2,895 research outputs found

    Sequential Symbolic Regression with Genetic Programming

    Get PDF
    This chapter describes the Sequential Symbolic Regression (SSR) method, a new strategy for function approximation in symbolic regression. The SSR method is inspired by the sequential covering strategy from machine learning, but instead of sequentially reducing the size of the problem being solved, it sequentially transforms the original problem into potentially simpler problems. This transformation is performed according to the semantic distances between the desired and obtained outputs and a geometric semantic operator. The rationale behind SSR is that, after generating a suboptimal function f via symbolic regression, the output errors can be approximated by another function in a subsequent iteration. The method was tested in eight polynomial functions, and compared with canonical genetic programming (GP) and geometric semantic genetic programming (SGP). Results showed that SSR significantly outperforms SGP and presents no statistical difference to GP. More importantly, they show the potential of the proposed strategy: an effective way of applying geometric semantic operators to combine different (partial) solutions, avoiding the exponential growth problem arising from the use of these operators

    Generalized disjunction decomposition for evolvable hardware

    Get PDF
    Evolvable hardware (EHW) refers to self-reconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). One of the main difficulties in using EHW to solve real-world problems is scalability, which limits the size of the circuit that may be evolved. This paper outlines a new type of decomposition strategy for EHW, the “generalized disjunction decomposition” (GDD), which allows the evolution of large circuits. The proposed method has been extensively tested, not only with multipliers and parity bit problems traditionally used in the EHW community, but also with logic circuits taken from the Microelectronics Center of North Carolina (MCNC) benchmark library and randomly generated circuits. In order to achieve statistically relevant results, each analyzed logic circuit has been evolved 100 times, and the average of these results is presented and compared with other EHW techniques. This approach is necessary because of the probabilistic nature of EA; the same logic circuit may not be solved in the same way if tested several times. The proposed method has been examined in an extrinsic EHW system using the(1+lambda)(1 + lambda)evolution strategy. The results obtained demonstrate that GDD significantly improves the evolution of logic circuits in terms of the number of generations, reduces computational time as it is able to reduce the required time for a single iteration of the EA, and enables the evolution of larger circuits never before evolved. In addition to the proposed method, a short overview of EHW systems together with the most recent applications in electrical circuit design is provided

    Automated Design of Metaheuristic Algorithms: A Survey

    Full text link
    Metaheuristics have gained great success in academia and practice because their search logic can be applied to any problem with available solution representation, solution quality evaluation, and certain notions of locality. Manually designing metaheuristic algorithms for solving a target problem is criticized for being laborious, error-prone, and requiring intensive specialized knowledge. This gives rise to increasing interest in automated design of metaheuristic algorithms. With computing power to fully explore potential design choices, the automated design could reach and even surpass human-level design and could make high-performance algorithms accessible to a much wider range of researchers and practitioners. This paper presents a broad picture of automated design of metaheuristic algorithms, by conducting a survey on the common grounds and representative techniques in terms of design space, design strategies, performance evaluation strategies, and target problems in this field

    Towards adaptive and autonomous humanoid robots: from vision to actions

    Get PDF
    Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions

    Hierarchical genetic programming based on test input subsets

    Full text link

    Error management in ATLAS TDAQ : an intelligent systems approach

    Get PDF
    This thesis is concerned with the use of intelligent system techniques (IST) within a large distributed software system, specifically the ATLAS TDAQ system which has been developed and is currently in use at the European Laboratory for Particle Physics(CERN). The overall aim is to investigate and evaluate a range of ITS techniques in order to improve the error management system (EMS) currently used within the TDAQ system via error detection and classification. The thesis work will provide a reference for future research and development of such methods in the TDAQ system. The thesis begins by describing the TDAQ system and the existing EMS, with a focus on the underlying expert system approach, in order to identify areas where improvements can be made using IST techniques. It then discusses measures of evaluating error detection and classification techniques and the factors specific to the TDAQ system. Error conditions are then simulated in a controlled manner using an experimental setup and datasets were gathered from two different sources. Analysis and processing of the datasets using statistical and ITS techniques shows that clusters exists in the data corresponding to the different simulated errors. Different ITS techniques are applied to the gathered datasets in order to realise an error detection model. These techniques include Artificial Neural Networks (ANNs), Support Vector Machines (SVMs) and Cartesian Genetic Programming (CGP) and a comparison of the respective advantages and disadvantages is made. The principle conclusions from this work are that IST can be successfully used to detect errors in the ATLAS TDAQ system and thus can provide a tool to improve the overall error management system. It is of particular importance that the IST can be used without having a detailed knowledge of the system, as the ATLAS TDAQ is too complex for a single person to have complete understanding of. The results of this research will benefit researchers developing and evaluating IST techniques in similar large scale distributed systems
    corecore