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Realization of Point Planar Elastic Behaviors Using Revolute Joint Serial
Mechanisms Having Specified Link Lengths

Shuguang Huanga,∗, Joseph M. Schimmelsa

aDepartment of Mechanical Engineering, Marquette University, Milwaukee, WI 53201, USA

Abstract

This paper presents methods for the realization of 2 × 2 translational compliance matrices using serial
mechanisms having only revolute joints, each with selectable compliance. The link lengths of the mechanism
and the location of the compliant frame relative to the mechanism base are arbitrary but specified. The
realizability of a given compliant behavior is investigated, and necessary and sufficient conditions for the
realization of a given compliance with a given mechanism are obtained. These realization conditions are
interpreted in terms of geometric relationships among the joints. We show that, for an appropriately
sized 3R serial mechanism, any single 2 × 2 compliance matrix can be realized by properly choosing the
joint compliances and the mechanism configuration. Requirements on mechanism geometry to realize every
particle planar elastic behavior at a given location just by changing the mechanism configuration are also
identified.

Keywords: Compliance realization, compliant mechanism, stiffness and compliance synthesis

1. Introduction

In order for robots to achieve human-like dexterity in manipulation tasks, a means for regulating inter-
action force is needed, especially when geometric conflict exists between the robot and its environment. One
approach to force regulation is to select or control the robot passive compliance. Passive compliance allows
for high speed interaction. Desirable robot passive compliance can be attained by: 1) designing compliant
end-of-arm tooling, or 2) designing compliance into the arm itself.

Any desired compliant behavior can be realized through the proper design of an end-effector mounted
compliant wrist. It is known that for any specified elastic behavior, an infinite number of parallel [1, 2] or
serial [3, 4] mechanisms having springs at each joint can achieve the desired behavior. Proper compliant wrist
design involves selecting the geometry and configuration of the mechanism and selecting the spring rates at
each joint. The limitation of this approach is that the mechanism realizes a single specified compliance. If
the robot task changes or the desired compliance within the task changes, an entirely different compliant
wrist would likely be needed for its realization.

Several strategies exist for designing compliance into the manipulator itself. Series elastic actuators
(SEAs) [5], in which passive compliance is provided between the motor and the connected link can be used
to provide a selected amount of compliance in each joint. Variable stiffness actuators (VSAs) [6] are similar,
but they allow joint compliance to be changed in real time. This ability is important in robot tasks that
require continuously changing compliant behaviors, such as when the nature of the task changes, the task
itself changes, or the task environment changes (especially when people are in the robot workspace).

VSAs enlarge the space of elastic behavior that can be achieved by a robot by changing each joint
stiffness. If the manipulator is kinematically redundant, the set of achievable elastic behaviors is increased
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further. A much larger set of compliances can be attained by adjusting both the joint stiffnesses and the
manipulator configuration, without ever changing the endpoint location of the robot.

In some manipulation tasks, such as turning a crank or opening a door, the interaction torque is not
important. Since only the relationship between force and translation is important, the interaction can
be modeled as point contact, and the compliant behavior can be modeled as an elastically suspended
particle, i.e., not an elastically suspended rigid body. This paper presents methods for the evaluation and
realization of planar translational elastic behaviors using serial mechanisms having only revolute joints, each
with selectable compliance. An example of the type of mechanism considered is illustrated in Fig. 1. The
mechanisms considered are arbitrary but have known link lengths.
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Figure 1: A 3R serial compliant mechanism with variable stiffness actuators.

1.1. Related Work

Spatial elastic behavior has been been analyzed for more than a century. Screw theory [7, 8, 9, 10, 11]
and Lie groups [12] have been used to analyze and characterize spatial linear elastic behavior (represented
by a 6 × 6 symmetric stiffness matrix K or compliance matrix C).

More recent work has addressed the realization of spatial elastic behavior through the design of passive
compliant mechanisms. Previously, the bounds of elastic behaviors achieved with simple parallel mechanisms
[1] and with simple serial mechanisms [3] have been identified. A simple parallel mechanism contains only
line springs and torsional springs, and a simple serial mechanism contains only prismatic and revolute joints.
Synthesis procedures have been developed [1, 3, 13, 14] to realize any elastic behaviors within these bounds.
Geometry based screw theory approaches for the realization of an arbitrary realizable stiffness matrix have
also been developed [15, 16].

The synthesis of an arbitrary spatial stiffness matrix with a parallel system has also been addressed [2]. It
was shown [2] that in order to realize an arbitrary stiffness, screw springs that couple the elastic behavior in
translation and rotation in the same direction must be used. The eigen-structure of a stiffness was analyzed
using the eigenscrew decomposition of the stiffness matrix [17]. Based on the eigenstiffness analysis, a
procedure to calculate the minimum number of screw springs required to realize a specified stiffness matrix
in a parallel system was identified [18]. A procedure has been developed [19] to realize an arbitrary spatial
stiffness using the minimum numbers of screw springs and simple springs.

This previous work has focused on the realization of a single compliance with a mechanism of unspecified
geometry at a unspecified configuration. When the desired compliance is changed, a different mechanism
with a new configuration must be used. Very little work has addressed: 1) the ability of a single specified
mechanism to realize an arbitrary compliance, and 2) the identification of the space of realizable compliances
that can be achieved with a mechanism having specified link lengths.

The inability of a 2R compliant joint manipulator to realize general particle planar compliance was noted
in [20]. It was also noted that, for a 3R manipulator, the surjectivity of the mapping from 2× 2 Cartesian
space to joint space compliance is not guaranteed. These limitations were identified as motivation for using
optimization (using various norms as objective functions) for approximating the behavior of a targeted
Cartesian compliance matrix. More recently, the ability of a manipulator to realize a specified point planar
compliance using 3R serial mechanisms with known link lengths was addressed [21]. Optimization was used
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to identify the combination of mechanism configuration and joint stiffnesses that minimizes the deviation of
the attainable Cartesian compliance from a targeted value. The proximity of an optimized compliance to a
targeted compliance (measured using the matrix Frobenius norm) was characterized for a set of configurations
of the redundant manipulator and for a set of compliant behaviors using a “stiffability map.”

The major limitations of using optimization for the realization problem are that: 1) optimization does
not ensure that any specified compliance can be achieved even with a large number of redundant joints; 2)
the optimal solution may not preserve the desired compliant behavior of the original compliance; and 3)
the results obtained from optimization provide little physical insight into the limits of passive compliance
realization.

In more recent work [22, 23, 24], the realization of isotropic compliance in the Euclidian spaces E(2) and
E(3) with robotic mechanisms has been addressed. Equations relating the Cartesian compliance entries to
the joint compliance and the mechanism geometry were developed. In these papers, the joint compliances are
calculated by solving these equations. The approach applies to a general serial mechanism with revolute and
prismatic joints. However, the existence of a physical solution (ki ≥ 0) to the equations is not guaranteed,
and, for many configurations, a solution cannot exist. The set of mechanism configurations for which a
solution exists was not identified.

This paper addresses the guaranteed realization of planar translational elastic behaviors with a serial
mechanism having specified link lengths. The serial mechanisms considered have only revolute joints each
loaded with a joint compliance. The compliance behaviors considered are arbitrary in E(2). This work is
motivated by the need for a single manipulator to realize any selected planar compliance at any selected
endpoint. The paper presents the theory and methods to design a single manipulator that is able to achieve
all compliances by changing its configuration and joint compliances. It also presents the theory and methods
for the selection of mechanism configuration and joint stiffnesses needed to achieve any specified elastic
behavior. The conditions for the realization of a given compliance are interpreted in terms of geometric
relationships among the mechanism joints. The main contributions of the paper are:

1. Necessary and sufficient conditions for a mechanism to realize an arbitrarily given compliance at a
given configuration are identified;

2. Synthesis procedures for the realization of a realizable compliance at a given location are developed;

3. Classes of mechanisms that facilitate compliance realization are identified. Necessary and sufficient
conditions on the mechanism link lengths that ensure that all compliant behaviors can be realized are
identified.

1.2. Technical Background

Consider a planar serial mechanism having n joints, Ji, with joint compliance ci > 0 and joint twists
ti. Then the compliance matrix C at the mechanism endpoint is a symmetric positive semidefinite (PSD)
matrix that can be expressed [4] as:

C = c1t1t
T
1 + c2t2t

T
2 + · · ·+ cntntTn (1)

where the twists ti are described relative to the compliance frame (the reference frame where the compliance
matrix is specified). Each compliant joint provides a rank-1 PSD component:

Ci = citit
T
i . (2)

It is known that decomposition (1) is not unique; different decompositions yield different mechanism
geometries and configurations that each realizes the given compliance. Thus, decomposition (1) cannot be
applied directly to a given mechanism with specified link lengths. A new method that considers mechanism
geometry (fixed link lengths) to obtain an appropriate decomposition (1) is needed.

For the mechanism illustrated in Fig. 1, in which the compliance matrix is expressed in the frame at
point O, each joint twist is given as:

ti = ri × k
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where ri is the position vector from O to joint i and k is the unit vector perpendicular to the plane. Thus,
the joint twist ti is determined by the position vector ri.

To realize a given compliance with a given mechanism, the mechanism configuration and the joint
compliance ci must be adjusted so that Eq. (1) is satisfied.

For a suspended particle, the compliance is a 2× 2 PSD matrix. If the position vector for joint-i is:

ri =

[
xi
yi

]
,

then the corresponding joint twist, perpendicular to ri, is:

ti =

[
yi
−xi

]
.

From Eq. (2), it can be seen that ti and −ti yield the same joint compliance Ci. Thus, ti can be obtained
by rotating ri either clockwise or counterclockwise about the coordinate frame origin. Mathematically,

ti = ± Ωri (3)

where Ω is a 2× 2 anti-symmetric matrix associated with a vector cross-product, given as:

Ω =

[
0 1
−1 0

]
. (4)

It is known that the space of PSD matrices is a cone. All rank-1 PSD matrices lie on the boundary of
the cone. Thus, each joint compliance matrix Ci in Eq. (2) is a point on the boundary of the PSD cone. If
ci is allowed to vary in the range 0 < ci < ∞, Ci represents a ray in the 2 × 2 PSD space, an edge of the
PSD cone.

If a desired 2×2 PSD compliance matrix C is to be realized at the endpoint of a redundant 3R mechanism
in which each joint has selectable compliance (as illustrated in Fig. 1), then, for a specified configuration,
the three joint twists ti are known. The desired C can be realized if and only if there exist non-negative
coefficients ci such that

C = c1t1t
T
1 + c2t2t

T
2 + c3t3t

T
3 . (5)

For any 2 × 2 symmetric matrix A = [aij ], only three entries are independent, therefore, A can be

represented by a 3-vector Â = [a11, a12, a22]T . With this operation, Eq. (5) can be written in vector form as:

Ĉ = c1T̂1 + c2T̂2 + c3T̂3 =
[
T̂1, T̂2, T̂3

] c1
c2
c3

 ,
where Ĉ is the 3-vector representation of C; and T̂i is the 3-vector representation of tit

T
i . If we denote

T̂ =
[
T̂1, T̂2, T̂3

]
, c = [c1, c2, c3]T ,

then,

c = T̂−1Ĉ. (6)

Thus, C can be realized at the given configuration if and only if c ≥ 0.
In the 2× 2 PSD space, the condition c ≥ 0 indicates that C must be inside the polyhedral convex cone

defined by the three edges t1t
T
1 , t2t

T
2 , and t3t

T
3 as shown in Fig. 2. Because the manipulator is redundant,

many configurations yield the same manipulator endpoint. When the mechanism changes configuration, the
edge locations on the PSD cone’s boundary also change. The solution is tractable because the dimension
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Figure 2: Realizable condition for a given compliance C with a 3R mechanism having a specified configuration. C must be
inside of a polyhedral cone with edges t1tT1 , t2tT2 , and t3tT3 .

of the problem is the same as that of the manipulator. Although Eq. (6) can be used to determine the
realizability of C for a given mechanism configuration, it does not provide insight into the geometric relations
among the joints that are required for compliance matrix realization (i.e, to ensure that C is contained within
the polyhedral convex cone bounded by its edges). For example, if J1 and J2 are specified, the space of
J3 locations that allows C to be realized is unknown. Also, Eq. (6) cannot be used to assess whether a
mechanism can realize every compliance at a given location in the workspace.

1.3. Overview

This paper presents means to analyze and realize planar translational elastic behaviors using revolute
joint serial mechanisms. The means for analysis and synthesis are based on the geometry of the realizable
compliance matrix space and the geometry of the mechanism. This approach provides physical insight into
elastic mechanism behavior. The ability of a single mechanism with specified link lengths to realize all
compliance behaviors at a given end-point location is also investigated. In this paper, we assume that the
range of joint compliances is 0 < ci < ∞. Joint compliances can be obtained via one of the following
approaches: 1) providing an appropriate (passive) spring at each joint; 2) providing an appropriate stiffness
serial elastic actuator (SEA) at each joint; or 3) providing a variable stiffness actuator (VSA) at each joint.

Section 2 identifies the limits of a 2R mechanism to realize a specified 2 × 2 compliance matrix. A
necessary and sufficient condition for a compliance to be realized by a 2R mechanism is identified. Section
3 presents an approach to realize a given compliance with a 3R mechanism based on mechanism geometry.
The method then is extended to n-R mechanisms. Section 4 addresses the ability of a single mechanism
to realize all compliances at a given location just by changing the mechanism configuration and/or joint
stiffnesses. A necessary and sufficient condition on the mechanism geometry to realize all compliances is
identified. Synthesis procedures to achieve a realizable compliance are presented in Section 5. A numerical
example illustrating the synthesis procedures for a given mechanism is provided in Section 6. Finally, a brief
discussion and summary are presented in Section 7.

2. Limits of a 2R Mechanism

To realize a full-rank 2 × 2 compliance matrix, a mechanism having at least two compliant joints is
required. Here, the limitation of a 2R serial mechanism with fixed link lengths and configuration is con-
sidered. A necessary and sufficient condition for a specified compliance to be realized with the mechanism
is identified. These results allow the characterization of the realizable space of compliances in terms of the
geometry of the mechanism.

Consider the 2R serial mechanism shown in Fig. 3. The mechanism endpoint O is the location of interest
(where the compliance frame is located) and r1 and r2 are the position vectors indicating the locations
of joint-1 and joint-2 relative to O. If the position of O relative to J1 (the location in the workspace) is
specified, the configuration of the mechanism cannot change, and the two position vectors r1 and r2 cannot
vary.
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Figure 3: A 2R mechanism. Each joint twist ti is perpendicular to the position vector ri relative to the compliance frame Oxy.

The space of realizable elastic behaviors is given by:

Proposition 1: A compliance matrix C can be realized with a 2R mechanism in a given
configuration if and only if:

rT1 Cr2 = 0. (7)

Proof. If C is realized by the mechanism, then, by Eq. (1), there exist positive constants, the joint
compliances, c1 and c2, that satisfy

C = c1t1t
T
1 + c2t2t

T
2 .

Since r1 ⊥ t1 and r2 ⊥ t2, then rT1 t1 = 0 and rT2 t2 = 0. Thus,

rT1 Cr2 = rT1
(
c1t1t

T
1 + c2t2t

T
2

)
r2

= c1(rT1 t1)(tT1 r2) + c2(rT1 t2)(tT2 r2) = 0,

which proves that Eq. (7) is a necessary condition.
To prove that the condition is also sufficient, we show that C can always be expressed by a known

positive combination of t1t
T
1 and t2t

T
2 if Eq. (7) is satisfied.

Suppose rT1 Cr2 = 0, then Cr2 ⊥ r1. Due to the symmetry of matrix C, rT2 Cr1 = 0, and Cr1 ⊥ r2.
Using this and Eq. (3), t1 ‖ Cr2 and t2 ‖ Cr1. Thus there exist constants λ and β such that λt1 = Cr2,
and βt2 = Cr1. Then t1 and t2 can be expressed as:

t1 =
1

λ
Cr2, t2 =

1

β
Cr1. (8)

It can be shown that a matrix C̃ constructed as:

C̃ =
λ2

rT2 Cr2
t1t

T
1 +

β2

rT1 Cr1
t2t

T
2 (9)

must be equal to C.
This is shown by substituting Eq. (8) into Eq. (9) yielding

C̃ =
1

(rT2 Cr2)
Cr2r

T
2 C +

1

(rT1 Cr1)
Cr1r

T
1 C, (10)

then multiplying C̃ by r1 from the right yields

C̃r1 =
1

(rT2 Cr2)
Cr2r

T
2 Cr1 +

1

(rT1 Cr1)
Cr1r

T
1 Cr1

=
1

(rT2 Cr2)
Cr2

(
rT2 Cr1

)
+

1

(rT1 Cr1)
Cr1

(
rT1 Cr1

)
= Cr1.
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Similarly, we have

C̃r2 = Cr2.

Therefore:

C̃ [r1, r2] = C [r1, r2] .

Since r1 and r2 are two linearly independent vectors, then C̃ = C. Thus, by choosing the joint compliance
c1 and c2,

c1 =
λ2

rT2 Cr2
, c2 =

β2

rT1 Cr1
,

the compliance matrix C is realized by the mechanism with the given configuration. Note that ci > 0 since
C is positive definite. This completes the proof.

2×2 PSD cone
of compliance

Realizable space:  
r1
TCr2 = 0 

t1t1T
t2t2T

O

Figure 4: Realizable space of compliance matrices using a 2R mechanism having variable compliant joints and fixed configura-
tion. The two edges of the subcone are the rank-1 matrices t1tT1 and t2tT2 associated with vectors r1 and r2.

Condition (7) is very restrictive. It is known that the collection of all point planar compliance matrices is
a cone in the space of 2×2 symmetric matrices. Equation (7) represents a plane in this space. The realizable
space of PSD matrices is a subcone determined by the intersection of the PSD cone and the plane defined
by Eq. (7) (as shown in Fig. 4). The two edges of the subcone are the rays determined by t1t

T
1 and t2t

T
2

that are associated with the positions of the two joints, J1 and J2. For a given location of the compliance
frame, the position of J1 relative to O, r1, is specified. The ray t1t

T
1 is constant and lies on the boundary

of the PSD cone. For a given compliance C, the plane passing through both edge t1t
T
1 and compliance C

must intersect the PSD cone at a ray. In order to realize C, the second joint, J2, must be positioned such
that its joint compliance matrix is collinear with that ray.

The restriction on the space of realizable elastic behaviors can be described in terms of the mechanism
geometry as illustrated in Fig. 5. Because the position of joint J1 relative to point O is specified, r1 is
constant. By condition (7), vector r2 must be perpendicular to vector Cr1. Let l1 be the straight line
passing through O that is perpendicular to Cr1. Condition (7) requires that J2 be on line l1. Thus, line l1
represents the locus of all J2 locations that will allow the given C to be realized by the mechanism.

Since the realizable space of a 2R mechanism is very limited (zero-measure), in order to realize an
arbitrary compliance, serial mechanisms having at least three joints must be considered.

3. Mechanisms with Three or More Compliant Joints

The limits on the space of realizable compliances using a 2-joint mechanism are due to the fact that,
once the position of suspended particle relative to the base location is specified, the configuration of the

7



J1

O
r1

J2
r2

c1

c2 x

y

l1 ⊥ Cr1

Figure 5: Limitation of the realization of a given compliance with a 2R mechanism. Joint J2 must be on the line l1 ⊥ Cr1 to
realize the given compliance C.

mechanism is fixed. In this section, mechanisms having three or more compliant joints are considered. Since
the degree of freedom is increased, the mobility of the mechanism is no longer zero when the location of O is
specified. First, mechanisms having three joints are considered. Mathematical conditions on a compliance
C to be realized with a mechanism having a given configuration are obtained. Next, the set of joint twists
needed to realize a specified compliance are obtained. These conditions are then described in terms of
the mechanism geometry. Alternate procedures to select the joint compliances based on the mechanism
configuration are also provided. Then, the results are extended to mechanisms having more than three
joints.

3.1. Conditions for Compliance Realization

Below, we develop a geometric approach in compliance matrix space that will later be used directly
in physical 2-D space to determine the relationships among the three joints required to realize a specified
compliance C.

For joint-1 and the corresponding position vector r1, consider the two vectors defined by

t̃1 = Cr1, r̃1 = ΩCr1.

Then, because by Proposition 1,

rT1 Cr̃1 = (Cr1)TΩ(Cr1) = 0,

and t̃1 and r̃1 can be viewed as being associated with a nonexistent second joint needed to realize C with
a 2R mechanism. The given compliance C can be expressed as the positive combination of t1t

T
1 and t̃1t̃

T
1 ,

which means the compliance C is in the plane P1 determined by the two rays t1t
T
1 and t̃1t̃

T
1 :

P1 = {Q ∈ R2×2 : Q = QT , rT1 Qr̃1 = 0}. (11)

As illustrated in Fig. 6, plane P1 is uniquely determined by the position of J1 and the compliance matrix
C.

If C is to be realized by a 3R mechanism, C must be within a polyhedral convex cone having edges t1t
T
1 ,

t2t
T
2 , and t3t

T
3 . Hence C2 = t2t

T
2 and C3 = t3t

T
3 must be on opposite sides of P1, which means rT1 C2r̃1

and rT1 C3r̃1 must have opposite signs, which can be expressed as:

(rT1 C2r̃1)(rT1 C3r̃1) < 0. (12)

Since ΩTΩ = I (identity),

rT1 C2r̃1 = rT1 (t2t
T
2 )ΩCr1 = rT1 (Ωr2r

T
2 ΩT )ΩCr1

= rT1 (Ωr2r
T
2 )Cr1.
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t1t1T
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t2t2T

t3t3T

P1

O

~t1t1T
~

Figure 6: Condition to realize a given compliance C. Plane P1 is determined by C and the joint compliance of J1, t1tT1 . To

realize C, plane P1 must separate the joint compliances associated with joints J2 and J3, t2tT2 and t3tT3 .

Similarly,

rT1 C3r̃1 = rT1 (Ωr3r
T
3 )Cr1.

Thus Eq. (12) can be expressed as:

(rT1 Ωr2r
T
2 Cr1)(rT1 Ωr3r

T
3 Cr1) < 0.

The above inequality is a necessary condition. In order to obtain sufficient conditions, the compliance
matrix edges associated with the other two joints, t2t

T
2 and t3t

T
3 , should be considered independently using

the same procedure. Thus, the conditions for the three joints to realize a given C are:

(rT1 Ωr2r
T
2 Cr1)(rT1 Ωr3r

T
3 Cr1) ≤ 0, (13)

(rT2 Ωr3r
T
3 Cr2)(rT2 Ωr1r

T
1 Cr2) ≤ 0, (14)

(rT3 Ωr1r
T
1 Cr3)(rT3 Ωr2r

T
2 Cr3) ≤ 0. (15)

Note that these conditions are not independent. If any two of the three inequalities hold, then the
remaining inequality must be true.

Proposition 2: An arbitrary compliance C can be realized with three compliant joints with
positions r1, r2 and r3 if and only if any two inequalities of (13)-(15) hold.

3.2. Conditions on Configuration for Compliance Realization

Similar to that for J1 discussed in Section 3.1, consider the two vectors associated with J2 given by:

t̃2 = Cr2, r̃2 = ΩCr2,

and plane P2 defined by the two rays t2t2 and t̃2t̃2. Since the compliance matrix C is on both plane P1

and plane P2, it must be at the intersection of the two planes as illustrated in Fig. 7.
If C is realized by a three joint serial mechanism, plane P1 must separate t2t

T
2 and t3t

T
3 , and plane P2

must separate t1t
T
1 and t3t

T
3 . Inequalities (13) and (14) require that the joint compliance t3t

T
3 be on the

arc between t̃1t̃
T
1 and t̃2t̃

T
2 as shown in Fig. 7.

Note that joint twist ti and joint position ri have the relationship:

ti = ± Ωri, t̃i = ± ΩCri.

Since the two rays associated with t̃1t̃
T
1 and t̃2t̃

T
2 set the bounds on t3t

T
3 in 2 × 2 matrix space, the two

vectors ΩCr1 and ΩCr2 define the bounds on r3 in 2-vector space and can be represented in terms of the
mechanism geometry.
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C P1
P2

O

t1t1T t2t2T

~t1t1T
~

~t2t2T
~

Acceptable range 
for t3t3T

Figure 7: Locus of acceptable joint compliance of J3. The compliance associated with joint-3, t3tT3 , must lie on the arc between

t̃1t̃T1 and t̃2t̃T2 (which depend on the given positions of J1 and J2).

In the plane of the mechanism, consider two lines, l1 and l2, passing through the origin O (where the
compliance is specified), defined by l1 ⊥ Cr1 and l2 ⊥ Cr2. The two lines separate the space into four
subspaces: SI, SII, SIII, and SIV as shown in Fig. 8.

It can be seen that if vector r3 satisfies conditions (13)-(14), then −r3 must also satisfy the same
conditions. Thus, if inequalities (13)-(14) are true for SI, they must be also true for SIII.

Denote:

σ1 = SI ∪ SIII, (16)

σ2 = SII ∪ SIV. (17)

Then, r3 must be either in σ1 or in σ2 to realize the compliance C. In fact, if any point in σ1 satisfies
inequalities (13)-(14), the following must be true:

(i). Every point in σ1 satisfies the same conditions;

(ii). No point inside σ2 satisfies the same conditions.

The above statements (i) and (ii) can be proved by the fact that, for a given r1 and r2, the expressions
on the left side of inequalities (13)-(14) are continuous functions of r3, and if one inequality changes sign,
r3 must cross either line l1 or line l2.

σ1  =  SI ∪ SIII

σ2  =   SII ∪ SIV

SII SIV

l1 ⊥ Cr1
l2 ⊥ Cr2

l2 

l1 

O
r1

SI

SIII

r2

Figure 8: The acceptable space of r3 for realizing C. The space of r3 for the realization of C is a zone limited by the two lines
l1 and l2, σ1 or σ2. The space is identified by the fact: neither r1 nor r2 can be inside of the acceptable space.

Thus, once the positions of J1 and J2 are specified, the acceptable space for J3 to realize C is a zone
with vertical (opposite) angles and boundaries of l1 and l2, either the space σ1 or the space σ2 shown in
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Fig. 8. Although the space can be identified by testing conditions (13)-(14) using an arbitrary point, the
space can also be identified directly by testing the position of J1 or J2. Neither r1 nor r2 can be in the
interior of the space acceptable for r3. This can be proved by setting r3 = r1 in condition (13), which
violates the inequality. Therefore, as shown in Fig. 9, r3 or −r3 must be separated from r1 by l1. By the
same reasoning, r3 or −r3 must be separated from r2 by l2, and r1 or −r1 must be separated from r2 by
line l3 ⊥ Cr3. Figure 9 shows the geometric relations among position vectors ri’s and the lines li’s for a
mechanism configuration that realizes a given compliance C.

O

l2 l1 

−r1

r3

l3 r1

l2
l1 

r2

l3 

−r2

−r3

Figure 9: Necessary and sufficient condition for a compliance to be realized by a 3R mechanism. Position vector r3 is adjacent
to l1 and l2; r2 is adjacent to l1 and l3; and r1 is adjacent to l2 and l3.

In summary, we have:

Proposition 3: Consider a compliance matrix C and a 3R mechanism having joint positions
ri. Let li be a line passing through O and perpendicular to vector Cri (i = 1, 2, 3). Then,

a). If r1 and r2 are specified, the space of r3 that can realize C is the zone σ1 that does not
contain r1 (or r2) as shown in Fig. 8;

b). If r1, r2 and r3 are specified, C can be realized if and only if: ±r1 is between and adjacent
to lines l2 and l3; ±r2 is between and adjacent to lines l1 and l3; and ±r3 is between and
adjacent to lines l1 and l2 as shown in Fig. 9.

Similar to conditions (13)-(15), the three conditions on mechanism configuration in Proposition 3b are
not independent. If any two conditions in Proposition 3b are true, the remaining condition must also be
true.

3.3. Example

An application of these results is illustrated in Fig. 10. This 3R mechanism example shows how to
determine the range of the locations of J3 when the locations of the other two joints are specified.

If a desired compliance matrix is given as:

C =

[
2 1
1 4

]
× 10−2 m/N,

and the locations of J1 and J2 are specified as:

r1 =

[
−0.2

0

]
m, r2 =

[
−0.1

0.1

]
m.

The two vectors Cr1 and Cr2 are:

Cr1 =

[
−4
−2

]
× 10−3 m2/N, Cr2 =

[
−1

3

]
× 10−3 m2/N.
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The two lines l1 ⊥ Cr1 and l2 ⊥ Cr2 each passing through point O are illustrated in Fig. 10. For this
case, r1 is along the x-axis. The space of acceptable r3 to realize the given C is identified to be the two
shaded areas that meet r1 only at the origin O.

Figure 10 illustrates the locations of the three joints in a mechanism. When J1 and J2 are specified, J3
must be in the shaded area bounded by l1 and l2 in order to realize the given C. Two possible acceptable
configurations J1J2J3 and J1J2J

′
3 for the given mechanism are shown.

r1

r2

l1 

l2 

J1

J2

O

J'3

r'3

r3

l1 

l2 

J3

Figure 10: Configurations of a 3R mechanism that realizes the example compliance. Joint position vector J3 could be anywhere
in the two identified regions bounded by l1 and l2.

3.4. Determination of the Joint Compliances

Below, means for selecting the joint compliance values for a given mechanism configuration and realizable
compliance C are derived. Unlike the calculation of Eq. (6), the matrices are not converted to vectors and
a matrix inversion is not required. Only the compliance matrix and joint locations are needed.

Suppose C is to be realized by a 3R mechanism with joint twists ti, then by Eq. (5),

C = c1t1t
T
1 + c2t2t

T
2 + c3t3t

T
3 .

Multiplying C by rT2 from the left and by r3 from the right yields

rT2 Cr3 = c1r
T
2 t1t

T
1 r3 + c2(rT2 t2)tT2 r3 + c3r

T
2 t3(tT3 r3).

Since rT2 t2 = 0 and tT3 r3 = 0,

rT2 Cr3 = c1r
T
2 t1t

T
1 r3.

The value for the compliance of joint-1 is:

c1 =
rT2 Cr3

rT2 t1tT1 r3
=

rT2 Cr3
rT2 Ωr1rT1 ΩT r3

.

Repeating the process for the pairs (r1, r3) and (r1, r2) respectively, the equations for coefficients of c2
and c3 are obtained. Thus, for a given configuration (r1, r2, r3) and a realizable C, the joint compliances
are calculated using:

c1 =
rT2 Cr3

rT2 Ωr1rT1 ΩT r3
, (18)

c2 =
rT3 Cr1

rT3 Ωr2rT2 ΩT r1
, (19)

c3 =
rT1 Cr2

rT1 Ωr3rT3 ΩT r2
. (20)
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Note that once the configuration is specified, the compliance values are each unique. As stated in Propo-
sition 2, if C is realizable, then inequalities (13)-(15) must be satisfied. It can be proved that inequalities
(13)-(15) ensure that each ci in (18)-(20) is positive. Thus, if C is realizable, the coefficients calculated using
Eqs. (18)-(20) are all positive. In fact, ci > 0 (i = 1, 2, 3) is also a necessary and sufficient condition for C
to be realized with the mechanism at the given configuration.

3.5. Mechanisms with More Than Three Compliant Joints

Consider a mechanism having n (n > 3) revolute joints. At a configuration, joint i has position ri and
joint twist ti, i = 1, 2, ..., n. If a compliance C is realized by the mechanism at the configuration, then
C must be in the polyhedral convex cone bounded by the edges (rays) associated with the rank-1 joint
compliance tit

T
i , where each edge is on the boundary of the PSD cone.

C

(t1t1T)

(tntnT)

V1

V2

Vi
Vj

Vn(t2t2T)

(titiT) (tjtjT)

Boundary of 
the PSD cone

Figure 11: Cross section of the PSD cone containing the compliance C. The vertexes Vi of the polygon are associated with
joint compliance tit

T
i . C must be inside the polygon to be realized with the mechanism.

Figure 11 shows a cross section of the PSD cone containing the compliance C. In this plane, the edges
(rays) associated with the joint compliances tit

T
i s are represented by points Vi on the boundary of the PSD

cone, and the polygon with vertexes Vi is the cross section of the polyhedral convex cone of all realizable
compliances. It can be seen that the compliance C can be realized with the mechanism at the configuration
if and only if C is within the polygon with vertexes Vi.

Consider the vertex V1 in the plane shown in Fig. 11. If C is in the polygon V1V2 · · ·Vn, there must exist
two vertexes Vi and Vj such that C is the triangle V1ViVj . This means that the compliance can be realized
by three compliant joints J1, Ji and Jj . This statement is valid for any joint. As such we have:

Proposition 4: For an n-R mechanism having joint positions ri (i = 1, 2, · · · , n, n > 3), a
compliance C can be realized with mechanism at the configuration if and only if the following
equivalent conditions are true:

a). There exists three joints in the mechanism that realize C;

b). For every joint Ji, there exist two joints Jj and Jk in the mechanism such that the three
joints (Ji, Jj and Jk) realize C.

Thus, for an n-R mechanism, to determine whether a given compliance can be realized at a given con-
figuration, condition 4a or 4b can be used. Since only three joints are involved for each test set, conditions
(13)-(15) can be used. If the compliance is realizable, one can always choose just three joints in the mech-
anism to realize the behavior. The corresponding values of the three joint compliances can be calculated
using Eqs. (18)-(20). It can be seen that for a realizable compliance at a configuration, the set of joints that
realizes the compliance is not unique.

Note that if compliance is provided at more than three joints, there are an infinite number of solutions for
the set of joint compliances that achieve a realizable compliance. A closed form solution cannot be obtained
if no additional constraints are considered.
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As shown above, the kinematics of a mechanism plays a significant role in compliance realization. In the
following section, mechanism geometries that facilitate realization of an arbitrary compliance are identified.

4. Realization of Any Compliance with a Given Mechanism

Section 3 addressed the realizability of a single given compliance for a given mechanism configuration.
Since an n-R mechanism has n degrees-of-freedom, when n ≥ 3, the configuration can change when the
position of endpoint O relative to the mechanism base J1 is specified. A compliance unrealizable with one
configuration could be realizable by changing the configuration. Here, the ability of a given n-R mecha-
nism to realize every particle planar compliance at its endpoint without changing the endpoint location is
investigated.

First, mechanisms having three joints are considered. A requirement on the twist spaces associated with
joints J2 and J3 is identified. Next, the requirement on the twist space is converted to geometric conditions
on the mechanism. We show that if a 3R mechanism has appropriate link length ratios (including the
distance from J1 to O), all compliances can be realized at the given endpoint location. Then, the results for
3R mechanisms are extended to n-R mechanisms. A discussion on the workspace and the space of endpoint
locations that ensure the mechanism ability to realize all compliances is presented.

4.1. Realization Conditions for Every Compliance

Consider a 3R serial mechanism in which the endpoint location O relative to the base J1 is specified.
The mechanism can be viewed as a four-bar linkage with J1O grounded. The position of J1 relative to the
compliance frame, r1, is constant.

If a compliance matrix C is given, line l1 ⊥ Cr1 is specified. When the configuration of the mechanism
changes, two joints, J2 and J3, change their positions. The position vectors of J2 and J3, r2 and r3, span
different ranges depending on the mechanism geometry. We show that the capability of a mechanism to
realize an arbitrary compliance depends on the ranges spanned by r2 and r3. In fact, we have:

Proposition 5: Consider a mechanism having three compliant revolute joints with positions ri,
i = 1, 2, 3.

a). A given compliance C can be realized with the mechanism if r2 or r3 can cross line l1 ⊥ Cr1;

b). Every compliance matrix can be realized with the mechanism if and only if the union of
spaces spanned by r2 and r3 is no less than a half plane.

The proof of Proposition 5a is based on the fact that one can aways choose a configuration such that
r2 or r3 is on line l1. The compliance can be realized with two compliant joints: either using J1 and J2
with c3 = 0, or using J1 and J3 with c2 = 0. Note that the realization condition in Proposition 5a is also
necessary if link-1 cannot make a full rotation. For such case, the ranges of r2 and r3 are connected. Thus,
the ranges of joint compliances t2t

T
2 and t3t

T
3 are connected. If neither r2 nor r3 can cross l1, t2t

T
2 and

t3t
T
3 must always be on the same side of plane P1 defined in Eq. (11). Thus, the given C cannot be realized

at that endpoint location.
Proposition 5b is sufficient as a direct result of Proposition 3a. If the union of ranges of r2 and r3

continuously spans more than a half plane, then any straight line is within the range. Thus, for any
compliance, one of the two vectors r2 or r3 must be able to cross line l1. To prove that Proposition 5b also
provides a necessary condition to realize all compliances, it can be shown that all possible joints compliances
Ci = citit

T
i will not fill the boundary of the PSD cone if the union of ranges of r2 and r3 does not span

a half space or more. Thus there are some compliances that are not comprised of a positive combination
of t1t

T
1 , t2t

T
2 , and t3t

T
3 for all possible configurations of the mechanism having the given endpoint, which

proves Proposition 5(b).
The ability of a 3R mechanism to realize an arbitrary compliance depends on the mobility of the mecha-

nism, especially the ranges spanned by r2 and r3. It should be noted that while the range of r3 is determined
by a single rotation angle (angle of link-3), the range spanned by r2 is not directly determined by the rotation
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angle of a single link and is, therefore, more complicated to calculate. The ability to realize any compliance
can be readily assessed by evaluating the rotation range of link-3. If link-3 can rotate more than 180◦, then
any compliance matrix can be realized with the mechanism.

In the following, geometric conditions on a 3R mechanism that ensure a sufficiently large twist space are
developed.

4.2. Conditions on the Mechanism Link Lengths

Consider the 3R serial mechanism shown in Fig. 12. If the position of the base J1 relative to the end-point
O is specified, the system is kinematically equivalent to a four-bar mechanism. The geometry of the four-bar
mechanism is characterized by the three link lengths L1, L2, L3 and the distance between the base joint J1
and the endpoint O, L0.

Or1 

r2 r3 

J2 

J1 

θ3 

J3
L1 

L2 

L3 

θ1 L0 

Figure 12: A 3R serial mechanism with specified endpoint. If the location of endpoint O relative to base J1 is specified, the
system is kinematically equivalent to a four-bar mechanism.

It is known that if a mechanism satisfies the Grashof criterion, then at least one link is capable of turning
a full rotation. For the mechanism shown in Fig. 12, if L3 or L0 is the shortest link, link-3 can make a full
rotation [25]. For this case, any compliance can be realized with the mechanism.

For a non-Grashof mechanism, none of the links can make a full rotation. Both link-1 and link-3 rock
between limits but can always cross line OJ1 either clockwise or counterclockwise [25]. Due to the restrictions
on r1 and r3, the twist spaces associated with J2 and J3 are limited. However, some mechanism geometries
will still allow the space spanned by r2 and r3 to be more than a half plane. It can be shown that if L2 is
the longest link, this condition is satisfied. Thus any compliance can be realized.

As stated previously, if link-3 in a mechanism can rotate more than 180◦, then any compliance can be
realized. It is known that the range of a link in a four-bar mechanism is determined by the dead points
(extreme positions) of the link [25]. For the mechanism shown in Fig. 12, extreme positions of link-3 can be
evaluated with minimum and maximum values of θ3, θ3min and θ3max.

It can be shown that if the following two conditions are satisfied

(L1 + L2)2 ≥ L2
0 + L2

3, (21)

|L2 − L1| ≤ |L0 − L3|, (22)

then, θ3min ≤ 90◦ and link-3 can rotate more than 180◦ through θ3 = 180◦. If the following two conditions
are satisfied:

(L1 − L2)2 ≤ L2
0 + L2

3, (23)

L1 + L2 ≥ L0 + L3, (24)

then, θ3max ≥ 90◦ and link-3 can rotate more than 180◦ through θ3 = 0◦.
In summary, we have:

Proposition 6. Consider an arbitrary 3R serial mechanism with specified location of endpoint
O relative to the base J1.
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a). If the mechanism is Grashof with L3 or L0 being the shortest link, then any compliance
matrix can be realized.

b). If the mechanism is non-Grashof with L2 being the longest link, then any compliance matrix
can be realized.

c). If the mechanism satisfies conditions (21)-(22) or conditions (23)-(24), then any compliance
can be realized.

4.3. Mechanisms with More Than Three Joints

The results obtained for 3R mechanisms can be extended to n-R mechanisms (n > 3). Similar to
Proposition 5, we have:

Proposition 7: Consider a mechanism having n (n > 3) compliant revolute joints. Suppose ri
is the position vector of joint Ji, i = 1, 2, · · · , n.

a). A given compliance C can be realized with the mechanism if there is a joint Ji that can
cross line l1 ⊥ Cr1;

b). Every compliance matrix can be realized with the mechanism if and only if the union of
spaces spanned by ri’s (2 ≤ i ≤ n) is no less than a half plane.

Similar to the 3R case discussed in Section 4.2, when the mechanism base and the end-point (where the
compliance frame is located) are specified, an n-R mechanism is kinematically equivalent to an (n+1)-bar
linkage. Due to the increase in degrees of freedom, the description of the space spanned by each ri is much
more complicated. However, for some cases, the mechanism ability to realize all compliances can be assessed
by the rotation range of the nth link. If link-n can rotate more than 180◦, then every compliance can be
achieved with the mechanism. Below, a necessary and sufficient condition for link-n to have this ability is
obtained using the theory presented in [26].

Consider an n-R mechanism with link length Li as shown in Fig. 13. Suppose that the distance between
the base joint J1 and the end-point O is specified as L0.

Base

J1 

Jn 

O
Ln 

J2 

J3 

L1 

L2 

L3 

L0 

Compliance frame

Figure 13: An n-R mechanism. When the mechanism base J1 and the end-point O are specified, the mechanism is kinematically
equivalent to an (n+1)-bar linkage with L0 grounded.

Denote:

Li,j = min(Li, Lj), Lmax = max(L0, L1, · · · , Ln).

Then, the two adjacent links Li and Lj can revolve relative to each other if and only if the sum of Li,j and
Lmax is no greater than the sum of all remaining link lengths [26]. For the two adjacent links L0 and Ln,
the condition can be expressed as:

Lmax + min(Ln, L0) ≤ 1

2

n∑
i=0

Li. (25)

Since L0 is grounded, condition (25) is a necessary and sufficient condition for link-n to make a full
rotation. Thus, condition (25) is a sufficient condition for a mechanism to achieve all compliances.
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4.4. Discussion

A 3R serial mechanism is an open chain having 3 DOF. Although it is kinematically equivalent to a
four-bar linkage when the endpoint O (the location of the compliance frame) is specified, the endpoint is
clearly not fixed in space. The implications of this analogy on the manipulator workspace are described
below.

Figure 14 shows, for two different cases of manipulator geometry, both the manipulator workspace and
the space of endpoint locations for which all compliances can be realized.

rW

O

Rc

rc

rwJ1

Rw

O

Rc

L0
J2

L3

J3
L2L1

L1

L2
L3

L2
L3

L0
L1

J1

Rw

L1 L2 L3

J3J2

(a) (b)

Figure 14: The workspace and the space of endpoint locations that ensure the mechanism ability to realize any compliance
matrix. (a) Case 1: L1 > L2 > L3 and L2 + L3 > L1. (b) Case 2: L1 > L2 > L3 and L2 + L3 < L1.

In Fig. 14a, the link lengths of the manipulator satisfy L1 > L2 > L3 and L2+L3 > L1. The manipulator
workspace is a circle of radius Rw = L1 + L2 + L3. It can be proved that if the location of the mechanism
endpoint is inside of the circle of radius Rc, where

Rc =
√

(L1 + L2)2 − L2
3,

then any compliance can be realized with the manipulator at that location.
In Fig. 14b, the link lengths of the manipulator satisfy L1 > L2 > L3, but L2+L3 < L1. The manipulator

workspace is an annulus between the circle of radius Rw = L1 + L2 + L3 and the circle of radius rw =
L1 − L2 − L3. It can be proved that if the location of the endpoint is inside of the annulus between the
circle of radius Rc and the circle of radius rc, where

Rc =
√

(L1 + L2)2 − L2
3,

rc =
√

(L1 − L2)2 − L2
3,

then any compliance can be realized with the manipulator at that location.
It can be seen that, for both cases, if link-3 is short, the space of endpoint locations for which all

compliances can be realized is close to the mechanism workspace.

5. Synthesis of a Realizable Compliance

If it is possible to realize a compliance at a given location with a given mechanism, a procedure for finding
an appropriate configuration and associated joint compliance coefficients is needed. In this section, two types
of synthesis procedures for any given realizable compliance are provided. First, a synthesis procedure for
the realization of a compliance using a 3R mechanism having only two compliant joints is developed. Then,

17



a synthesis procedure for the general case in which all three joints of a 3R mechanism are compliant is
presented.

The synthesis procedures presented in this section for 3R mechanisms can be applied to n-R mechanisms
using the results presented in Section 3.5.

5.1. Synthesis with a Mechanism Having Two Compliant Joints

Since a non-singular 2× 2 compliance C is rank 2, to realize a given C at least two compliant joints are
required. Proposition 4 shows that if a compliance C can be realized with a 3R mechanism, C can always
be realized with only two compliant joints, either J1 and J2 or J1 and J3, with the remaining joint having
ci = 0. If a mechanism satisfies the conditions in Propositions 6 and 7, then any compliance can be realized
with joints J1 and J3 alone. For these mechanisms, adding compliance to the intermediate joint (joint-2)
does not enlarge the realizable compliance space of the mechanisms.

Although loading all three joints with compliance is not necessary to realize a given compliance, mech-
anisms with three compliant joints have the advantage that a significant amount of compliances (a large
“neighborhood” in the PSD space) can be reached with the mechanism by just changing the joint compli-
ances while keeping the configuration unchanged. For a mechanism with only two compliant joints, when a
compliance varies in the realizable space, both the mechanism configuration and the joint compliances need
to be changed.

Below a synthesis procedure is developed to realize an arbitrary compliance with a 3R mechanism having
compliance at joints J1 and J3. For a given compliance C, the procedure determines the mechanism
configuration and the joint compliances.

Consider a given mechanism having link lengths L1, L2, and L3 as shown in Fig. 12. The distance
between the base joint J1 and compliance frame origin is specified as L0.

A 2× 2 compliance matrix C to be realized is expressed in the coordinate frame Oxy having the form:

C =

[
a b

b d

]
.

In the coordinate frame Oxy, the position of J1 and the corresponding twists are:

r1 =

[
−L0

0

]
and t1 =

[
0
L0

]
.

The 3-step synthesis procedure is:

1. Decompose C into two rank-1 matrices:

C =

[
a b

b d

]
=

[
0 0

0 d− b2

a

]
+

[
a b

b b2

a

]
= C1 + C3.

Since C is a PSD matrix, a > 0, d > 0, and

ad− b2 ≥ 0 =⇒ d− b2

a
≥ 0,

and C1 and C3 are PSD matrices.

2. Synthesize C1 with compliant joint J1.
Choose

c1 =
d− b2

a

L2
0

> 0, (26)

then, C1 = c1t1t
T
1 .

18



3. Synthesize C3 with compliant joint J3.
Express C3 in dyad form:

C3 =

[
a b

b b2

a

]
=

 √a
b√
a

[√a, b√
a

]
.

• Calculate angle θ3.

The slope of the vector Cr1 is b
a . In order for link-3 to be on line l1 ⊥ Cr1,

θ3 = tan−1
b

a
± 90◦. (27)

• Determine the joint compliance c3.

The joint compliance can be calculated by:

c3 =
a+ b2

a

L2
3

. (28)

Then, C3 = c3t3t
T
3 .

With the final step, the mechanism configuration and joint compliances are determined. It is noted that
Eq. (27) yields two configurations. Each realizes the same compliance C.

5.2. Synthesis with a Mechanism Having Three Compliant Joints

A synthesis procedure is developed to realize a given compliance C in which all three joints of a 3R
mechanism are compliant. This development is based on the procedure used for the 2-compliant joint case
(described in Section 5.1).

When the position of the endpoint relative to the joint base J1 is specified, the position vector r1 is
constant and line l1 ⊥ Cr1 is determined. Since the mechanism has one DOF, the locations of J2 and J3
are related by the geometry of a four-bar linkage. In order to ensure J3 is in an acceptable position, the
process presented in Section 4.1 can be used to estimate the acceptable space for r3. First, consider the
configuration that realizes the given compliance C using two compliant joints J1 and J3. As shown in 4.1,
the position of J2, r′2, and line l′2 ⊥ Cr′2 are obtained. The two lines l1 and l′2 can be used to estimate the
acceptable space of r3 based on Proposition 3a. A location for J3 can be chosen in the acceptable space.

The 4-step synthesis procedure is:

1. Calculate the vector Cr1 and determine line l1 ⊥ Cr1.
2. Choose an angle of r3 (or a location of J3) such that r3 is in an acceptable zone described in Section

3.2.
The angle θ3 can be found through the following:
(a) Evaluate the dead points of link-3 and determine the rotation range of θ3.
(b) Calculate the angle θ′3 corresponding to line l1 using Eq. (27).
(c) Calculate the position of J2, r′2, assuming θ3 = θ′3.
(d) Determine the line l′2 ⊥ Cr′2.
(e) Choose r3 in the zone bounded by l1 and l′2. The zone is identified using Proposition 3a.
The angle θ3 associated with r3 is now determined.

3. Calculate r2 associated with the configuration yielding θ3.
4. Determine the joint compliance constants using Eqs. (18)-(20) presented in Section 3.4.

With the final step the configuration and joint compliances of the mechanism are determined. It is noted
that when r2 is obtained in Step 3, line l2 ⊥ Cr2 needs to be constructed to confirm that r3 is between l1
and l2 and satisfies the condition in Proposition 3a. If the conditions are not satisfied, a new position of r3
closer to l1 should be selected. It is also noted that the synthesis solution is not unique.

A numerical example is used to to illustrate the synthesis procedures in Section 6.
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6. Synthesis Procedure Examples

An example is provided to illustrate the synthesis procedures presented in Section 5. The compliance
matrix to be realized is the same C used in Section 3.3:

C =

[
2 1
1 4

]
× 10−2 m/N.

A manipulator to be used for the realization of C is shown in Fig. 15. The link lengths of the mechanism
are given as: L1 = 0.4 m, L2 = 0.3 m, L3 = 0.2 m. The distance between the base joint J1 and the
compliance frame origin O is specified as L0 = 0.6 m. Since the mechanism geometry satisfies conditions
(21)-(22), any compliance can be realized by the manipulator at this endpoint location.

0.2 m

0.6 m

0.3 m

0.4 m

J1 

J2 

J3 

O

θ3min = 67.98°

J'2 

J'3 

x

y

Figure 15: A specified 3R mechanism having given link lengths L1, L2 and L3. The position of joint base J1 relative to the
compliance frame origin O is specified. At an extreme configuration J1J ′2J

′
3O, θ3min = 67.98◦.

With the mechanism geometry, the minimum angle of link-3 is determined to be θ3min = 67.98◦. The
extreme position of the mechanism is also shown in Fig. 15.

Since the synthesis of C using all three compliant joints is based on line l1 and line l′2 obtained from the
configuration at which the compliance is realized with two compliant joints J1 and J3, the synthesis of C
with these two compliant joints is first performed. Then, the synthesis of C using all three compliant joints
of the mechanism is presented.

6.1. Synthesis of C with Two Compliant Joints

The procedure presented in Section 5.1 is first used to synthesize compliance matrix C.
Using Eq. (26), the joint compliance c1 for J1 is determined:

c1 =
d− b2

a

L2
0

=
(4− 1/2)× 10−2

0.62
= 0.0972 m/N.

Using Eqs. (27)-(28), the angle θ3 and the joint compliance c3 for J3 are determined:

θ3 = tan−1
b

a
± 90◦ = 116.6◦ or − 63.4◦,

c3 =
a+ b2

a

L2
3

=
(2 + 1/2)× 10−2

0.22
= 0.625 m/N.

If θ3 = 116.6◦ is chosen, the configuration of the mechanism is determined. Using the four-bar kinematic
relations, the angle θ1 is calculated to be 52.38◦. The configuration of the mechanism is illustrated in Fig. 16.
Line l′2 ⊥ Cr2 associated with the configuration is also illustrated in the figure. This line is needed in the
synthesis with three compliant joints described below.
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θ3 = 116.6°
θ1 = 52.38°

l1 

l'2 

O

c1 

c3 

23.42°J1 

J2 

J3 

c2 

Figure 16: Configuration of the mechanism: Synthesis of C with two compliant joints J1 and J3. The joint compliances are
c1 = 0.0972 m/N, c3 = 0.125 m/N, and c2 = 0 m/N.

6.2. Synthesis of C with Three Compliant Joints

Following the procedure presented in Section 5.2, the configuration of the mechanism and joint compli-
ances needed to realize the compliance are identified.

1. Calculate Cr1 and determine line l1 ⊥ Cr1, as described in Section 5.1.

2. Choose a position of joint-3 such that r3 is in the realizable zone between l1 and l′2. An angle of link-3,
θ3, can be selected based on the following conditions:
(a) The extreme position is θ3min = 67.98◦.
(b) The angle θ′3 associated with l1 is calculated in Section 6.1 as θ′3 = 116.6◦.
(c) The position of J2 associated with θ3 = 116.6◦ is calculated as r′2 = [−0.3559 m, 0.3169 m]T .
(d) Line l′2 ⊥ Cr′2 is determined. The angle between the line and the x-axis is 23.42◦ (shown in
Fig. 16).
(e) Choose a position between l1 and l′2 using Proposition 3a that also satisfies kinematics constraints
(greater than θ3min). Here, line l′2 is used to estimate the acceptable zone of r3. It can be seen that the
configuration θ3 = 90◦ satisfies the above conditions and is therefore chosen to realize the compliance.

3. Determine the positions of the joints.
For θ3 = 90◦, the positions of three joints are determined by the kinematics of a four-bar mechanism.
The joint positions are:

r1 =

[
−0.6 m

0

]
, r2 =

[
−0.2943 m

0.2580 m

]
, r3 =

[
0

0.2 m

]
.

4. Determine the joint compliance coefficients using Eqs. (18)-(20).

c1 = 0.0794 m/N,

c2 = 0.1317 m/N,

c3 = 0.2809 m/N.

With the final step, the mechanism configuration with θ3 = 90◦ and the joint compliances are obtained.
The mechanism configuration is illustrated in Fig. 17. To confirm that the mechanism configuration satisfies
the realization conditions, line l2 ⊥ Cr2 corresponding to the final configuration is also illustrated in the
figure.

Note that, when synthesizing a given compliance with two compliant joints J1 and J3, the configuration
and joint compliance of the mechanism are uniquely determined; when synthesizing a given compliance with
three compliant joints, the configuration and joint compliance of the mechanism are non-unique. There are
an infinite number of configurations and sets of joint compliances for the given mechanism that realize the
same compliance.
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r1 

r2 r3 

J1 

J2 l1 

c1 

c2 

c3 

l2 

J3 

Figure 17: Configuration of the mechanism: Synthesis of C with three compliant joints J1, J2, and J3.

7. Discussion and Conclusions

The decomposition process presented in the paper is theoretical. For a given Cartesian compliance, the
process yields the mechanism configuration and the joint compliances. In this paper, we assume that any
set of joint compliances can be attained via a conventional (passive) spring at each joint, or SEAs/VSAs. In
practical application, the prescribed global compliance matrix will be influenced by the following factors: 1)
gravity or loading of joint compliances changes the mechanism equilibrium and causes non-symmetry of the
global compliance; 2) the range of the joint spring stiffness or SEA/VSA stiffness may be limited which would
limit the space of global compliances achieved by the mechanism. The influence of these factors is negligible
if the overall mechanism stiffness is sufficiently high and the range of joint compliances is sufficiently large.

In this paper, methods to realize an arbitrary 2× 2 elastic behavior using serial mechanisms having only
revolute joints are presented. The ability of any specified 3R mechanism to realize an arbitrary compliance
behavior is characterized. It is shown that if a mechanism has appropriately sized relative link lengths,
every compliance matrix can be realized by the mechanism at the specified endpoint location. This ability
allows one to realize all particle compliant behaviors with a single mechanism by properly selecting the joint
compliances and the mechanism configuration. Geometric appreciation of compliances associated with a
mechanism provides insight into the design of manipulators that realize desired elastic behaviors. In robotic
applications, a time-varying compliance can be achieved with a mechanism with VSAs by properly changing
the mechanism configuration and adjusting the joint compliances.
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