74,828 research outputs found

    Counting loop diagrams: computational complexity of higher-order amplitude evaluation

    Get PDF
    We discuss the computational complexity of the perturbative evaluation of scattering amplitudes, both by the Caravaglios-Moretti algorithm and by direct evaluation of the individual diagrams. For a self-interacting scalar theory, we determine the complexity as a function of the number of external legs. We describe a method for obtaining the number of topologically inequivalent Feynman graphs containing closed loops, and apply this to one- and two-loop amplitudes. We also compute the number of graphs weighted by their symmetry factors, thus arriving at exact and asymptotic estimates for the average symmetry factor of diagrams. We present results for the asymptotic number of diagrams up to 10 loops, and prove that the average symmetry factor approaches unity as the number of external legs becomes large.Comment: 27 pages, 17 table

    Quantum Graphs: A model for Quantum Chaos

    Full text link
    We study the statistical properties of the scattering matrix associated with generic quantum graphs. The scattering matrix is the quantum analogue of the classical evolution operator on the graph. For the energy-averaged spectral form factor of the scattering matrix we have recently derived an exact combinatorial expression. It is based on a sum over families of periodic orbits which so far could only be performed in special graphs. Here we present a simple algorithm implementing this summation for any graph. Our results are in excellent agreement with direct numerical simulations for various graphs. Moreover we extend our previous notion of an ensemble of graphs by considering ensemble averages over random boundary conditions imposed at the vertices. We show numerically that the corresponding form factor follows the predictions of random-matrix theory when the number of vertices is large---even when all bond lengths are degenerate. The corresponding combinatorial sum has a structure similar to the one obtained previously by performing an energy average under the assumption of incommensurate bond lengths.Comment: 8 pages, 3 figures. Contribution to the conference on Dynamics of Complex Systems, Dresden (1999

    Chaotic Scattering on Individual Quantum Graphs

    Full text link
    For chaotic scattering on quantum graphs, the semiclassical approximation is exact. We use this fact and employ supersymmetry, the colour-flavour transformation, and the saddle-point approximation to calculate the exact expression for the lowest and asymptotic expressions in the Ericson regime for all higher correlation functions of the scattering matrix. Our results agree with those available from the random-matrix approach to chaotic scattering. We conjecture that our results hold universally for quantum-chaotic scattering

    Universal spectral statistics in Wigner-Dyson, chiral and Andreev star graphs I: construction and numerical results

    Full text link
    In a series of two papers we investigate the universal spectral statistics of chaotic quantum systems in the ten known symmetry classes of quantum mechanics. In this first paper we focus on the construction of appropriate ensembles of star graphs in the ten symmetry classes. A generalization of the Bohigas-Giannoni-Schmit conjecture is given that covers all these symmetry classes. The conjecture is supported by numerical results that demonstrate the fidelity of the spectral statistics of star graphs to the corresponding Gaussian random-matrix theories.Comment: 15 page

    Universal spectral statistics in Wigner-Dyson, chiral and Andreev star graphs II: semiclassical approach

    Full text link
    A semiclassical approach to the universal ergodic spectral statistics in quantum star graphs is presented for all known ten symmetry classes of quantum systems. The approach is based on periodic orbit theory, the exact semiclassical trace formula for star graphs and on diagrammatic techniques. The appropriate spectral form factors are calculated upto one order beyond the diagonal and self-dual approximations. The results are in accordance with the corresponding random-matrix theories which supports a properly generalized Bohigas-Giannoni-Schmit conjecture.Comment: 15 Page

    Exact, convergent periodic-orbit expansions of individual energy eigenvalues of regular quantum graphs

    Get PDF
    We present exact, explicit, convergent periodic-orbit expansions for individual energy levels of regular quantum graphs. One simple application is the energy levels of a particle in a piecewise constant potential. Since the classical ray trajectories (including ray splitting) in such systems are strongly chaotic, this result provides the first explicit quantization of a classically chaotic system.Comment: 25 pages, 5 figure

    Quantum Graphs: A simple model for Chaotic Scattering

    Full text link
    We connect quantum graphs with infinite leads, and turn them to scattering systems. We show that they display all the features which characterize quantum scattering systems with an underlying classical chaotic dynamics: typical poles, delay time and conductance distributions, Ericson fluctuations, and when considered statistically, the ensemble of scattering matrices reproduce quite well the predictions of appropriately defined Random Matrix ensembles. The underlying classical dynamics can be defined, and it provides important parameters which are needed for the quantum theory. In particular, we derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. We use this in order to investigate the origin of the connection between Random Matrix Theory and the underlying classical chaotic dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the fore-front of the research in chaotic scattering and related fields.Comment: 28 pages, 13 figures, submitted to J. Phys. A Special Issue -- Random Matrix Theor

    Universal Chaotic Scattering on Quantum Graphs

    Full text link
    We calculate the S-matrix correlation function for chaotic scattering on quantum graphs and show that it agrees with that of random--matrix theory (RMT). We also calculate all higher S-matrix correlation functions in the Ericson regime. These, too, agree with RMT results as far as the latter are known. We concjecture that our results give a universal description of chaotic scattering.Comment: 4 page
    corecore