102 research outputs found

    Realization Of Point Planar Elastic Behaviors Using Revolute Joint Serial Mechanisms Having Specified Link Lengths

    Get PDF
    This paper presents methods for the realization of 2 × 2 translational compliance matrices using serial mechanisms having only revolute joints, each with selectable compliance. The link lengths of the mechanism and the location of the compliant frame relative to the mechanism base are arbitrary but specified. The realizability of a given compliant behavior is investigated, and necessary and sufficient conditions for the realization of a given compliance with a given mechanism are obtained. These realization conditions are interpreted in terms of geometric relationships among the joints. We show that, for an appropriately sized 3R serial mechanism, any single 2 × 2 compliance matrix can be realized by properly choosing the joint compliances and the mechanism configuration. Requirements on mechanism geometry to realize every particle planar elastic behavior at a given location just by changing the mechanism configuration are also identified

    Geometric Construction-Based Realization of Spatial Elastic Behaviors in Parallel and Serial Manipulators

    Get PDF
    This paper addresses the realization of spatial elastic behavior with a parallel or a serial manipulator. Necessary and sufficient conditions for a manipulator (either parallel or serial) to realize a specific elastic behavior are presented and interpreted in terms of the manipulator geometry. These conditions completely decouple the requirements on component elastic properties from the requirements on mechanism kinematics. New construction-based synthesis procedures for spatial elastic behaviors are developed. With these synthesis procedures, one can select each elastic component of a parallel (or serial) mechanism based on the geometry of a restricted space of allowable candidates. With each elastic component selected, the space of allowable candidates is further restricted. For each stage of the selection process, the geometry of the remaining allowable space is described

    Geometry Based Synthesis of Planar Compliances with Redundant Mechanisms Having Five Compliant Components

    Get PDF
    In this paper, a geometric approach to the passive realization of any planar compliance with a redundant compliant mechanism is presented. The mechanisms considered are either simple serial mechanisms consisting of five elastic joints or simple parallel mechanisms consisting of five springs. For each type of mechanism, realization conditions to achieve a given compliance are derived. The physical significance of each condition is identified and graphically interpreted. Geometry based synthesis procedures to achieve any given compliance are developed for both types of mechanisms. Since each realization condition imposes restrictions solely on the mechanism geometry, the procedures allow one to choose the geometric properties of each component (from a set of admissible options) independently from the selection of the elastic properties of each component

    Planar Compliance Realization With Two 3-Joint Serial Mechanisms

    Get PDF
    In this paper, the realization of any specified planar compliance with two 3R serial elastic mechanisms is addressed. Using the concept of dual elastic mechanisms, it is shown that the realization of a compliant behavior with two serial mechanisms connected in parallel is equivalent to its realization with a 6-spring fully parallel mechanism. Since the spring axes of a 6-spring parallel mechanism indicate the geometry of a dual 3R serial mechanism, a new synthesis procedure for the realization of a stiffness matrix with a 6-spring parallel mechanism is first developed. Then, this result is extended to a geometric construction-based synthesis procedure for two 3-joint serial mechanisms

    On the compliance of coiled springs

    Get PDF
    The 6×6 spatial compliance matrix for a helical spring is computed. The method used is to find the compliance of infinitesimal elements along the length of the spring. Then integration is used to sum the compliances and produce the total compliance of the spring. A key point in the method is that the compliance matrix for each element must be expressed in a common coordinate frame. The results produced are significantly different from the those given in elementary texts. However, it is shown how these results can be recovered by making the standard "closely coiled" approximation. Next, the principal wrenches and eigencompliances of the spring are studied, both for the closely coiled spring and for the case where these assumptions are not made. Finally, some numerical examples are given. © 2004 Elsevier Ltd. All rights reserved

    Handbook on dynamics of jointed structures.

    Get PDF
    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided

    Semiannual progress report no. 1, 16 November 1964 - 30 June 1965

    Get PDF
    Summary reports of research in bioelectronics, electron streams and interactions, plasmas, quantum and optical electronics, radiation and propagation, and solid-state electronic
    • …
    corecore