(Wn) =
n∑
i=1

|λi|

= |0|+ |1 +
√
n|+ |1−

√
n|+

n−2∑
j=1

∣∣∣∣2 cos
2πj

n− 1

∣∣∣∣
= (1 +

√
n) + (−(1−

√
n)) +

n−2∑
j=1

∣∣∣∣2 cos
2πj

n− 1

∣∣∣∣
= 1 +

√
n− 1 +

√
n+

n−2∑
j=1

∣∣∣∣2 cos
2πj

n− 1

∣∣∣∣
⇒ E(Wn) = 2

√
n+

n−2∑
j=1

∣∣∣∣2 cos
2πj

n− 1

∣∣∣∣
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Setting k = n− 1, then

E(Wn) = 2
√
k + 1 +

k−1∑
j=1

∣∣∣∣2cos2πj

k

∣∣∣∣
= 2
√
k + 1 +

k−1∑
j=0

∣∣∣∣2cos2πj

k

∣∣∣∣− 2

= 2
√
k + 1− 2 +

k−1∑
j=0

∣∣∣∣2cos2πj

k

∣∣∣∣
From Theorem 3.2.4 we get

1. For n even, k odd,

E(Wn) = 2
√
k + 1− 2 +

k−1∑
j=0

∣∣∣∣2cos2πj

k

∣∣∣∣
= 2
√
k + 1− 2 + 2cosec

( π
2k

)
= 2
√
n− 2 + 2cosec

(
π

2(n− 1)

)

⇒ E(Wn) = 2
√
n− 2 + 2cosec

(
π

2(n− 1)

)
2. For n odd, k even, and k = 2t,

2.1 For t even, then

E(Wn) = 2
√
k + 1− 2 + 4cot

(π
k

)
Now n = k + 1 = 2t+ 1, so n is odd. Therefore

E(Wn) = 2
√
n− 2 + 4cot

(
π

n− 1

)
.

2.2 For t odd, then

E(Wn) = 2
√
k + 1− 2 + 4cosec

(π
k

)
.

Now n = k + 1 = 2t+ 1, so n is odd. Therefore

E(Wn) = 2
√
n− 2 + 4cosec

(
π

n− 1

)
. �

Lemma 3.2.4. For large values of n the following expressions behave in the following way:

1. lim
n→∞

[
cosec

(π
n

)]
≈ n

π
; n large

2. lim
n→∞

[
cot
(π
n

)]
≈ n

π
; n large.

91



Proof. we use the following results

(i) lim
x→0+

sinx = x

(ii) lim
x→0+

cosx = 1.

So,

1. lim
n→∞

[
cosec

(π
n

)]
= lim

n→∞

[
1

sin
(
π
n

)]

≈ 1
π
n

from (i)

=
n

π

2. lim
n→∞

[
cot
(π
n

)]
= lim

n→∞

[
cos
(
π
n

)
sin
(
π
n

)]

≈ 1
π
n

from (i) and (ii)

=
n

π

�

Theorem 3.2.6. For large n, the energy of paths, cycles and wheels (as classes denoted by F)
is:

lim
n→∞

E(F) ≈ 4n

π

Proof

(1)- Energy of the path graph Pn for large n:

For n even,

E(Pn) =
n∑
j=1

∣∣∣∣2cos( πj

n+ 1

)∣∣∣∣ = 2

(
cosec

π

2(n+ 1)
− 1

)

⇒ lim
n→∞

E(Pn) = lim
n→∞

[
2

(
cosec

π

2(n+ 1)
− 1

)]
≈ 2.2n

π
=

4n

π

For n odd,

E(Pn) =
n∑
j=1

∣∣∣∣2cos( πj

n+ 1

)∣∣∣∣ = 2

(
cot

π

2(n+ 1)
− 1

)

⇒ lim
n→∞

E(Pn) = lim
n→∞

[
2

(
cot

π

2(n+ 1)
− 1

)]
≈ 2.2n

π
=

4n

π

Therefore, for large n, the energy of the path graph Pn is

lim
n→∞

[E(Pn)] ≈ 4n

π
.
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(2)- Energy of the cycle graph Cn for large n:

For n even, n = 2t and t even,

E(Cn) =

n−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣ = 4cot
(π
n

)

⇒ lim
n→∞

E(Cn) = lim
n→∞

[
4cot

(π
n

)]
=

4n

π

For n even, n = 2t and t odd,

E(Cn) =

n−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣ = 4cosec
(π
n

)

⇒ lim
n→∞

E(Cn) = lim
n→∞

[
4cosec

(π
n

)]
=

4n

π

For n odd, n = 2t+ 1 and all t,

E(Cn) = 2cosec
( π

2n

)
⇒ lim

n→∞
E(Cn) = lim

n→∞

[
2cosec

( π
2n

)]
=

4n

π

Therefore, for large n, the energy of the cycle graph Cn is

lim
n→∞

[E(Cn)] =
4n

π
.

(3)- Energy of the wheel graph Wn for large n:

For large n we have

lim
n→∞

[E(Wn)] = lim
n→∞

2
√
n+

n−2∑
j=1

∣∣∣∣2cos 2πj

n− 1

∣∣∣∣
 .

Set k = n− 1. Then

lim
n→∞

[E(Wn)] = lim
k→∞

2
√
k + 1− 2 +

k−1∑
j=0

∣∣∣∣2cos2πj

k

∣∣∣∣


= lim
k→∞

[
2
√
k + 1− 2 + E(Ck)

]
≈ lim

k→∞
[E(Ck)]

= lim
n→∞

[E(Cn)]

=
4n

π

⇒ lim
n→∞

[E(Wn)] ≈ 4n

π
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Therefore, for large n, the energy of the wheel graph Wn is

lim
n→∞

[E(Wn)] ≈ 4n

π
.

�

3.3 Energy of generalized sun graphs

Theorem 3.3.1 (See Winter and Jessop [52])

The energy of the generalized sun graph SG(h,p) is

E(SG(h,p)) =

p∑
i=1

√
α2
j + 4h

where αj are the eigenvalues of A(G).

Proof. Let λj be the eigenvalues of A(SG(h,p). Then

E(SG(h,p)) =

p(h+1)∑
j=1

|λj | =
p∑
j=1

∣∣∣∣∣∣
αj +

√
α2
j + 4h

2

∣∣∣∣∣∣+

∣∣∣∣∣∣
αj −

√
α2
j + 4h

2

∣∣∣∣∣∣


Since

αj −
√
α2
j + 4h

2
< 0

we have

∣∣∣∣∣∣
αj −

√
α2
j + 4h

2

∣∣∣∣∣∣ =
−αj +

√
α2
j + 4h

2
.

So that,

E(SG(h,p)) =

p∑
j=1

αj +
√
α2
j + 4h

2
+
−αj +

√
α2
j + 4h

2



=

p∑
j=1

√
α2
j + 4h

where αj are the eigenvalues of A(G). �
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3.3.1 Energy of Caterpillar Graph

Let CT (k,l) be the caterpillar graph where k and l denote the number of vertices on the path and
the number of pendant edges respectively. This graph has n = k(l+ 1) vertices. Let L(CT (k,l))
be the line graph of CT (k,l).

Theorem 3.3.2. (see winter and Jessop [52])

The energy of L(CT (k,l)) is

E(L(CT (k,l))) = k(l − 1) +

k∑
j=2

∣∣∣∣12 (l − 1 + σj −
√
σ2j + 2(l + 1)σj + (l2 + 6l + 1)

)∣∣∣∣

+
k∑
j=2

∣∣∣∣12 (l − 1 + σj +
√
σ2j + 2(l + 1)σj + (l2 + 6l + 1)

)∣∣∣∣
where σj = 2cos

(
(k + 1− j)π

k

)
, for j = 1, . . . ,k.

Proof

The laplacian eigenvalues of the caterpillar graph CT (k,l) are given by Lemma 2.6.1 and since
CT (k,l) is a bipartite graph, from Lemma 2.6.2, the eigenvalues of L(CT (k,l)) can be derived
from the Laplacian eigenvalues of CT (k,l), namely

µ = λ− 2 = 1− 2 = −1, with multiplicity k(l − 1)

µj = λj − 2

=
1

2

(
l − 1 + σj −

√
σ2j + 2(l + 1)σj + (l2 + 6l + 1)

)
, where σj = 2cos

(
(k + 1− j)π

k

)
,

for j = 2, . . . ,k, and

µk+j =λj − 2

=
1

2

(
l − 1 + σj +

√
σ2j + 2(l + 1)σj + (l2 + 6l + 1)

)
, where σj = 2cos

(
(k + 1− j)π

k

)
,

for j = 1, . . . ,k.
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Therefore the energy of L(CT (k,l)) is

E(L(CT (k,l))) =

n∑
i=1

|λi|

= k(l − 1) +
k∑
j=2

∣∣∣∣12 (l − 1 + σj −
√
σ2j + 2(l + 1)σj + (l2 + 6l + 1)

)∣∣∣∣
+

k∑
j=1

∣∣∣∣12 (l − 1 + σj +
√
σ2j + 2(l + 1)σj + (l2 + 6l + 1)

)∣∣∣∣
where σj = 2cos

(
(k + 1− j)π

k

)
, for j = 1, . . . ,k. �

3.3.2 Energy of the Complete Sun Graph

Theorem 3.3.3. The energy of the complete sun graph is

E(CompSun(h,p)) = (p− 1)
√

1 + 4h+
√

(p− 1)2 + 4h.

Proof. From Theorem 3.3.1,

E(CompSun(h,p)) =

p∑
j=1

√
α2
j + 4h where αj are the eigenvalues of A(Kp)

= (p− 1)
√

1 + 4h+
√

(p− 1)2 + 4h. �

3.3.3 Energy of the Complete Split-bipartite Sun Graph

Theorem 3.3.4. The energy of the complete split-bipartite sun graph is

E(BipSun(h,p)) =
√
p2 + 16h+ 2(p− 2)

√
h.

Proof. From Theorem 3.3.1,

E(BipSun(h,p)) =

p∑
j=1

√
α2
j + 4h where αj are the eigenvalues of A(K p

2
, p
2
)

=

√(p
2

)2
+ 4h+

√(
−p

2

)2
+ 4h+ (p− 2)

√
4h

=
√
p2 + 16h+ 2(p− 2)

√
h. �
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3.3.4 Energy of the Wheel Sun Graph

Theorem 3.3.4. The energy of the wheel sun graph is

E(WheelSun(h,p)) = 2

p−2∑
k=1

√
cos2

(
2πk

p− 1

)
+ h+

√
(1 +

√
p)2 + 4h+

√
(1−√p)2 + 4h.

Proof. From Theorem 3.3.1,

E(WheelSun(h,p)) =

p∑
j=1

√
α2
j + 4h where αj are the eigenvalues of A(Wp)

=

p−2∑
k=1

√(
2cos

(
2πk

p− 1

))2

+ 4h+
√

(1 +
√
p)2 + 4h+

√
(1−√p)2 + 4h

= 2

p−2∑
k=1

√
cos2

(
2πk

p− 1

)
+ h+

√
(1 +

√
p)2 + 4h+

√
(1−√p)2 + 4h. �

3.3.5 Energy of the Star Sun Graph

Theorem 3.3.5. The energy of the Star sun graph is

E(StarSun(h,p)) = 2
√
p− 1 + 4h+ 2(p− 2)

√
h.

Proof. From Theorem 3.3.1,

E(starSun(h,p)) =

p∑
j=1

√
α2
j + 4h where αj are the eigenvalues of A(Sp−1,1)

=

√
(+
√
p− 1)2 + 4h+

√
(−
√
p− 1)2 + 4h+ (p− 2)

√
(0)2 + 4h

= 2
√
p− 1 + 4h+ 2(p− 2)

√
h. �

3.3.6 Energy of the Cycle Sun Graph

Theorem 3.3.6. The energy of the cycle sun graph is

E(CycleSun(h,p)) = 2

p−1∑
k=0

√
cos2

(
2πk

p

)
+ h.
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Proof. From Theorem 3.3.1,

E(CycleSun(h,p)) =

p∑
j=1

√
α2
j + 4h where αj are the eigenvalues of A(Cp)

=

p−1∑
k=0

√(
2cos

(
2πk

p

))2

+ 4h

= 2

p−1∑
k=0

√
cos2

(
2πk

p

)
+ h. �

3.4 Energy of some other Graphs

3.4.1 Energy of The Complete Graph

Let Kn be the complete graph on n vertices, and with
n(n− 1)

2
edges. The eigenvalues of the

complete graph Kn on n vertices are λ = 1 (with multiplicity (n − 1)), and λ = (n − 1) with
multiplicity 1 (See Jessop [28] and section 2.5.3)

So the energy of the complete graph is

E(Kn) = 2(n− 1).

For large n, the energy of the complete graph Kn is

lim
n→∞

[E(Kn)] ≈ 2n.

3.4.2 Energy of The Complete Split-bipartite Graph Kn

2
,
n

2

Let Kn

2
,
n

2

be the complete split-bipartite graph on n vertices, and with
n2

4
edges. The eigenval-

ues of the complete split-bipartite Graph Kn

2
,
n

2

are λ = 0 (with multiplicity n−2) and λ = ±n
2

(each with multiplicity 1). See Jessop [28].

So the energy of the complete split-bipartite graph is

E(Kn

2
,
n

2

) = n.

For large n, the energy of the complete split-bipartite graph Kn

2
,
n

2

is

lim
n→∞

E(Kn

2
,
n

2

)

 = n.

98



3.4.3 Energy of The Star Graph, with rays of length 1

Let Sn−1,1 be the star graph on n vertices, and with n − 1 rays of length 1, n ≥ 2. The
eigenvalues of the star graph Sn−1,1 are λ = 0 (with multiplicity n− 2) and λ = ±

√
n− 1 (each

with multiplicity 1). See Jessop [28] and Theorem 2.5.6

So the energy of the star graph Sn−1,1 is

E(Sn−1,1) = 2
√
n− 1.

For large n, the energy of the star graph Sn−1,1 is

lim
n→∞

[
E(Sn−1,1)

]
≈ 2
√
n.

3.4.4 Energy of The Star Graph, with rays of length 2

Let Sn−1
2

,2 be the star graph on n vertices, and with
n− 1

2
rays of length 2, n ≥ 3. The eigen-

values of the star graph Sn−1
2

,2 are λ = 0 (with multiplicity 1), λ = ±1 (each with multiplicity

n− 1

2
−1 ) and λ = ±

√
n− 1

2
+ 1 (each with multiplicity 1). See Jessop [28] and Theorem 2.5.7

So the energy of the star graph Sn−1
2

,2 is

E(Sn−1
2

,2) = n− 3 +
√

2(n+ 1)

For large n, the energy of the star graph Sn−1
2

,2 is

lim
n→∞

[
E(Sn−1

2
,2)
]
≈ n+

√
2n.

3.4.5 Energy of The Dual Star Graph

Let DuSn be the dual star graph. We know (see Winter and Jessop [51] and section 2.5.9.) that
the eigenvalues of DuSn are:

λ1 =

√
(n− 1) +

√
2n− 3

2
, λ2 = −

√
(n− 1) +

√
2n− 3

2
,

λ3 =

√
(n− 1)−

√
2n− 3

2
and λ4 = −

√
(n− 1)−

√
2n− 3

2

each with multiplicity 1.

So the energy of the dual star graph DuSn is

E(DuSn) = 2

√
(n− 1) +

√
2n− 3

2
+ 2

√
(n− 1)−

√
2n− 3

2
.

For large n, the energy of the dual star graph DuSn is

lim
n→∞

[E(DuSn)] ≈ 2

√
n+
√

2n

2
+ 2

√
n−
√

2n

2
≈ 2
√

2n.
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3.4.6 Energy of The Lollipop Graph

Theorem 3.4.1. The energy of the lollipop graph LPn is

E(LPn) = n− 3.

Proof. The eigenvalues of the lollipop graph LPn are λ = −1 (multiplicity n−3); So, the energy
of the lollipop graph LPn is

E(LPn) = |(−1)|(n− 3)

= n− 3. �

3.4.7 Energy of The Friendship Graph

Theorem 3.4.2. The energy of a friendship graph Fp on n vertices, where p = n−1
2 is

E(Fp) = (2p− 1) +
√

1 + 8p.

See M.R. Rajesh Kanna and All [35]

Proof. Eigenvalues of Fp are λ = −1 (with multiplicity p), λ = 1 (with multiplicity (p − 1)),

λ =
1 +
√

1 + 8p

2
(with multiplicity 1) and λ =

1−
√

1 + 8p

2
(with multiplicity 1);

See Theorem 2.5.12 in section 2.5. The energy of the friendship graphs Fp is

E(Fp) = |(−1)|p+ |1|(p− 1) +

∣∣∣∣1 +
√

1 + 8p

2

∣∣∣∣+

∣∣∣∣1−√1 + 8p

2

∣∣∣∣
= (2p− 1) +

∣∣∣∣−1−
√

1 + 8p

2

∣∣∣∣+

∣∣∣∣1−√1 + 8p

2

∣∣∣∣ = (2p− 1) +

∣∣∣∣−1

2
+

1

2
− 2

√
1 + 8p

2

∣∣∣∣
= (2p− 1) +

√
1 + 8p. �

3.4.8 Energy of the Line Graph of the complete graph Kn

Let L(Kn) be the Line Graph of the complete graph Kn. We know (see theorem 2.5.11), that

the eigenvalues of L(Kn) are: λ = −2, with multiplicity n(n−3)
2 ; λ = 2n− 4, with multiplicity 1,

and λ = n− 4, with multiplicity (n− 1). So that, the energy of L(Kn), for n ≥ 5, is

E(L(Kn)) = 2n2 − 6n.

Proof.

E(L(Kn)) = | − 2|n(n− 3)

2
+ |2n− 4|+ |n− 4|(n− 1)

= n(n− 3) + 2n− 4 + (n− 4)(n− 1)

= 2n2 − 6n. �
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3.5 Energy of the complement of the cycle graph

The bulk of the proof is my own.

Theorem 3.5.1.[27] The energy of the complement of a cycle graph Cn is

E(Cn) =



2

(
2n− 9

3
+
√

3 cot
π

n

)
; for n = 3k

2

(
2n− 8

3
+

2 sin π
3 (1− 1

n)

sin π
n

)
; for n = 3k + 1 (k ≥ 1)

2

(
2n− 10

3
+

2 sin π
3 (1 + 1

n)

sin π
n

)
; for n = 3k + 2.

Proof.

We know by Example 2.7.2 that, the eigenvalues of the complement of a Cycle graph Cn, on n
vertices (with n ≥ 3), are:

n− 3, − 1− 2 cos

(
2πj

n

)
, j = 1, . . . , (n− 1); each with multiplicity1.

So that

E(Cn) =| n− 3 | +
n−1∑
j=1

| −1− 2 cos

(
2πj

n

)
|

= n− 3 +
n−1∑
j=1

| −(1 + 2 cos

(
2πj

n

)
) |

⇒ E(Cn) = n− 3 +
n−1∑
j=1

| −(1 + 2 cos

(
2πj

n

)
) | . (1)

∣∣∣∣−(1 + 2 cos

(
2πj

n

)
)

∣∣∣∣ =


−
(

1 + 2 cos

(
2πj

n

))
; if −

(
1 + 2 cos

(
2πj

n

))
≥ 0

1 + 2 cos

(
2πj

n

)
; if −

(
1 + 2 cos

(
2πj

n

))
≤ 0

Case 1. n = 3k ⇒ k =
n

3
.

Then,

−(1 + 2 cos

(
2πj

n

)
) ≥ 0⇐⇒ 1 + 2 cos

(
2πj

n

)
≤ 0

⇐⇒ cos

(
2πj

n

)
≤ −1

2
⇐⇒ 2π

3
≤ 2πj

n
≤ 4π

3

⇐⇒ 1

3
≤ j

n
≤ 2

3
⇐⇒ n

3
≤ j ≤ 2n

3
.
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Let

2n
3∑

j=n
3

(1 + 2 cos

(
2πj

n

)
) =

n

3
+ 1 +

2n
3∑

j=n
3

2 cos

(
2πj

n

)

=
n+ 3

3
+

2n
3∑

j=n
3

2 cos

(
2πj

n

)
2n
3∑

j=n
3

(1 + 2 cos

(
2πj

n

)
) =

n+ 3

3
+

2n
3∑

j=n
3

2 cos

(
2πj

n

)

and

C =

2n
3∑

j=n
3

2 cos

(
2πj

n

)
; S =

2n
3∑

j=n
3

2 sin

(
2πj

n

)
; γ = cos

2π

n
+i sin

2π

n
so that γj = cos

2πj

n
+i sin

2πj

n
.

Then

C + iS = 2

2n
3∑

j=n
3

γj = 2(γ
n
3 + γ

n
3
+1 + γ

n
3
+2 + · · ·+ γ

2n
3
−1 + γ

2n
3 )

= 2γ
n
3 (1 + γ + γ2 + · · ·+ γ

n
3
−1 + γ

n
3 )

= 2γ
n
3

(
1− γ

n
3
+1

1− γ

)
; γ 6= 1.

So

C + iS = 2

(
cos

(
2π

n
.
n

3

)
+ i sin

(
2π

n
.
n

3

))(
1−

(
cos 2π

n .
(
n
3 + 1

)
+ i sin 2π

n .
(
n
3 + 1

))
1−

(
cos 2π

n + i sin 2π
n

) )

= 2

(
−1

2
+

√
3

2
i

)
(

1 + 1
2 cos 2π

n +
√
3
2 sin 2π

n

)
+ i
(
1
2 sin 2π

n −
√
3
2 cos 2π

n

)
(
1− cos 2π

n

)
− i sin 2π

n



C + iS =

2

(
−1

2
+

√
3

2
i

)
(

1 + 1
2 cos 2π

n +
√
3
2 sin 2π

n

)
+ i
(
1
2 sin 2π

n −
√
3
2 cos 2π

n

)
(
1− cos 2π

n

)2
+ sin2 2π

n

((1− cos
2π

n

)
+ i sin

2π

n

)
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Let

K = (1 +
1

2
cos

2π

n
+

√
3

2
sin

2π

n
)

(
1− cos

2π

n

)

iL = i(1 +
1

2
cos

2π

n
+

√
3

2
sin

2π

n
) sin

2π

n

iM = i

(
1

2
sin

2π

n
−
√

3

2
cos

2π

n

)(
1− cos

2π

n

)

N =

(√
3

2
cos

2π

n
− 1

2
sin

2π

n

)
sin

2π

n

So,

C + iS = 2

(
−1

2
+

√
3

2
i

)(
(K +N) + i(L+M)

2− 2 cos 2π
n

)

=
1

2

(
−(K +N)−

√
3(L+M)

1− cos 2π
n

+ i

√
3(K +N)− (L+M)

1− cos 2π
n

)
.

Taking the real parts:

C =

2n
3∑

j=n
3

2 cos
2πj

n
=

1

2

(
−(K +N)−

√
3(L+M)

1− cos 2π
n

)

= −1

2

(K +
√

3M) + (N +
√

3L)

1− cos 2π
n

= −1

2
.
(1− cos 2π

n +
√

3 sin 2π
n )(1− cos 2π

n ) + (
√

3 +
√

3 cos 2π
n + sin 2π

n ) sin 2π
n

1− cos 2π
n

= −1

2

(
2− 2 cos 2π

n + 2
√

3 sin 2π
n

1− cos 2π
n

)

= −

(
1− cos 2π

n +
√

3 sin 2π
n

1− cos 2π
n

)

= −

(
1 +

2
√

3 cos πn sin π
n

1− (cos2 πn − sin2 π
n)

)

= −

(
1 +

2
√

3 cos πn sin π
n

2 sin2 π
n

)

So, we get

C = −(1 +
√

3 cot
π

n
).
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And
2n
3∑

j=n
3

(1 + 2 cos
2πj

n
) =

n+ 3

3
− (1 +

√
3 cot

π

n
).

The total sum of all the positive eigenvalues of Cn is

n− 3 +

2n
3∑

j=n
3

(
−(1 + 2 cos

2πj

n
)

)
= n− 3−

2n
3∑

j=n
3

(1 + 2 cos
2πj

n
)

= n− 3−
(
n+ 3

3
− (1 +

√
3 cot

π

n
)

)
= n− 3 + (1 +

√
3 cot

π

n
)− n+ 3

3
;

=
2n− 9

3
+
√

3 cot
π

n
.

Thus, using the lemma 3.1.1, the energy of the complement of a cycle graph, on n vertices with
n ≥ 3 and n ≡ 0(mod 3) i.e n = 3k with k ≥ 1, is

E(Cn) = 2

(
2n− 9

3
+
√

3 cot
π

n

)
.

Similarly we can provide the other two cases: for n = 3k + 1 and n = 3k + 2, k ≥ 1. �

3.6 Hyper-energetic graphs

A graph G, having energy greater than the complete graph Kn on the same number of vertices
n, is called hyper-energetic i.e.

E(G) > 2(n− 1) (see Stevanovic [41]).

Example: The line graph L(Kn) of the complete graph Kn is hyper-energetic for n ≥ 5.

Because, we know (see section 3.4.8) that E(L(Kn)) = 2n2−6n, and since L(Kn) has n(n−1)/2
vertices, E(Kn(n−1)/2) = 2(n(n− 1)/2− 1) = n2 − n− 2. So that

E(L(Kn)) = 2n2 − 6n > n2 − n− 2 = E(Kn(n−1)/2) for n ≥ 5.

3.7 Conclusion

Using the eigenvalues found in previous chapter , we have determined the energy of some classes
of graphs studied in chapter 1. We analyzed the energies of the path graph, cycle graph and
wheel graph on n vertices. We expressed the energy of cycles, paths and wheels in terms of
simplified expressions using the cotangent or cosecant. We used the analytical methods.
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Chapter 4

THE CHROMATIC NUMBER OF
A GRAPH

In this Chapter, we give a brief history about the origin and the importance of the chromatic
number. we give also the basic definitions on different types of colouring, and everything on
finding the chromatic number of graphs.

In Graph theory, graph colouring is a special case of graph labeling. It is an assignment of labels
traditionally called colours to the edges or vertices of a graph based on a set of specified criteria
is known as graph colouring. In its simplest form, it is a way of colouring the vertices of a graph
such that no two adjacent vertices share the same colour; this is called a Vertex colouring.

The chromatic idea can be translated to a molecular construction. So, the chromatic number
associated with the molecular graph (the atoms are vertices and edges are bonds between the
atoms) would involve the partitioning of the atoms into the smallest number of sets of like atoms
so that like atoms are not bonded. For example, the water molecule H2O has two hydrogen
atoms bonded to an oxygen atom, the hydrogen atoms are not bonded, so that, the molecular
graphic version would involve the chromatic number of 2, where the oxygen atom has a differ-
ent colour to the hydrogen atoms which are assigned the same colour; While, the benzene ring
molecule C6H6 has same atoms (carbon atoms) are bonded.

OH H

Figure 4.1. Water molecule

C

HC

H

C

H

C

H C

H

C

H

Figure 4.2. The benzene ring molecule
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The other examples: the hydrogen sulfide molecule H2S, the ammonia molecule H3N , the meth-
ane molecule CH4 have respectively two, three, four hydrogen atoms bonded to another atom,
such that same atoms are not bonded.
The atoms bond to form molecules. And different atoms are forced to bond in order to get
stability ; Different atoms come together to achieve the noble gas configuration. This coming
together and sharing of electron pairs leads to the formation of a chemical bond know as a
covalent bond.

SH H

Figure 4.3. The hydrogen sulfide molecule

N

H

H H

Figure 4.4. The ammonia molecule

C

H

H H

H

Figure 4.5. The methane molecule

A covalent bond is a shared pair of electrons between two different nonmetal atoms. These
electrons can originate from one atom, or one electron can originate from each of the two atoms.
The two electrons in the bond are attracted to both atomic nuclei and are shared between the
two atoms. Two different atoms share the electrons because atoms (other than hydrogen and
helium) are most stable when surrounded by eight electrons (an octet), which means that an
atom with a full octet of electrons has lower energy (is more stable) than one without a full
octet (See Winter, Mayala and Namayanja [56] and Wiswesser [57]).

4.1 Origin of Chromatic Theory

Chromatic Theory goes back to a problem, posed some 152 years ago, relating to the colouring
of maps, either real or imaginary. The condition postulated was that countries with a common
border line (and not just a border point) should receive different colours.

The question was, ”How many colours are needed to cover all the different maps imaginable?”
The practical answer turned out to be four at most, but this was only proved theoretically by
K. Appel and W. Haken some 40 years ago. The first proof was published in 1976 as a 140 pages
document with microfiche of some 1482 cases, after many hundreds of hours of computer work.

Apart from being an exercise in abstract thinking, what practical application does this have?
The chromatic theory brings one immediate application to mind. If you want to make a timetable
for an exam, one common condition is that you cannot have two papers written by students
at the same time if one or more of the students has to write both papers. If you rephrase the
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problem correctly it turn out to be a simple colouring matter. The idea of using the minimum
number of colors then translates to, ”What is the minimum number of session you need to set
up the timetable?”

4.2 Vertex colouring

Vertex colouring is the following optimization problem: given a graph G, how many colours are
required to colour its vertices in such a way no two adjacent vertices receive the same colour?
The required number of colours is called the chromatic number of G and is denoted by χ(G).

Although the chromatic number is one of the most studied parameters in graph theory, no
formula exits for the chromatic number of an arbitrary graph. Thus, for the most part, one
must be content with supplying bounds for the chromatic number of graphs.

4.2.1 Definitions

Definition 4.1. A (vertex) colouring of a graph G is a mapping φ : V (G) −→ S. The elements
of S are called colurs; the vertices of one colour form a colour class. If |S| = k, we say that φ is
a k-colouring (often we use S = {1, . . . ,k}).

Definition 4.2. A k-colouring of a graph G is a vertex colouring of G that uses k colours.

Definition 4.3. A vertex colouring is proper if adjacent vertices have different colours.

Definition 4.4. A graph G is said to be k-colurable if it has a proper k-colouring.

Definition 4.5. The Chromatic number χ(G) of a graph G is the smallest number k for which
G is k-colourable. Thus

χ(G) = min{k : G is k-colourable.}

Definition 4.6. A graph G is k-chromatic if χ(G) = k.

Definition 4.7. The greedy colouring relative to a vertex ordering v1, v2,. . . ,vn of V G) is
obtained by colouring the vertices in the order v1, v2,. . . ,vn, assigning to vi the smallest-indexed
colour not already used on its lower-indexed neighborhood.

4.2.2 Lower bounds of the chromatic number

Proposition 4.1. Let H be a subgraph of a graph G. Then χ(H) ≤ χ(G).

Proof. We suppose that χ(G) = k, then there exits a k-colouring φ of G. The colouring φ assigns
distinct colours to every two adjacent vertices of H, since φ assigns distinct colours to every two
adjacent vertices of G. Therefore, H is k-colourable, so that k = χ(G) ≥ χ(H) i.e
χ(H) ≤ χ(G). �

Proposition 4.2. Let ω(G) be the clique number of a graph G, then ω(G) ≤ χ(G).

Proof. Recall that the clique number, ω(G), of a graph G is the maximal number of vertices in
complete subgraph of G.
Obviously, by Proposition 4.1 above, we have ω(G) ≤ χ(G). �

Proposition 4.3. If G is a graph of order n, then

n

α(G)
≤ χ(G)
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where α(G) is the independence number of G.

Proof. Suppose that χ(G) = k and let there be given a k-colouring of G, the vertices being
coloured with the same colour form an independent set. Let G be a graph with n vertices and
φ a k- colouring of G. We define

Vi = {v : φ(v) = i}

for i = 1, 2,. . . ,k. Each Vi is an independent set. We have

|Vi| ≤ α(G).

Since
n = |V (G)| = |V1|+ |V2|+ · · ·+ |Vk| ≤ k.α(G) = χ(G)α(G)

we have

n

α(G)
≤ χ(G) �

4.2.3 Upper bounds of the chromatic number

Most upper bounds on the chromatic number come from algorithms that produce colourings.
The most widespread one is the greedy algorithm.

Propositin 4.4. For any graph G, let ∆(G) = max{d(v) : v ∈ V (G)}. Then

χ(G) ≤ ∆(G) + 1.

Proof. In a vertex-ordering, each vertex has at most ∆(G) earlier neighbours, so the greedy
colouring cannot be forced to use more than ∆(G) + 1 colours.
This proves that χ(G) ≤ ∆(G)+1. �

Proposition 4.5. Suppose that in every subgraph H of G there is a vertex with degree at most
δ in H. Then

χ(G) ≤ δ + 1.

Proof. There is a vertex with degree at most δ in G. We label that vertex vn. There is a
vertex with degree at most δ in G − vn that we label vn−1. Label the vertex with degree at
most δ in G − {vn, vn−1} by vn−2. Continuing to label all the vertices in G as v1, v2, . . . , vn.
Apply the greedy algorithm according to this labeling. At each step, the vertex we are going to
colour is adjacent to at most δ vertices that are already coloured. Therefore, δ+1 colours will be
enough. �

Proposition 4.6. Let G be any graph of order n. Then

χ(G) ≤ n− α(G) + 1

Proof. Let X be a maximum independent set of G and assign the colour 1 to each vertex o
X. Assigning distinct colours different from 1 to each vertex of V (G) − X produces a proper
colouring of G. Hence

χ(G) ≤ |V (G)−X|+ 1 = n− α(G) + 1

as well.
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4.2.4 Chromatic Numbers of Generated Graphs

Two operations on graphs that are often encountered are the union and join.

Proposition 4.7. (See Zhang and Chartarand [59])
For any k graphs G1,G2,. . . ,Gk,

χ(G1 ∪G2 ∪ · · · ∪Gk) = max{χ(Gi) : 1 ≤ i ≤ k}.

So that, for any two graphs G1 and G2,

χ(G1 ∪G2) = max{χ(G1), χ(G2)}.

The following is then an immediate consequence of Proposition 4.7.

Corollary 4.1 If G is a graph with components G1,G2,. . . ,Gk, then

χ(G) = max{χ(Gi) : 1 ≤ i ≤ k}.

Proposition 4.8. If G is a nontrivial connected graph with blocks B1,B2,. . . ,Bk, then

χ(G) = max{χ(Bi) : 1 ≤ i ≤ k}.

Proof. This is a result analogous to Corollary 4.1 that expresses the chromatic number of a
graph in term of the chromatic number of the blocks.

Proposition 4.9. (See Zhang and Chartarand [59])
Let G1,G2,. . . ,Gk be graphs, then the chromatic number of the join of G1,G2,. . . ,Gk is

χ(G1 ⊕G2 ⊕ · · · ⊕Gk) = χ(G1) + χ(G2) + · · ·+ χ(Gk).

So that, for any two graphs G1 and G2, the chromatic number of the join of G1 and G2 is

χ(G1 ⊕G2) = χ(G1) + χ(G2).

Proof. Corollary 4.1 and Proposition 4.8 tell us that we can restrict our attention to 2-connected
graphs when studying the chromatic number of graphs. In the case of joins, we have the above
result.

In the join G1 ⊕ G2 of G1 and G2, no colour used on the subgraph G1 can be the as a colour
used on the subgraph G2, since every vertices of G1 is adjacent to every vertices of G2. Since
χ(G1) colours are required for the subgraph G1 and χ(G2) colours are required for the subgraph
G2, then

χ(G1 ⊕G2) ≥ χ(G1) + χ(G2);

Using any χ(G1) colours to properly colour the subgraph G1 of G1⊕G2 and using χ(G2) different
colours to colour the subgraph G2, we have

χ(G1 ⊕G2) ≤ χ(G1) + χ(G2).

�
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4.3 Chromatic Numbers of classes of Graphs

4.3.1 Chromatic number of the Complete graphs

Proposition 4.10. Let Kn be the complete graph on n vertices. The chromatic number of Kn

is
χ(Kn) = n.

Proof. The complete graph on n vertices is clearly n-colourable, but not (n−1)colourable. Thus
χ(Kn) = n. �

4.3.2 Chromatic number of the k-partite graphs

Proposition 4.11.

(1) The chromatic number of a k-partite graph is k.

(2) Let G be a graph. If G is bipartite, then its chromatic number is χ(G) = 2.

Proof.

We Give each vertex in a single partition one colour. Let ith partition Pi with colour Ci. Since
there are k-partitions, we will have k colours. This gives result (1) of Proposition 4.11.
A 2-colouring is obtained by assigning one colour to every vertex in one of the bipartition parts
and another colour to every vertex in the other part. �

4.3.3 Chromatic number of the Complete bipartite graphs

Let Km,n be the complete bipartite graph on (m + n) vertices, with partition (V1,V2), where
| V1 |= m and | V2 |= n.

Proposition 4.12. The chromatic number of Km,n is

χ(Km,n) = 2.

Proof. Since the complete bipartite graphs are bipartite. �

4.3.4 Chromatic number of the Path graphs

Proposition 4.13. The path graphs Pn have the the chromatic number

χ(Pn) = 2

Proof. Because, the path graphs are bipartite. �

4.3.5 Chromatic number of the Cycle graphs

Proposition 4.14. Let Cn be a cycle graph on n vertices, with n even i.e. n = 2k. Then

χ(C2k) = 2.
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Proof. A cycle graph Cn, n = 2k, is bipartite. So that, from Proposition 4.11,
χ(C2k) = 2. �

Proposition 4.15. The cycle graphs Cn on n vertices, with n odd i.e. n = 2k + 1, have the
chromatic number

χ(C2k+1) = 3.

Proof. Let v1, . . . , v2k+1 be the vertices of cycle graph C2k+1. If two colours were to suffice,
then they would have to alternate around the cycle. Thus, the odd-subscripted vertices would
have to be one colour and the even-subscripted ones the other. But vertex v2k+1 is adjacent to
v1, which means that the odd-cycle graph C2k+1 is not 2-colourable. �

4.3.6 Chromatic number of the Wheel graphs

Let Wn be a wheel graph on n vertices, and n− 1 spokes, with n ≥ 4.

Proposition 4.16. The chromatic number of the wheel graph Wn, on n vertices is given by

χ(Wn) =


3 if n is odd,

4 if n is even.

Proof. For the wheel graphs Wn,

(1) if n odd i.e. n = 2k + 1, We use the fact that the wheel graph W2k+1 is the join of an
even-cycle graph C2k and complete graph K1, by the Proposition 4.9 above, we have

Wn = W2k+1 = C2k ⊕K1

⇒ χ(W2k+1) = χ(C2k ⊕K1)

= χ(C2k) + χ(K1)

= 2 + 1

= 3;

(2) if n even i.e. n = 2k, The wheel graph W2k is the join of an odd-cycle graph C2k+1 and
complete graph K1. Then by the Proposition 4.9, we have

Wn = W2k = C2k+1 ⊕K1

⇒ χ(W2k) = χ(C2k+1 ⊕K1)

= χ(C2k+1) + χ(K1)

= 3 + 1

= 4. �
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4.3.7 Chromatic number of the Star graphs of length 1

Let Sn−1,1 be the star graph on n vertices, and with n− 1 rays of length 1, n ≥ 2.

Proposition 4.17. The chromatic number of the star graph Sn−1,1 is

χ(Sn−1,1) = 2.

Proof. By considering Sn−1,1 as the join of the complement of complete graph Kn−1 and K1.
That is Sn−1,1 = Kn−1 ⊕K1. Note that χ(Kn−1) = 1. Hence

χ(Sn−1,1) = χ(Kn−1 ⊕K1)

= χ(Kn−1) + χ(K1), by Proposition 4.9,

= 1 + 1

= 2. �

4.3.8 Chromatic number of the Star graphs of length 2

Let Sn−1
2

,2 be the star graph on n vertices, with
n− 1

2
rays of length 2, n ≥ 3.

Proposition 4.18. The chromatic number of the star graph Sn−1
2

,2 is

χ(Sn−1
2

,2) = 2.

Proof. The star graph Sn−1
2

,2 is a bipartite graph. �

4.3.9 Chromatic number of the Lollipop Graphs

Let LPn be the lollipop graph on n vertices, n > 2, consisting of the complete graph Kn−1 on
(n− 1) vertices, appended by edge x1x2 to a single end vertex x2 from Kn.

Proposition 4.19. The chromatic number of the lollipop graph LPn, with base the complete
graph on (n− 1) vertices, is:

χ(LPn) = n− 1

Proof. From 4.3.1 we colour Kn−1, the subgraph of LPn, with n− 1 colours. Let x2 ∈ V (Kn−1)
be coloured with colour 1. Then x1 cannot be coloured with colour 1 because x1x2 is an edge
of LPn. However, x1 can have any of the other colours for vertices in V (Kn−1 r {x1}). Hence
χ(LPn) = n−1. �

4.3.10 Chromatic number of The Complete Split-bipartite Graph

Let Kn

2
,
n

2

be the complete split-bipartite graph on n vertices, and with
n2

4
edges.
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Proposition 4.20. The chromatic number of the complete split-bipartite Graphs is

χ(Kn

2
,
n

2

) = 2.

Proof. Since they are bipartite. �

4.3.11 Chromatic number of the Friendship graph

Proposition 4.21. The chromatic number of the Friendship Graphs Fp on n vertices, where
p = n−1

2 , is
χ(Fp) = 3.

Proof. Since they are constructed by p copies of the odd-cycle graph C3 which has chromatic
number χ(C3) = 3. �

4.4 Chromatic number of generalized Sun graph

4.4.1 Chromatic number of the Caterpillar graphs

Let CT (k,l) be the caterpillar graph where k and l denote the number of vertices on the path and
the number of pendant edges respectively. This graph has n = k(l+ 1) vertices. The chromatic
number of the caterpillar graph L(CT (k,l)) is

χ(L(CT (k,l))) = 2.

See Winter [46]

4.4.2 Chromatic number of the Complete Sun Graph

Let CompSun(h,p) be the complete sun graph which consists of the complete graph Kp, with h
end vertices appended to each of the p vertices in Kp. This graph has n = (h+ 1)p vertices.

Proposition 4.22. The chromatic number of the Complete sun Graphs is

χ(CompSun(h,p)) = p.

Proof. Since they are constructed from the complete graph Kp which has chromatic number
χ(Kp) = p. See section 4.3.1. �

4.4.3 Chromatic number of the Complete Split-bipartite Sun Graph

Let BipSun(h,p) be the complete split-bipartite sun graph which consists of the complete split-
bipartite graph K p

2
, p
2
, with h end vertices appended to each of the p vertices in K p

2
, p
2
. This

graph has n = (h+ 1)p vertices.

Proposition 4.23. The chromatic number of the Complete split-bipartite sun Graphs is

χ(BipSun(h,p)) = 2.

Proof. Since they are constructed from the complete split-bipartite graph K p
2
, p
2

which has chro-

matic number χ(K p
2
, p
2
) = 2. See section 4.3.10. �
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4.4.4 Chromatic number of the Cycle Sun Graph

Let CycleSun(h,p) be the cycle sun graph which consists of the cycle graph Cp, with h end
vertices appended to each of the p vertices in Cp. This graph has n = (h+ 1)p vertices.

Proposition 4.24. The chromatic number of the Cycle sun Graphs is

χ(CycleSun(h,p)) =


2 if p is even,

3 if p is odd.

Proof. Since they are constructed from the cycle graph Cp which has chromatic number

χ(Cp) = 2 if p is even and χ(Cp) = 3 if p is odd. See section 4.3.5. �

4.4.5 Chromatic number of the Wheel Sun Graph

Let WheelSun(h,p) be the wheel sun graph which consists of the Wheel graph Wp, with h end
vertices appended to each of the p vertices in Wp. This graph has n = (h+ 1)p vertices.

Proposition 4.25. The chromatic number of the Wheel sun Graphs is

χ(WheelSun(h,p)) =


4 if p is even,

3 if p is odd.

Proof. Since they are constructed from the Wheel graph Wp which has chromatic number

χ(Wp) = 4 if p is even and χ(Wp) = 3 if p is odd. See section 4.3.6. �

4.4.6 Chromatic number of the Star Sun Graph

Let StarSun(h,p) be the star sun graph which consists of the star graph Sp−1,1, with h end
vertices appended to each of the p vertices in Sp−1,1. This graph has n = (h+ 1)p vertices.

Proposition 4.26. The chromatic number of the star sun Graphs is

χ(StarSun(h,p)) = 2.

Proof. Since they are constructed from the star graph Sp−1,1 which has chromatic number
χ(Sp−1,1) = 2. See section 4.3.7. �
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4.5 Chromatic number of the complement of the Cycle graph

Proposition 4.27. The chromatic number of the complement of the Cycle graph on n vertices,
n ≥ 3, is

χ(Cn) =


n− 2 for n even

n− 3 for n odd

Proof. We know that the complete graph, Kn, on n vertices is the join of the cycle graph, Cn
and the complement of the cycle graph, Cn. So, we write

Kn = Cn ⊕ Cn.

Kn is k-regular; Cn is 2-regular, and Cn is (k − 2)-regular, with k = n− 1.

And
χ(Kn) = χ(Cn ⊕ Cn) = χ(Cn) + χ(Cn)

⇒ χ(Cn) = χ(Kn)−χ(Cn) = n−a, (a = 2 if n is even, and a = 3 if n is odd). �

4.6 Conclusion

In this chapter, we have determined the chromatic number of all the classes of graphs we had
defined and of which we have analyzed the energy in the previous chapter. The chromatic
number of a graph G is denoted by χ(G). So We found the chromatic number of the complete
graph Kn, on n vertices is χ(Kn) = n, while the chromatic number of the k-partite graphs G is
χ(G) = k.
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Chapter 5

THE EIGEN-CHROMATIC RATIO
OF CLASSES OF GRAPHS WITH
ITS ASYMPTOTIC AND AREA
ASPECTS

This chapter is original and based on publication (see P. A. Winter, R. M. Mayala and P.
Namayanja [56]).

5.1 Ratios and Areas

Ratios have always been an important aspect of graph theoretical definitions. The following are
examples of various ratios which have been studied which provide motivation for the new ratios
which we discuss here: expanders (see Alon and Spencer [2]), the central ratio of graph (see
Buckley [13]), Eigen-pair ratio of classes of graphs (see Winter and Jessop [49]), independence
and Hall ratios (see Gábor [20]), tree-cover ratio of graphs (see Winter and Adewusi [48]), the
eigen-energy formation ratio of graphs (see Winter and Sarvate [55]), the chromatic-cover ratio
of graphs (see Winter [46]), the eigen-complete difference ratio (see Winter and Ojako [54]).
These ratios provided the motivation for our definition of the eigen-chromatic ratio which we
discuss below.

We show that the complete graph is associated with the value 1/2 when a large number of atoms
are involved - this has allowed for the investigation of a molecular stability associated with the
idea of hyper/hypo- energetic graphs, elaborated below.

By introducing the average degree of a graph together with the Riemann integral of each new
ratio defined, we associated area with classes of graphs (see Winter and Adewusi [48], Winter
and Jessop [50], Winter and Sarvate [55], Winter, Jessop and Adewusi [51], Winter and Ojako
[54]).

5.2 Main definitions

In this section, we combine the two concepts of energy and chromatic number of graphs (defined
and studied respectively in sections 3.2 and 4.3 above) to form a ratio. We introduce the idea
of ratio, asymptotes and areas involving the energy and chromatic number of a graph G.
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Let G = (V ,E) be a graph of order | V |= n and of size | E |= m.

Definition 5.1.

The eigen-chromatic ratio of a graph G, of order n, is denoted by eigχ(G) and defined as

eigχ(G) =
χ(G)

E(G)

where χ(G) is the chromatic number of G and E(G) the energy of G.

Definition 5.2.

Let eigχ(G) = f(n) for every graph G ∈ F, where F is a class of graphs. The asymptotic
behaviour of f(n) is called the eigen-chromatic asymptote of G and denoted by Asyeigχ(G).
That is,

Asyeigχ(G) = lim
n−→∞

f(n).

This asymptote gives a measure of the asymptotic effect of the chromatic number on the energy
of the original graph, and is referred to as the eigen-chromatic asymptotic effect. This idea
translates to the effect in the molecular graph theory.

Eigen-Chromatic stability: The Hyper/Hypo Chromatic Stability Effect.

The eigen-chromatic ratio of a graph G is a form of energy distribution among the colour classes
determined by χ(G). The eigen-chromatic asymptote gives an indication of this distribution
when a large number of vertices are involved as in molecular graph theory. We show that the
eigen-chromatic asymptote for the complete graph on n vertices is 1

2 , while most graphs have
an asymptote of 0 , which motivates for the following two definitions (see [24]):

1. A graph G is said to be eigen-chromatically stable if the eigen-chromatic asymptote is not
zero i.e if

Asyeigχ(G) 6= 0;

otherwise it is eigen-chromatically unstable.

2. A graph G is said to be hyper eigen-chromatically stable if its eigen-chromatic asymptote
is bigger or equal to 1

2 ,i.e if

Asyeigχ(G) ≥ 1

2

and hypo eigen-chromatically stable if its eigen-chromatic asymptote is less than 1
2 and

positive, i.e if

0 < Asyeigχ(G) <
1

2
.

Definition 5.3.

Let F be a class of graphs and G ∈ F be a graph with m edges. Then the eigen-chromatic area
is defined as:

AχF(n) =
2m

n

∫
f(n)dn

with AχF(k) = 0 where k is the smallest number of vertices for which eigχ(G) = f(n) is defined.

Note that
2m

n
is the average degree of G ∈ F, referred to as the length of G. The integral part

is referred to as its height, which we always make positive.

Although the eigen-chromatic ratio f(n) takes on discrete values, we assume it is continuous
for the purpose of the definition of area (and asymptote above) so that we have a form of
comparative analysis between classes of graphs (and molecules with a large amount of atoms).
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This comparative analysis is relevant once we know the area (and asymptote) of the complete
graph, allowing for the idea similar to that of hyper/hypo energetic graphs (see Stevanovic [41]).

5.3 Eigen-Chromatic Ratio and Area

Now we find the eigen-chromatic ratio for all the classes of graphs seen in previous chapters and
the related eigen-chromatic area.

5.3.1 The Complete graphs

Let Kn be the complete graph on n vertices, of size m =
n(n− 1)

2
(see section 1.8.1). From

Proposition 4.10, χ(Kn) = n and using results from section 3.4.1, we have

eigχ(Kn) =
χ(Kn)

E(Kn)

=
n

2(n− 1)
.

The eigen-chromatic asymptote of Kn, denoted by Asyeigχ(Kn), is

Asyeigχ(Kn) = lim
n−→∞

n

2n− 2

=
1

2
;

and the eigen-chromatic area of Kn is

AχKn
=

2m

n

∫
n

2n− 2
dn

= n− 1

∫
n

2n− 2
dn

=
n− 1

2

∫
n

n− 1
dn

=
n− 1

2
(n+ ln | n− 1 | +C).

The function f(n) = n
2n−2 is defined if 2n− 2 6= 0 i.e if n 6= 1, so that with smallest order of G

for which f(n) is defined is 2. Hence we have: AχK2
= 2−1

2 (2 + ln | 2− 1 | +C) = 0 ⇒ C = −2,
so

AχKn
=
n− 1

2
(n+ ln | n− 1 | −2).

5.3.2 The Path, Cycle and Wheel graphs on an even number of vertices

We determine the eigen-chromatic ratio, and its associated aspects, of paths, cycles and wheels
on an even number of vertices using the results found in chapter 3 and chapter 4.
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The path graphs Pn on n vertices have the chromatic number

χ(Pn) = 2 (see section 4.3.4)

and the energy

E(Pn) = 2

[
cosec

(
π

2(n+ 1)

)
− 1

]
, for n even (see section 3.2.1).

The cycle graphs Cn on n vertices, with n even have the chromatic number

χ(Cn) = 2 (see section 4.3.5)

and the energy

E(Cn) =

n−1∑
j=0

∣∣∣∣2cos(2πj

n

)∣∣∣∣ = 4cot
(π
n

)
, with n = 2t and t even (see section 3.2.2).

Let Wn be the wheel graph, on n vertices, and n− 1 spokes, with n ≥ 4. The wheel graphs Wn,
on n vertices, with n even have the chromatic number

χ(Wn) = 4 (see section 4.3.6)

and the energy

E(Wn) = 2
√
n− 2 + 2cosec

(
π

2(n− 1)

)
(see section 3.2.3).

Lemma 3.2.4 and Theorem 3.2.6 will simplify the eigen-chromatic ratio when a large number of
vertices are involved.

The Path graph

The eigen-chromatic ratio of Pn with n even, is

eigχ(Pn) =
χ(Pn)

E(Pn)

=
2

2

[
cosec

(
π

2(n+ 1)

)
− 1

]

=
1

cosec

(
π

2(n+ 1)

)
− 1

;
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the eigen-chromatic asymptote of Pn is

Asyeigχ(Pn) = lim
n−→∞

1

cosec

(
π

2(n+ 1)

)
− 1

= lim
n−→∞

1
2n
π

= lim
n−→∞

π

2n

= 0;

the eigen-chromatic area of Pn is

AχPn
=

2m

n

∫
1

cosec
π

2(n+ 1)
− 1

dn

=
2(n− 2)

n

∫
1

cosec
π

2(n+ 1)
− 1

dn.

The Cycle graph

The eigen-chromatic ratio of Cn , of order n, with n even, is

eigχ(Cn) =
χ(Cn)

E(Cn)

=
2

4cot(πn)

=
1

2cot(πn)
;

the eigen-chromatic asymptote of Cn denoted by Asyeigχ(Cn) is

Asyeigχ(Cn) = lim
n−→∞

1

2cot(πn)

= 0;

the eigen-chromatic area of Cn is

AχCn
=

2m

n

∫
1

2cot(πn)
dn

= 2

∫
1

2cot(πn)
dn

=

∫
1

cot(πn)
dn
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The Wheel graph

The eigen-chromatic ratio of Wn , of order n, with n even, is

eigχ(Wn) =
χ(Wn)

E(Wn)

=
4

2
√
n− 2 + 2cosec

(
π

2(n− 1)

)

=
2

√
n− 1 + cosec

(
π

2(n− 1)

)
the eigen-chromatic asymptote of Wn denoted by Asyeigχ(Wn) is

Asyeigχ(Wn) = lim
n−→∞

2

√
n− 1 + cosec

(
π

2(n− 1)

)

= 0;

the eigen-chromatic area of Wn is

AχWn
=

2m

n

∫
2

√
n− 1 + cosec

(
π

2(n− 1)

)dn

= 2.
2n− 2

n

∫
2

√
n− 1 + cosec

(
π

2(n− 1)

)dn

⇒ AχWn
= 8.

n− 1

n

∫
1

√
n− 1 + cosec

(
π

2(n− 1)

)dn.
In the same way, we can determine the eigen-chromatic ratio for paths, cycles and wheels on an
odd number of vertices.

5.3.3 Star graphs with rays of length 1

Let Sn−1,1 be the star graph on n vertices, and with n − 1 rays of length 1, n ≥ 2. As seen in
the preceding chapters, Sn−1,1 have the chromatic number

χ(Sn−1,1) = 2

and the energy
E(Sn−1,1) = 2

√
n− 1;
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The eigen-chromatic ratio of Sn−1,1 , of order n is

eigχ(Sn−1,1) =
χ(Sn−1,1)

E(Sn−1,1)

=
2

2
√
n− 1

=
1√
n− 1

;

the eigen-chromatic asymptote of Sn−1,1 denoted by Asyeigχ(Sn−1,1) is

Asyeigχ(Sn−1,1) = lim
n−→∞

1√
n− 1

= lim
n−→∞

1√
n

= 0;

the eigen-chromatic area of ASn−1,1 is

AχSn−1,1 =
2m

n

∫
1√
n− 1

dn

=
2(n− 1)

n

∫
1√
n− 1

dn

=
2(n− 1)

n
(2
√
n− 1 + C).

The function f(n) =
1√
n− 1

is defined if n− 1 > 0 , so that the smallest order of G for which

f(n) is defined is 2. Thus

AχS1,1 =
2(2− 1)

2
(2
√

2− 1 + C) = 0 ⇒ C = −2, so

AχSn−1,1 =
2(n− 1)

n
(2
√
n− 1− 2) =

4(n− 1)

n
(
√
n− 1− 1).

5.3.4 Star graphs with rays of length 2

Let Sn−1
2

,2 be the star graph on n vertices, and with
n− 1

2
rays of length 2, n ≥ 3.

Since the chromatic number of the star graph Sn−1
2

,2 is

χ(Sn−1
2

,2) = 2

and the energy of the star graph Sn−1
2

,2 is

E(Sn−1
2

,2) = n− 3 +
√

2(n+ 1);
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eigχ(Sn−1
2

,2) =
2

n− 3 +
√

2(n+ 1)
.

Asyeigχ(Sn−1
2

,2) = lim
n−→∞

2

n− 3 +
√

2(n+ 1)

= 0;

AχSn−1
2 ,2

=
2m

n

∫
2

n− 3 +
√

2(n+ 1)
dn

=
2(n− 1)

n

∫
2

n− 3 +
√

2(n+ 1)
dn

=⇒ AχSn−1
2 ,2

=
4(n− 1)

n

∫
1

n− 3 +
√

2(n+ 1)
dn.

Let us compute I =
∫ 1

n− 3 +
√

2(n+ 1)
dn,√

2(n+ 1) = t⇒ n = 1
2(t2 − 2)⇒ dn = tdt

⇒ I =
∫ tdt

1
2(t2 − 2)− 3 + t

= 2
∫ tdt

t2 + 2t− 8

⇒ I = 2
3(ln[(t− 2)(t+ 4)2]) + C = 2

3(ln[(
√

2(n+ 1)− 2)(
√

2(n+ 1) + 4)2]) + C, so

AχSn−1
2 ,2

=
4(n− 1)

n

(
2

3
(ln[(

√
2(n+ 1)− 2)(

√
2(n+ 1) + 4)2]) + C

)

With smallest order 3 we have:

4(3− 1)

3
(
2

3
(ln[(

√
2(3 + 1)− 2)(

√
2(3 + 1) + 4)2]) + C) = 0⇒ 2

3
ln[16(1 +

√
2)] + C = 0

⇒ C = −2

3
ln[16(1 +

√
2)];

So

AχSn−1
2 ,2

=
8(n− 1)

3n
((ln[(

√
2(n+ 1)− 2)(

√
2(n+ 1) + 4)2])− ln[16(1 +

√
2)])

⇒ AχSn−1
2 ,2

=
8(n− 1)

3n
ln

[(
√

2(n+ 1)− 2)(
√

2(n+ 1) + 4)2]

16(1 +
√

2)
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5.3.5 The Lollipop Graphs

The chromatic number and the energy of the lollipop graph LPn are respectively: χ(LPn) = n−1
and E(LPn) = n− 3, as seen previously.

The eigen-chromatic ratio of LPn is

eigχ(LPn) =
χ(LPn)

E(LPn)
=
n− 1

n− 3
.

The eigen-chromatic asymptote of LPn is

Asyeigχ(LPn) = lim
n−→∞

eigχ(LPn)

= lim
n−→∞

n− 1

n− 3
= lim

n−→∞

n−1
n
n−3
n

= 1.

So that
Asyeigχ(LPn) = 1.

5.3.6 The Complete Split-bipartite Graph

Let Kn
2
,n
2

be the complete split-bipartite graph on n vertices (n ≥ 6, n is even), and with n2

4
edges.

As seen previously, the chromatic number of the complete split-bipartite Graphs is

χ(Kn
2
,n
2
) = 2;

and the energy is:
E(Kn

2
,n
2
) = n.

The eigen-chromatic ratio of Kn
2
,n
2

is

eigχ(Kn
2
,n
2
) =

2

n

with

Asyeigχ(Kn
2
,n
2
) = lim

n−→∞

2

n

= 0.

The eigen-chromatic area of Kn
2
,n
2

is

AχKn
2 ,n2

=
2m

n

∫
2

n
dn

=
2n

2

4

n

∫
2

n
dn

=
n

2

∫
2

n
dn

= n(ln(n) + C).
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With smallest order 6 we have: C = − ln 6, so

= n(ln(n)− ln 6)

= n ln
(n

6

)
.

5.3.7 The Friendship graph

The chromatic number and the energy of the Friendship graphs are, respectively,

χ(Fp) = 3 (Section 4.3.11)

and
E(Fp) = (2p− 1) +

√
1 + 8p (Theorem 3.4.2).

The eigen-chromatic ratio of Fp is

eigχ(Fp) =
3

(2p− 1) +
√

1 + 8p
.

⇒ eigχ(Fn−1
2

) =
3

(n− 2) +
√

4n− 3
.

The eigen-chromatic asymptote of Fn−1
2

is

Asyeigχ(Fn−1
2

) = lim
n−→∞

3

(n− 2) +
√

4n− 3

= 0;

The eigen-chromatic area of Fn−1
2

is

AχFn−1
2

=
2m

n

∫
3

(n− 2) +
√

4n− 3
dn

=
3(n− 1)

n

∫
3

(n− 2) +
√

4n− 3
dn (m =

3n− 3

2
)

=
9(n− 1)

n

∫
1

(n− 2) +
√

4n− 3
dn

⇒ AχFn−1
2

=
9(n− 1)

n

∫
1

(n− 2) +
√

4n− 3
dn.
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5.4 Sun graphs with their Asymptotic and Area aspects

In Section 1.8.12, we defined the generalized sun graph SG(h,p) as a graph consisting of a base
graph G on p vertices and h end vertices appended to each of the p vertices in G.

5.4.1 The Caterpillar Graph

The chromatic number of L(CT (k,l)) is χ(L(CT (k,l))) = 2 (see section 4.3.2). The energy of
L(CT (k,l)) is (see section 3.3.2):

E(L(CT (k,l))) = k(l − 1) +

k∑
j=2

∣∣∣∣12 (l − 1 + σj −
√
σ2j + 2(l + 1)σj + (l2 + 6l + 1)

)∣∣∣∣
+

k∑
j=2

∣∣∣∣12 (l − 1 + σj +
√
σ2j + 2(l + 1)σj + (l2 + 6l + 1)

)∣∣∣∣
where σj = 2cos

(
(k + 1− j)π

k

)
, for j = 1, . . . ,k.

If we take l = 2, then n = 3k, so that

E(L(CT (
n

3
,2))) =

n

3
(2− 1) +

n
3∑
j=2

∣∣∣∣12 (2− 1 + σj −
√
σ2j + 2(2 + 1)σj + (4 + 12 + 1)

)∣∣∣∣

+

n
3∑
j=2

∣∣∣∣12 (2− 1 + σj +
√
σ2j + 2(2 + 1)σj + (4 + 12 + 1)

)∣∣∣∣
where σj = 2cos

(
(n3 + 1− j)π

n
3

)
, for j = 1, . . . ,

n

3
;

=
n

3
+

n
3∑
j=2

∣∣∣∣12 (1 + σj −
√
σ2j + 6σj + 17

)∣∣∣∣

+

n
3∑
j=2

∣∣∣∣12 (1 + σj +
√
σ2j + 6σj + 17

)∣∣∣∣
where σj = 2cos

(
(n3 + 1− j)π

n
3

)
, for j = 1, . . . ,

n

3
.

For large n = n′ and

σj = 2cos

(
(n3 + 1− j)π

n
3

)
≤ 2.

To simplify notation, we consider dominant terms in the energy function and note that
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E(L(CT (
n

3
,2))) ≈

n′

3
+

n′
3∑
j=2

∣∣∣∣12 (1 + σj −
√
σ2j

)∣∣∣∣

+

n′
3∑
j=2

∣∣∣∣12 (1 + σj +
√
σ2j

)∣∣∣∣
=
n′

3
+

1

2

(
n′

3
− 1

)
+

1

2

(
n′

3
+ 4

)
≈

2n′

3
.

Thus for n large, we have:

eigχ(L(CT (
n

3
,l))) =

2
2n
3

=
3

n
.

Asyeigχ(L(CT (
n

3
,l))) = lim

n−→∞

3

n

= 0;

AχL(CT (n
3
,l)) =

2(n− 1)

n

∫
3

n
dn

=
6(n− 1)

n

∫
1

n
dn

=
6(n− 1)

n
(ln(n) + C).

With smallest order 3 we have: C = − ln 3, so

AχL(CT (n
3
,l)) =

6(n− 1)

n
(ln(n)− ln 3)

=
6(n− 1)

n
ln
n

3
.

5.4.2 The Complete Sun Graph

The energy of the complete sun graph CompSun(h,p) is

E(CompSun(h,p)) = (p− 1)
√

1 + 4h+
√

(p− 1)2 + 4h (see section 3.3.2);

The chromatic number of the Complete sun Graphs is

χ(CompSun(h,p)) = p (see section 4.4.2).
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The eigen-chromatic ratio of CompSun(h,p) is

eigχ(CompSun(h,p)) =
χ(CompSun(h,p))

E(CompSun(h,p))
=

p

(p− 1)
√

1 + 4h+
√

(p− 1)2 + 4h
.

The eigen-chromatic asymptote of CompSun(h,p) is

Asyeigχ(CompSun(h,p)) = lim
n−→∞

p

(p− 1)
√

1 + 4h+
√

(p− 1)2 + 4h

= lim
(h+1)p−→∞

p

(p− 1)
√

1 + 4h+
√

(p− 1)2 + 4h

= lim
p−→∞

p

(p− 1)
√

1 + 4h+
√

(p− 1)2 + 4h
=

1√
1 + 4h+ 1

.

So, for

h = 1, Asyeigχ(CompSun(1,p)) =
1√

5 + 1
∼= 0.309

h = 2, Asyeigχ(CompSun(2,p)) =
1√

9 + 1
∼= 0.25

h = 3, Asyeigχ(CompSun(3,p)) =
1√

13 + 1
∼= 0.217

...

h = 100, Asyeigχ(CompSun(100,p)) =
1√

401 + 1
∼= 0.047

...

h = 245, Asyeigχ(CompSun(245,p)) =
1√

981 + 1
∼= 0.0309

...

This implies that 0 < Asyeigχ(CompSun(h,p)) < 1
2 .

Remark: The asymptote of the complete sun graph with h = 1 is 0.309 which is 1
2 golden ratio

of 0.618; for h = 245 the asymptote is 0.0309 (to 4 decimal places) which is 1
20 of golden ratio.

We get the golden ratio for h = 1, then p = n
2 , so

eigχ(CompSun(1,
n

2
)) =

n
√
5
2 (n− 2) + 1

2

√
(n− 2)2 + 16

=
2n

(n− 2)
√

5 +
√

(n− 2)2 + 16
;
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Asyeigχ(CompSun(1,
n

2
)) = lim

n→∞

2n

(n− 2)
√

5 +
√

(n− 2)2 + 16

=
2

2
√

5 + 1

∼= 0.365.

And the eigen-chromatic area of CompSun(1,n2 ) is

AχCompSun(1,n
2
) =

n+ 2

4

∫
n

√
5
2 (n− 2) + 1

2

√
(n− 2)2 + 16

dn

=
n+ 2

2

∫
n

(n− 2)
√

5 +
√

(n− 2)2 + 16
dn.

5.4.3 The Complete Split-bipartite Sun Graph

The energy of the complete split-bipartite sun graph is

E(BipSun(h,p)) =
√
p2 + 16h+ 2(p− 2)

√
h (see section 3.3.3)

The chromatic number of the Complete split-bipartite sun Graphs is

χ(BipSun(h,p)) = 2 (see section 4.4.3).

The eigen-chromatic ratio of BipSun(h,p) is

eigχ(BipSun(h,p))) =
χ(BipSun(h,p))

E(BipSun(h,p))

=
2√

p2 + 16h+ 2(p− 2)
√
h
.

The eigen-chromatic asymptote of BipSun(h,p) is

Asyeigχ(BipSun(h,p)) = lim
n−→∞

2√
p2 + 16h+ 2(p− 2)

√
h

= lim
(h+1)p−→∞

2√
p2 + 16h+ 2(p− 2)

√
h

= lim
p−→∞

2√
p2 + 16h+ 2(p− 2)

√
h

= 0.

If h = 1 then p = n
2 , so

AχBipSun(1,n
2
) =

2 n
16(n+ 8)

n

∫
2√

(n2 )2 + 16 + 2(n2 − 2)
dn

=
n+ 8

4

∫
1√

(n2 )2 + 16 + 2(n2 − 2)
dn

⇒ AχBipSun(1,n
2
) =

n+ 8

2

∫
dn√

n2 + 64 + 2n− 8
.
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5.4.4 The Star Sun Graph

The energy of the Star sun graph is

E(StarSun(h,p)) = 2
√
p− 1 + 4h+ 2(p− 2)

√
h (see section 3.3.5).

The chromatic number of the star sun Graphs is

χ(StarSun(h,p)) = 2 (see section 4.4.6).

The eigen-chromatic ratio of StarSun(h,p) is

eigχ(StarSun(h,p)) =
χ(StarSun(h,p))

E(StarSun(h,p))

=
2

2
√
p− 1 + 4h+ 2(p− 2)

√
h

=
1

√
p− 1 + 4h+ (p− 2)

√
h

The eigen-chromatic asymptote of StarSun(h,p) is

Asyeigχ(StarSun(h,p)) = lim
(h+1)p−→∞

1
√
p− 1 + 4h+ (p− 2)

√
h

= lim
p−→∞

1
√
p− 1 + 4h+ (p− 2)

√
h

= 0.

If h = 1 then p = n
2 , so

AχStarSun(1,n
2
) =

2(n− 1)

n

∫
dn√

n
2 − 1 + 4 + (n2 − 2)

√
1

=
2(n− 1)

n

∫
dn√

n
2 + 3 + (n2 − 2)

.

5.4.5 The Cycle Sun Graph

The energy of the cycle sun graph is

E(CycleSun(h,p)) = 2

p−1∑
k=0

√
cos2

(
2πk

p

)
+ h (see section 3.3.6).

The chromatic number of the Cycle sun Graphs is

χ(CycleSun(h,p)) = 2 if p is even.

and
χ(CycleSun(h,p)) = 3 if p is odd (see section 4.4.4).
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The eigen-chromatic ratio of CycleSun(h,p) is

eigχ(CycleSun(h,p)) =
χ(CycleSun(h,p))

E(CycleSun(h,p))

=
2

2
∑p−1

k=0

√
cos2

(
2πk

p

)
+ h

if p is even ;

eigχ(CycleSun(h,p)) =
3

2
∑p−1

k=0

√
cos2

(
2πk

p

)
+ h

if p is odd .

The eigen-chromatic asymptote of CycleSun(h,p) is,(a = 3 if p is odd, or a = 2 if p is even )

Asyeigχ(CycleSun(h,p)) = lim
(h+1)p→∞

a

2
∑p−1

k=0

√
cos2

(
2πk

p

)
+ h

= lim
p→∞

a

2
∑p−1

k=0

√
cos2

(
2πk

p

)
+ h

= lim
p→∞

a

2p
√

1 + h
= 0.

If h = 1 then n = (h+ 1)p = (1 + 1)p = 2p⇒ p = n
2 , so

E(CycleSun(1,
n

2
)) = 2

n
2
−1∑

k=0

√
cos2

(
2πk
n
2

)
+ 1

= 2

n
2
−1∑

k=0

√
cos2

(
4πk

n

)
+ 1

AχCycleSun(1,n
2
) =

2m

n

∫
2

2
∑n

2
−1

k=0

√
cos2

(
4πk

n

)
+ 1

dn

( if p is even), and
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AχCycleSun(1,n
2
) =

2m

n

∫
3

2
∑n

2
−1

k=0

√
cos2

(
4πk

n

)
+ 1

dn

( if p is odd).

AχCycleSun(1,n
2
) =

2n

n

∫
1∑n

2
−1

k=0

√
cos2

(
4πk

n

)
+ 1

dn

( if p is even), and

AχCycleSun(1,n
2
) =

2n

n

∫
3

2
∑n

2
−1

k=0

√
cos2

(
4πk

n

)
+ 1

dn

( if p is odd).

AχCycleSun(1,n
2
) = 2

∫
dn∑n

2
−1

k=0

√
cos2

(
4πk

n

)
+ 1

( if p is even), and

AχCycleSun(1,n
2
) = 3

∫
dn∑n

2
−1

k=0

√
cos2

(
4πk

n

)
+ 1

( if p is odd).

5.4.6 The Wheel Sun Graph

The energy of the wheel sun graph is (see section 3.3.4)

E(WheelSun(h,p)) = 2

p−2∑
k=1

√
cos2

(
2πk

p− 1

)
+ h+

√
(1 +

√
p)2 + 4h+

√
(1−√p)2 + 4h.

The chromatic number of the Wheel sun Graphs is

χ(WheelSun(h,p)) = 4 if p is even.

and
χ(WheelSun(h,p)) = 3 if p is odd (see section 4.4.5).
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The eigen-chromatic ratio of WheelSun(h,p) is

eigχ(WheelSun(h,p)) =
χ(WheelSun(h,p))

E(WheelSun(h,p))

=
4

2
∑p−2

k=1

√
cos2

(
2πk

p− 1

)
+ h+

√
(1 +

√
p)2 + 4h+

√
(1−√p)2 + 4h

if p is even ;

eigχ(WheelSun(h,p)) =
3

2
∑p−2

k=1

√
cos2

(
2πk

p− 1

)
+ h+

√
(1 +

√
p)2 + 4h+

√
(1−√p)2 + 4h

if p is odd .

The eigen-chromatic asymptote of WheelSun(h,p) is,(a = 3 if p is odd, or a = 4 if p is even )
Asyeigχ(WheelSun(h,p))

= lim
(h+1)p→∞

a

2
∑p−2

k=1

√
cos2

(
2πk

p− 1

)
+ h+

√
(1 +

√
p)2 + 4h+

√
(1−√p)2 + 4h

= lim
p→∞

a

2
∑p−2

k=1

√
cos2

(
2πk

p− 1

)
+ h+

√
(1 +

√
p)2 + 4h+

√
(1−√p)2 + 4h

= 0.

If h = 1 then n = (h+ 1)p = (1 + 1)p = 2p⇒ p = n
2 , so

E(WheelSun(1,p)) = 2

p−2∑
k=1

√
cos2

(
2πk

p− 1

)
+ 1 +

√
(1 +

√
p)2 + 4 +

√
(1−√p)2 + 4

= 2

p−2∑
k=1

√
cos2

(
2πk

p− 1

)
+ 1 +

√
p+ 2

√
p+ 5 +

√
p− 2

√
p+ 5
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AχWheelSun(1,n
2
) =

2m

n

∫
4

2
∑n

2
−2

k=1

√
cos2

(
2πk
n
2 − 1

)
+ 1 +

√
n
2 + 2

√
n
2 + 5 +

√
n
2 − 2

√
n
2 + 5

dn

( if p is even), and

AχWheelSun(1,n
2
) =

2m

n

∫
3

2
∑n

2
−2

k=1

√
cos2

(
2πk
n
2 − 1

)
+ 1 +

√
n
2 + 2

√
n
2 + 5 +

√
n
2 − 2

√
n
2 + 5

dn

( if p is odd).

AχWheelSun(1,n
2
) =

23(n−2)+2
2

n

∫
4

2
∑n

2
−2

k=1

√
cos2

(
2πk
n
2 − 1

)
+ 1 +

√
n
2 + 2

√
n
2 + 5 +

√
n
2 − 2

√
n
2 + 5

dn

( if p is even), and

AχWheelSun(1,n
2
) =

23(n−2)+2
2

n

∫
3

2
∑n

2
−2

k=1

√
cos2

(
2πk
n
2 − 1

)
+ 1 +

√
n
2 + 2

√
n
2 + 5 +

√
n
2 − 2

√
n
2 + 5

dn

( if p is odd).

AχWheelSun(1,n
2
) =

12(n− 2) + 8

n

∫
dn

2
∑n

2
−2

k=1

√
cos2

(
2πk
n
2 − 1

)
+ 1 +

√
n
2 + 2

√
n
2 + 5 +

√
n
2 − 2

√
n
2 + 5

( if p is even), and

AχWheelSun(1,n
2
) =

9(n− 2) + 6

n

∫
dn

2
∑n

2
−2

k=1

√
cos2

(
2πk
n
2 − 1

)
+ 1 +

√
n
2 + 2

√
n
2 + 5 +

√
n
2 − 2

√
n
2 + 5

( if p is odd).

Conjecture 1. The eigen-chromatic asymptote of all the classes of graphs lies on the interval
[0, 1

2 ], except that of Lollipop graph which is equal to 1.
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Theorem 5.1. The eigen-chromatic ratio and asymptote for all the classes F of graphs studied
in this chapter are summarized in the following table.

F eigχ(F) Asyeigχ(F)

1) Kn: n
2n−2

1
2

2) Pn:
1

cosec
π

2(n+ 1)
− 1

0

3) Cn:
1

2cot(πn)
0

4) Wn:
2

√
n− 1 + cosec

(
π

2(n− 1)

) 0

5) Sn−1,1:
1√
n− 1

0

6) Sn−1
2

,2:
2

n− 3 +
√

2(n+ 1)
0

7) LPn:
n− 1

n− 3
1

8)Kn

2
,
n

2

:
2

n
0

9) Fn−1
2

:
3

(n− 2) +
√

4n− 3
0
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Generalized Sun Graphs

F eigχ(F) Asyeigχ(F)

10) L(CT (k,l)): 3
n 0

11) CompSun(h,p):
p

(p− 1)
√

1 + 4h+
√

(p− 1)2 + 4h
(0, 1

2)

12)BipSun(h,p):
2√

p2 + 16h+ 2(p− 2)
√
h

0

13) StarSun(h,p):
1

√
p− 1 + 4h+ (p− 2)

√
h

0

14)CycleSun(h,p):
2

2
∑p−1

k=0

√
cos2

(
2πk

p

)
+ h

0

15) WheelSun(h,p): - 0

Theorem 5.2. The eigen-chromatic area for all the classes F of graphs studied in this chapter
are summarized in the following table.

F AχF(n)

1) Kn: n−1
2 (n+ ln | n− 1 | −2)

2) Pn:
2(n− 2)

n

∫ 1

cosec
π

2(n+ 1)
− 1

dn

3) Cn:
∫ 1

cot(πn)
dn
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4) Wn:
8(n− 1)

n

∫ 1

√
n− 1 + cosec

(
π

2(n− 1)

)dn
5) Sn−1,1:

4(n− 1)

n
(
√
n− 1− 1)

6) Sn−1
2

,2:
8(n− 1)

3n
ln

[(
√

2(n+ 1)− 2)(
√

2(n+ 1) + 4)2]

16(1 +
√

2)

7)Kn

2
,
n

2

: n(ln
(
n
2

)
)

8) Fn−1
2

:
9(n− 1)

n

∫ 1

(n− 2) +
√

4n− 3
dn

9) L(CT (k,l)):
6(n− 1)

n
ln n

3

10) CompSun(1,n2 ): n+2
2

∫ n

(n− 2)
√

5 +
√

(n− 2)2 + 16
dn.

11)BipSun(1,n2 ): n+8
2

∫ dn√
n2 + 64 + 2n− 8

12) StarSun(1,n2 ): 2(n−1)
n

∫ dn√
n
2 + 3 + (n2 − 2)

13)CycleSun(1,n2 ): 3
∫ dn∑n

2
−1

k=0

√
cos2

(
4πk

n

)
+ 1

14) WheelSun(1,n2 ): 9(n−2)+6
n

∫ dn

2
∑n

2
−2

k=1

√
cos2

(
2πk
n
2 − 1

)
+ 1 +

√
n
2 + 2

√
n
2 + 5 +

√
n
2 − 2

√
n
2 + 5

Hypothesis 5.1. The eigen-chromatic area of the complete graph is the largest of all classes of
graphs for large n.
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Theorem 5.3. The eigen-chromatic stability for all the classes F of graphs studied in this
chapter are determined in the following table.

F eigen-chromatic stability

1) The complete graph Kn, on n vertices is hyper eigen-chromatically stable

2) The path graphs Pn on n vertices is eigen-chromatically unstable

3) The cycle graphs Cn on n vertices is eigen-chromatically unstable

4) The wheel graphs Wn on n vertices is eigen-chromatically unstable

5) The star graph Sn−1,1, on n vertices, with n− 1 rays of length 1 is eigen-chromatically unstable

6) The star graph Sn−1
2

,2, on n vertices, with n−1
2 rays of length 2 is eigen-chromatically unstable

7) The lollipop graph LPn on n vertices is hyper eigen-chromatically stable

8) The complete split-bipartite graph Kn
2
,n
2
, on n vertices is eigen-chromatically unstable

9) The Friendship graph Fn on 2n+ 1 vertices is eigen-chromatically unstable

10) The Caterpillar Graph L(CT (k,l)) is eigen-chromatically unstable

11) The Complete Sun Graph CompSun(h,p) is hypo eigen-chromatically stable

12) The Complete Split-bipartite Sun Graph BipSun(h,p) is eigen-chromatically unstable

13) The Star Sun Graph StarSun(h,p) is eigen-chromatically unstable

14) The Cycle Sun Graph CycleSun(h,p) is eigen-chromatically unstable

15) The Wheel Sun Graph WheelSun(h,p) is eigen-chromatically unstable

Corollary 5.1. The complete, the lollipop and the complete sun graph are the only eigen-
chromatically stable classes of graphs in the collection of classes discussed above.
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5.5 Second Order Differential Equation Associated With The
Eigen-Chromatic Ratio of The Complete Graph: Paired
Solutions

We notice that if f and g are two solutions of an ordinary differential equation, then so is the
sum; in fact, so is any linear combination αf + βg where α and β are constants. And such
two solutions f and g satisfying the same differential equation are called paired solutions. For
example, cos and sin are paired for the ordinary differential equation y′′ + y = 0; cosh and sinh
are paired, for the ordinary differential equation y′′−y = 0 (See Winter, Mayala and Namayanja
[56], Zill [61], Zill and Wright [62]).

The eigen-chromatic ratio of the complete graph on n vertices is
n

2n− 2
.

setting

y =
n

2n− 2
,

now

y′ =
dy

dn
=

d

dn

[
n

2n− 2

]
=

−2

(2n− 2)2
=

d

dn

[
1

2n− 2

]
.

Also:

y′′ =
dy′

dn
= −2

d

dn

[
1

(2n− 2)2

]
=

8

(2n− 2)3
.

Thus:

2y′ + (n− 1)y′′ =
−4

(2n− 2)2
+ (n− 1)

8

(2n− 2)3
= 0.

So that:

y′′ +
2

n− 1
y′ = 0.

Put P = y′ ⇒ P ′ = y′′, so

P ′ +
2

n− 1
P = 0.

Integrating factor is e2
∫

dn
n−1 = (n− 1)2, so that (n− 1)2P = C. Hence P =

C

(n− 1)2
. So that

y′ =
C

(n− 1)2
.
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We thus have:

y =
−C
n− 1

+ C ′ ⇒ y =
K

n− 1
+K ′ (with K, K ′ ∈ R).

Thus the two distinct functions y1 =
n

2n− 2
and y2 =

K

n− 1
+ K ′ satisfy the same differential

equation:
2y′ + (n− 1)y′′ = 0

called paired solutions.

5.6 The Eigen-chromatic Ratio of Complements of some Graphs
with its Asymptotic and Area aspects

We remind that the complement, G, of a graph G, has the same vertex set as G and vi and vj
are adjacent in G if and only if they are not adjacent in G.

5.6.1 The Complete Split-bipartite Graphs

Let Kn

2
,
n

2

be the complete split-bipartite graph on n vertices (n ≥ 6, n is even) , with
n2

4
edges,

and Kn

2
,
n

2

be the complement of Kn

2
,
n

2

. We denote that Kn

2
,
n

2

consists of two disjoint copies

of Kn

2

, and It has
n− 2

4
edges. Its energy is therefore (see Winter and Ojako [54])

E(Kn

2
,
n

2

) = 2n− 4

and Its chromatic number is
χ(Kn

2
,
n

2

) =
n

2
.

So that, the Eigen-chromatic ratio of Kn

2
,
n

2

is

eigχ(Kn

2
,
n

2

) =

χ(Kn

2
,
n

2

)

E(Kn

2
,
n

2

)

=
n
2

2n− 4

=
n

4(n− 2)
;
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the eigen-chromatic asymptote of Kn

2
,
n

2

denoted by Asyeigχ(Kn

2
,
n

2

) is

Asyeigχ(Kn

2
,
n

2

) = lim
n−→∞

n

4(n− 2)

=
1

4
;

the eigen-chromatic area of Kn

2
,
n

2

is

Aχ
Kn

2
,
n

2

=
2m

n

∫
n

4(n− 2)
dn

=
n− 2

2n

∫
n

4(n− 2)
dn

=
n− 2

4n

∫
n

n− 2
dn

=
n− 2

4n
(n+ 2 ln | n− 2 | +C).

The function f(n) =
n

4(n− 2)
is defined if 4n− 8 6= 0 i.e if n 6= 2, so that with smallest order 6

we have: Aχ
K 6

2
,
6

2

=
6− 2

24
(6 + 2 ln | 6− 2 | +C) = 0 ⇒ C = −2(3 + 2 ln 2), so

Aχ
Kn

2
,
n

2

=
n− 2

4n
(n+ 2 ln | n− 2 | −2(3 + 2 ln 2)).

The eigen-chromatic ratio for the complement of the complete split-bipartite graph is

f(n) =
n

4(n− 2)
.

And the eigen-chromatic ratio of the original graph, Kn

2
,
n

2

is

g(n) = eigχ(Kn

2
,
n

2

) =
2

n
.

5.6.2 The Lollipop Graphs

Let LPn be the lollipop graph on n vertices, n > 2. The complement of LPn, denoted by LPn,
consists of a star graph on n− 1 vertices and an isolated vertex. Its energy is (see Winter and
Ojako [54])

E(LPn) = 2
√
n− 2

and Its chromatic number is
χ(LPn) = 2.
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The eigen-chromatic ratio of LPn is

eigχ(LPn) =
χ(LPn)

E(LPn)

=
1√
n− 2

The eigen-chromatic asymptote of LPn is

Asyeigχ(LPn) = lim
n−→∞

1√
n− 2

= 0;

The eigen-chromatic area of LPn is

Aχ
LPn

=
2m

n

∫
1√
n− 2

dn

=
2m

n
(2
√
n− 2)

=
4m

n
(
√
n− 2 + C).

With smallest order 3 we have: C = −1, so

Aχ
LPn

=
4m

n
(
√
n− 2− 1);

where m is the size of LPn.

5.6.3 The Star Graphs with rays of length 1

Let Sn−1,1 be the star graph on n vertices, and with n − 1 rays of length 1, n ≥ 2. The
complement of Sn−1,1 denoted by Sn−1,1, is a complete graph on n − 1 vertices together with
an isolated vertex. Its energy is

E(Sn−1,1) = 2n− 4 (see Winter and Ojako [54]);

and Its chromatic number is
χ(Sn−1,1) = n− 1.

The eigen-chromatic ratio of Sn−1,1 is

eigχ(Sn−1,1) =
χ(Sn−1,1)

E(Sn−1,1)

=
n− 1

2n− 4
;
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the eigen-chromatic asymptote of Sn−1,1 denoted by Asyeigχ(Sn−1,1) is

Asyeigχ(Sn−1,1) = lim
n−→∞

n− 1

2n− 4

=
1

2
;

the eigen-chromatic area of ASn−1,1 is

Aχ
Sn−1,1

=
2m

n

∫
n− 1

2n− 4
dn

=
m

n

∫
n− 1

n− 2
dn

=
m

n
(n+ ln(n− 2) + C).

With smallest order 3 we have: C = −3, so

Aχ
Sn−1,1

=
m

n
(n+ ln(n− 2)− 3);

where m is the size of Sn−1,1.

Conjecture 5.6.1. The eigen-chromatic asymptote of complements of graphs discussed above

lies on the interval [0,
1

2
].

Theorem 5.6.1. The complement of the complete split-bipartite graphs and the complement
of the star graphs with length 1 are eigen-chromatically stable.

5.7 Conclusion

In this chapter, we have defined the eigen-chromatic ratio and asymptote of classes of graph. We
attached the average degree of a class of graph to the Riemann integral for the eigen-chromatic
ratio (as a function of the number of vertices n involved) to get the eigen-chromatic area.

After having determined the eigen-chromatic ratio, the eigen-chromatic asymptote and the eigen-
chromatic area for all the classes of graphs, we have noticed the following:

• The lower bound on eigen-chromatic asymptote is 0

• The uper bound on eigen-chromatic asymptote is 1

• The eigen-chromatic asymptote for the Complete graph Kn and the Lollipop graph LPn ,
on n vertices, is 1

2 and 1, respectively. So that, they are hyper eigen-chromatically stable.

• The eigen-chromatic asymptote of the complete sun graph CompSun(h,p) lies on the
interval (0, 1

2). So that, it is hypo eigen-chromatically stable.

• All the other classes of graphs are not eigen-chromatically stable. This is the case, for
example, of the path, cycle, wheel and star graphs.

We also found the paired solutions of the second order differential equation associated with the
eigen-chromatic ratio for the Complete Graph.
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Chapter 6

CONCLUSION

6.1 Summary

In this thesis, We have presented a new ratio associated with classes of graphs, called the
eigen-chromatic ratio, by combining the two graph theoretical concepts of energy and chromatic
number. The motivation for combining the energy, and chromatic number of a graph, into a
ratio, arose from the need to understand, in molecular graph theory, the energy distribution
among the atoms of a molecule, where only different atoms are bonded (for example, covalent
bonding). In molecules where a large number of atoms are involved , classes of graphs involving
the complete graph appears to give the most stable of such an energy distribution.

We began this dissertation with the presentation of the graph theoretical definitions used, to-
gether with the different classes of graphs.

In chapter 2, We presented different techniques used to find the eigenvalues of adjacency matrices
associated with certain classes of graphs . we also showed that we can use the idea of comple-
ments to find the eigenvalues of some regular graphs such as a complete graph.

In chapter 3, We used the analytical methods for determining the energy of some classes of
graphs, We analyzed the energies of the path graph, cycle graph and wheel graph on n vertices.
We expressed the energy of cycles, paths and wheels in terms of simplified expressions using the
cotangent or cosecant.

In chapter 4, We have determined the chromatic number of all the classes of graphs of which
we have analyzed the energy. For example, We found the chromatic number of the complete
graph Kn, on n vertices is χ(Kn) = n, while the chromatic number of the k-partite graphs G is
χ(G) = k.

In chapter 5, After having determined the eigen-chromatic ratio, the eigen-chromatic asymptote
and the eigen-chromatic area for all the classes of graphs, we have noticed the following:

• The eigen-chromatic ratio of the complete graph on n vertices, as a function of n, to be
paired with another function, as solutions of a second order ordinary differential equation.

• The lower bound on eigen-chromatic asymptote is 0

• The uper bound on eigen-chromatic asymptote is 1

• The eigen-chromatic asymptote for the Complete graph Kn , on n vertices, is 1
2 . So that,

the Complete graph is hyper eigen-chromatically stable; The Lollipop graph as well.
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• The eigen-chromatic asymptote of the complete sun graph CompSun(h,p) lies on the
interval (0, 1

2). So that, It is hypo eigen-chromatically stable.

• All the other classes of graphs are not eigen-chromatically stable. This is the case, for
example, of the path, cycle, wheel and star graphs.

We propose that the eigen-chromatic area of the complete graph is the largest of all such areas
of all classes of graphs.

6.2 Future research

During the preparation of this thesis, the following preoccupations have been posed:

1) We can use variations of the chromatic number, for example the circular chromatic number
(see G. Fan [65] and X. Zhu [66]).

2) Need to solve our conjectures in thesis:

(a) is the area of complete graph the largest among all classes?

(b) does there exist a class of graphs with asymptote bigger than 1?

3) Replace energy with two forms of Laplacian energy. And to combine the concepts of two
types of Laplacian energy and chromatic number of graphs to form two ratios each referred
to as the Laplacian eigen-chromatic ratio, associated with a connected graph G.

The research required to answer these preoccupations could form the basis for additional research
on topics covered in this thesis.
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