
1024 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

Generalized Disjunction Decomposition for
Evolvable Hardware

Emanuele Stomeo, Student Member, IEEE, Tatiana Kalganova, and Cyrille Lambert

Abstract—Evolvable hardware (EHW) refers to self-
reconfiguration hardware design, where the configuration is
under the control of an evolutionary algorithm (EA). One of
the main difficulties in using EHW to solve real-world problems
is scalability, which limits the size of the circuit that may be
evolved. This paper outlines a new type of decomposition strategy
for EHW, the “generalized disjunction decomposition” (GDD),
which allows the evolution of large circuits. The proposed method
has been extensively tested, not only with multipliers and parity
bit problems traditionally used in the EHW community, but
also with logic circuits taken from the Microelectronics Center
of North Carolina (MCNC) benchmark library and randomly
generated circuits. In order to achieve statistically relevant
results, each analyzed logic circuit has been evolved 100 times,
and the average of these results is presented and compared with
other EHW techniques. This approach is necessary because of
the probabilistic nature of EA; the same logic circuit may not
be solved in the same way if tested several times. The proposed
method has been examined in an extrinsic EHW system using the
(1 + λ) evolution strategy. The results obtained demonstrate that
GDD significantly improves the evolution of logic circuits in terms
of the number of generations, reduces computational time as it is
able to reduce the required time for a single iteration of the EA,
and enables the evolution of larger circuits never before evolved.
In addition to the proposed method, a short overview of EHW
systems together with the most recent applications in electrical
circuit design is provided.

Index Terms—Adaptive system, evolutionary computation,
evolvable hardware (EHW), problem decomposition.

I. INTRODUCTION

EVOLVABLE hardware (EHW) [1]–[12], also known as
evolutionary electronics and hardware evolution, is a tech-

nique to automatically design circuits (digital [5], [9], [13] and
analog [5]–[7], [14], [15], antennas [16]–[18], and robots [1],
[19], [20]) using methods inspired by natural evolution. The
circuit configuration is carried out under the control of evolu-
tionary algorithms (EAs) [21]–[25]. These techniques began to
be treated with increasing interest in the 1960s when Holland
introduced the concept of genetic algorithms (GAs) [26], [27],
which are the most general methods of solving search and
optimization problems. Research in this area has introduced
other EAs, such as genetic programming (GP) [28]–[30], evo-
lution strategy (ES) [24], grammatical evolution (GE) [31],

Manuscript received May 4, 2005; revised July 25, 2005 and December 27,
2005. This work was supported in part by the Engineering and Physical Sci-
ences Research Council under Grant GR/S17178. This paper was recommended
by Associate Editor H. Takagi.

The authors are with the School of Engineering and Design, Brunel
University, UB8 3PH Middlesex, U.K. (e-mail: stomeo@ieee.org; tatiana.
kalganova@brunel.ac.uk).

Digital Object Identifier 10.1109/TSMCB.2006.872259

Fig. 1. Schema of a basic EHW system. The EA sends the circuit con-
figurations (the chromosome) to the chip, which configures itself with the
configuration received. The EA is also responsible for sending test vectors
to stimulate the design inputs and to check the circuit’s response received
against the expected values. Based on those responses, the EA modifies the
chromosomes and supplies a new configuration to the chip. In the case of digital
logic circuits, the stimuli are the input combinations of the truth table.

evolutionary programming (EP) [32], Cartesian GP (CGP) [33],
[34], adaptive GA (AGA) [35], parallel GA (PGA) [36]–[38],
compact GA [39], etc. The basic schema of an EHW sys-
tem, adapted for the evolution of logic circuits defined by truth
tables, is illustrated in Fig. 1. Initially, EHW was intended
for real-world applications [41], but due to its limitations in
scalability (see Section II), to date few real-world applications
have been developed. Table I outlines the most important ap-
plications for electrical circuits developed with EHW systems
so far. The performance of EHW has been actively studied on
the evolution of multipliers. Both programmable logic array
(PLA)-based and field-programmable gate array (FPGA)-based
circuits have been considered. For example, the three-bit multi-
plier containing 26 logic gates [40] (the best solution obtained
to date) has been evolved for an FPGA structure after 3 000 000
generations using the gate-level EHW approach, introduced
in [42] and [43]. In gate-level evolution, the design of digital
circuits is based on primitive hardware gates such as AND and
OR. Analysis of the complexity of evolved logic circuits in
one run revealed that the most complex multiplier evolvable
is the four-digit multiplier [44]. The four-bit multiplier was
designed using logic gates as building blocks for an FPGA
target structure after 643 274 721 generations [44].

This paper presents a new type of decomposition strategy
for the evolutionary design of relatively large combinational
circuits. The proposed method involves reducing the number
of inputs prior to evolving logic circuits by introducing a new
function, which was previously briefly discussed in [45]. Here,
the authors intend to investigate more thoroughly the behavior
of the proposed technique and to show the following.

• It is capable of evolving larger circuits never before
evolved with any other evolutionary computational tech-
nique in a reasonably short time. The most complex cir-
cuits evolved are the 17-bit parity, the six-bit multiplier,
and the alu4, which is a circuit with 14 inputs and eight

1083-4419/$20.00 © 2006 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

STOMEO et al.: GENERALIZED DISJUNCTION DECOMPOSITION FOR EVOLVABLE HARDWARE 1025

TABLE I
MAIN ELECTRICAL CIRCUITS DESIGNED WITH EHW SYSTEMS

outputs taken from the Microelectronics Center of North
Carolina (MCNC) library [81].

• It is able to significantly reduce the number of generations
required to evolve digital logic circuits and to reach higher
fitness values, which result in better optimized circuits,
although the research presented in this paper concentrates
only on the evolution of fully functional circuits rather
than on the optimization.

The method presented here therefore breaks through the
scalability barrier and opens up new opportunities in the design
and application of evolvable combinational electrical circuits.
The significance of this paper lies in the potential for EHW
to contribute to the design of electrical circuits by removing
human intervention and associated costs. Not only electrical

circuits but also antennas and robot controllers could be auto-
matically designed without the need for human inputs. Further-
more, EHW, because of its basis in EAs, could adapt itself to
change task requirements and optimize its performance, which
would be particularly desirable where human intervention is
unfeasible or very expensive. Despite recent advancements in
research and technology, a number of issues remain unresolved,
including the following.

• Reducing the number of logic gates, which is quite high if
compared with hand design circuits.

• Increasing the evolvability [46]–[49]. Evolvability, as
defined in [52] is the ability of the genetic opera-
tor/representation scheme to produce offsprings that are
fitter than their parents.

1026 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

• Fault tolerance [6], [13], [49]–[51].
• Maintainability and comprehensibility of the evolved cir-

cuit [53]. Maintainability as in [54] is the system’s abil-
ity to preserve and improve its performance and fault
tolerance properties and to adjust them to the varying
environment.

This paper is organized as follows. The next section consid-
ers the problems of scalability and stalling effect in the fitness
function. In Section III, a brief description of the benchmarks
used to carry out the simulations is presented. Section IV
illustrates the basis of an extrinsic EHW system (first intro-
duced in [55]), together with the EA implemented, the chromo-
some encoded, and the fitness function applied to the system.
Furthermore, a short introduction on bidirectional incremental
evolution (BIE) is given. Section V outlines the limitations of
an EHW system by testing the evolution of several logic circuits
of different complexities. Section VI proposes the generalized
disjunction decomposition (GDD) for EHW, together with a
study case. Section VII gives the parameter’s setting for the
experiments carried out with the proposed method. Section VIII
illustrates the experimental results of the proposed method
together with BIE. The proposed method is compared against
other techniques and the advantages and disadvantages are out-
lined. Section IX concludes this paper and provides a summary
of key conclusions.

II. SCALABILITY PROBLEMS AND STALLING EFFECT

IN THE FITNESS FUNCTION

In this section, the problem of scalability [1], [49], [60],
[85]–[87] and the stalling effect in the fitness function for an
EHW system are outlined. The word scalable, or scalability, as
written in [93], has been used to describe how the size of the
problem will influence the performance of algorithms. EHW
systems are not scalable because of the genotype length, which
increases with problem size [61], and the time required for
fitness evaluation, which increases rapidly with the size of the
desired evolvable circuits.

The length of the genotype increases with the number of
logic gates used during the evolution and the level of permit-
ted connectivity between logic gates. The time necessary for
fitness evaluation is not scalable because it is exponentially
dependent on the number of inputs of the system that should be
evolved. If the number of inputs increases linearly, the number
of input–output combinations, which represent the description
of the digital logic circuits problem, increases by a power of
2. Consequently, as the number of inputs increases, the system
needs more time to produce new potential solutions, to evaluate
them, and to select new individuals. The time required for the
evolutionary process is given by the time for a single iteration
(µ) multiplied by the total number of iterations Ngen needed to
solve the problem, i.e.,

Ttot = µNgen. (1)

A possible method to reduce the total time for the evo-
lutionary process is to introduce a new algorithm to reduce
the number of generations needed or to reduce the time for a

single iteration. The method proposed in this paper is able to
accomplish both reductions.

Recently, the scalability problem has been investigated
mainly in the following areas.

• Introducing and/or improving existing evolutionary
processes [19], [74], [90].

• Developing multievolutionary processes using the princi-
ples of problem decomposition [68], [79], [84].

• Improving the genotype–phenotype mapping on biolog-
ical development [85], [86], [88], [89], [91], [92]. This
approach is achieving good results, for example, Gordon
[86] was able to evolve a 12-bit parity function.

One approach to tackling scalability is the function-level
EHW proposed in [42], [43], [64], and [65]. In function-level
evolution, the synthesis of circuits is done based on higher
functions as sin, adders, etc., instead of primitive gates such as
AND and OR. Function-level evolution has proven to be success-
ful in achieving the evolution of relatively complex tasks [64].
However, one of the main weaknesses of this approach is that it
still requires human intervention to select the most appropriate
functions for specific problems. Function-level evolution has
been further extended in [67]. Although the proposed approach
significantly reduces the number of generations required to
obtain a fully functional solution, the evolvability [46], [48],
[49] of logic circuits with a higher number of inputs remains
the central issue.

Using decomposition strategies, a number of approaches
intended to overcome scalability have been introduced, such as
divide-and-conquer for EHW [79] and BIE [62], [84].

The divide-and-conquer method, also called increased com-
plexity evolution [80], has been introduced to reduce the search
space, which allows complete evolution of logic circuits with
ten inputs by introducing the training vector and partitioned
training set [70]. However, a significant weakness is also
present, that is, the difficulties in defining the fitness func-
tion for the initial stages of evolution, which makes it less
suitable for completely automatic systems. Furthermore, this
method creates an unconditional constraint on the system: the
top-down solving approach that does not allow the discovery
of new designs. BIE [62], [84] is a completely automatic
decomposition method that does not require any knowledge
from the designer. However, it is not scalable to really large
circuits due to the limitations of EHW-oriented output and
Shannon decompositions (see Fig. 2). The first attempt to use
BIE in EHW was achieved by the evolution of a seven-input
ten-output logic function from MCNC benchmark [81]. BIE
has been further improved by the introduction of new assem-
bling techniques [82]. Although BIE and increased complexity
evolution have proven to be successful in the evolution of
logic circuits, the scalability problem remains to be one of
the main issues in achieving the evolution of relatively large
logic circuits in a reasonably short time. This paper addresses
that issue.

The problem of stalling effect in fitness functions is re-
lated to the nonimprovement of the fitness values during the
evolutionary process. Fig. 3 shows the stalling effect of the
fitness function during an evolutionary process for evolving a

STOMEO et al.: GENERALIZED DISJUNCTION DECOMPOSITION FOR EVOLVABLE HARDWARE 1027

Fig. 2. Decomposition of logic circuits. (a) Initial system with n inputs and m outputs. (b) Output decomposition. (c) Shannon decomposition [62].

Fig. 3. Stalling effect in fitness function. Stalling effect in fitness function refers to a nonimprovement of the fitness value during the evolution process. In this
graph, the stalling effect during an evolution of a seven-bit adder is shown.

seven-bit adder using (1 + λ) ES. It may be observed that when
the fitness function reaches 82.8% the stalling effect occurs. It
means that the EA chosen and/or the initial configuration for
solving that particular problem are not suitable.

III. BENCHMARKS

In this paper, several combinational circuits have been con-
sidered for use in simulations. First of all, the benchmarks
usually used within the EHW community were considered, i.e.,
multipliers, used in [13], [44], [49], [70], [88], [94], and [95],
and parity circuits, used in [30], [85]–[87], and [108].

Then, the MCNC benchmark [81], usually used by the logic
design community, was taken into account. Finally, simple logic
circuits with randomly generated truth tables were considered.
The rationale for choosing several benchmarks is that it is
beneficial to be able to compare the method proposed here with
other existing methods in order to establish its contribution.

IV. EXTRINSIC EHW

In this section, an explanation of the system used to evolve
combinational logic circuits is given. The EA that has been used
and the chromosome representations, fitness function, genetic
operators, and BIE are presented.

A. Description of the Algorithm

The EA used for the simulation is the well-known (1 + λ)
ES already tested for its in performance in [24], [25], [33],
and [83], where λ represents the population size (see Fig. 4).
First, all the chromosomes are randomly initialized. Second, the
fitness value of each individual is computed. Third, the fittest
individual is selected. Fourth, the previously selected individual
is used to test if the conditions to stop the process have been
met. These conditions are: the fitness value of the chromosome
is 100% or the number of generations has reached the maximum
value set by the user for that particular experiment. If the
conditions are not met, a new population will be generated by
mutating the best chromosome (selected at the third step) λ
times in order to obtain other λ individuals. In the next cycle, all
λ newly created chromosomes are evaluated, the fitness value
of each of them is compared with the fitness value of the best
chromosome of the previous generation, and the best of these
(1 + λ) individuals is selected.

B. Chromosome Encoding

The chromosome defines the structure of the logic circuit and
the connectivity between logic gates. In our approach, the logic
circuit has been presented as a rectangular array of logic cells.
The type of each logic cell is randomly chosen from the set of

1028 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

Fig. 4. Schema of (1 + λ) ES.

Fig. 5. Chromosome’s structure. (a) Geometry level. (b) Functional level. (c) Connection level. (d) Example of a chromosome at the connection level. In this
example, the logic gate identified by the number 32 is considered. This logic gate has five inputs, which are taken from the outputs of the logic gates identified by
the numbers 3, 5, 11, 7, and 27.

AND, OR, XOR, NOT, and MUX, where MUX is a multiplexer
with two inputs and one control signal. The chromosome has
been represented by a three-level structure.

• Geometry level [see Fig. 5(a)] contains information about
the number of rows, the number of columns of the rectan-
gular array, and the degree of internal connectivity, also
referred to as level-back parameter [34]. The level-back
parameter defines how many columns of cells to the left
of the current column may have their outputs connected to
the inputs of the current cell.

• Functional level [see Fig. 5(b)] describes the array of cells
and determines the circuit’s outputs.

• Connection level [see Fig. 5(c)] represents the structure of
each cell in the circuit and the connections between them.

In Fig. 6, an example of chromosome encoding for a circuit
layout with three inputs and two outputs is given. The circuit
layout is a circuit with two rows and three columns, and the
level back is set to three; therefore, the chromosome at geome-
try level is “2,” “3,” and “3.” The chromosome at functional
level encodes the array of cells. For example, the logic gate
identified by the output “3” is an XOR gate. XOR is encoded with Fig. 6. Example of a chromosome encoding.

STOMEO et al.: GENERALIZED DISJUNCTION DECOMPOSITION FOR EVOLVABLE HARDWARE 1029

the number “9.” Thus, the first two cells of this chromosome
are “3” and “9.” The logic gate with output “4” is an AND gate
(encoded with the number “7”); thus, the next two cells of the
functional level’s chromosome are “4” and “7.” All the other
logic gates are encoded in the same way. The last two cells of
that chromosome contain the outputs of the circuit (in this case,
the outputs of the circuit are taken from the output of the logic
gates “4” and “5”).

The chromosome at connection level identifies the logic
gates, its number of inputs, and from which gate’s output
those inputs are taken. The chromosome of the first logic gate
(first row, first column) contains “3” (which is the logic gate
identifier), then “2” (which means that that circuit has two
inputs), and then “0” and “1,” which means that one input is
taken from X0 and the other from X1. All the other five logic
gates are encoded in the same way.

C. Fitness Function

The fitness function evaluates the evolved circuits in terms
of their functionality. The fitness function selected for the
experiments has two main criteria, namely; 1) design, and, once
the circuit is fully functionally evolved, 2) optimization, which
leads to reduced numbers of active logic gates used in the circuit
configuration.

The fitness function ftot is calculated as

ftot =
{

f1, if ftot ≤ 100 design
f1 + f2, if ftot > 100 optimization

(2)

where f1 is a design criterion that defines the percentage
of correct output bits produced by the evolved circuit after
the application of all possible input combinations. f2 is the
optimization criterion for the optimization stage.

The fitness function for the functionality of the evolved
circuit f1, or the so-called design criterion, has been calcu-
lated as

f1 = 100 − 100
mp

2n−1∑
fc=0

m−1∑
i=0

|yi − di| (3)

where m and n are the number of outputs and inputs of
the given logic function, respectively, p is the number of
input–output combinations, yi is the ith digit of the output
combination produced by the evaluation of the circuit, di is
the desired output for the fitness case fc, and |yi − di| is the
absolute difference between the actual and the required outputs.

The fitness function for the optimization stage has been
calculated below, where NLG is the number of total logic gates
present in the chromosome and is equal to the number of
rows multiplied by the number of columns of the chromosome.
Nmax

PLG is the number of primitive logic gates necessary for
building the logic gate with the highest number of inputs
present inside the chromosome. Fig. 7 shows how to decompose
a logic gate with four inputs. Therefore, if a logic gate has four
inputs, the number of primitive logic gates necessary to build it
is 3. Nrow and Ncol are the number of rows and columns of the
chromosome, respectively. NPLG(i,j) is the number of primitive

Fig. 7. Decomposition of a logic gate with four inputs into primitive logic
gates.

Fig. 8. Example of a possible chromosome configuration.

logic gates necessary to build the (i, j)th logic gates. NPLG(i,j)

is 0 if the (i, j)th logic gate is unconnected, i.e.,

f2 = NLGNmax
PLG −

Nrow∑
1=1

Ncol∑
j=1

NPLG(i,j) . (4)

An example of how the fitness function for a chromosome
during the optimization stage is calculated is given below. Sup-
pose that the chromosome in examination is a rectangular array
of two rows and four columns (see Fig. 8) and for a particular
configuration the highlighted logic gates are connected (see
Fig. 8). Therefore, the total number of logic gates NLG is two
rows multiplied by four columns, so NLG = 8.

The logic gate with the highest number of inputs is the cell
marked with index (2, 2), which contains five inputs; conse-
quently, Nmax

PLG = 4. The fitness function for the optimization
stage can be calculated as

f2 = NLG × Nmax
PLG −

Nrow∑
i=1

Ncol∑
j=1

NPLG(i,j)

= 8 × 4 − (1 + 2 + 0 + 3 + 0 + 4 + 3 + 0) = 19. (5)

Fig. 9 shows the behavior of the fitness function during the
evolution of functionality for the function

f = �sqrt(x)� (6)

with four inputs and three outputs. In Fig. 9, two different stages
are noticeable. The first shows the design of the function, so
with each generation the fitness function value increases until
it reaches 100%; therefore, the functionality of the circuit is
completely evolved. During the first stage, the fitness function
has been calculated using (3). The second stage starts just after
the circuit is evolved. This stage performs the optimization
of evolved circuits by reducing the number of active logic
gates. Furthermore, during this stage, the fitness function, as

1030 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

Fig. 9. Fitness function behavior. This graph shows the effect of the use of the selected fitness function during the evolution of a logic circuit. When the fitness
value reaches 100% (functionality evolved), the optimization process begins.

Fig. 10. BIE approach.

calculated using (4), also increases its value because the circuit
is better optimized.

D. BIE

BIE [62], [84] operates by gradually decomposing a complex
system into a series of simpler ones when the evolution does
not bring any improvement in terms of fitness function value
(see Fig. 10). These simpler blocks are evolved separately and
then merged together once completely developed. If, during the
evolution of each single subsystem, the stalling effect in the
fitness function (see Fig. 3) occurs again, the single subcircuits
will be decomposed again and again until all the subcircuits
are simple enough to be evolved. The systems are decomposed
by using Shannon and output decomposition (see Fig. 2).
Evolution occurs on both sides. First toward modularization
(having simpler and smaller logic circuits) and second toward
an optimized system by assembling the simpler subcircuits
together. This system is completely automatic and does not
require any human intervention.

E. Genetic Operators

Gene mutation and elitism [21] have been used in our extrin-
sic EHW system. Elitism ensures that the best individual of one

TABLE II
INITIAL DATA FOR THE EXPERIMENTS CARRIED OUT WITH (1 + λ) ES

generation is transferred to the next one. The mutation operator
is involved in changing the value of some genes inside the
chromosome. The aim of this operation is to bring more change
(diversity) into the population. By increasing the mutation rate,
the genetic search will be transformed into a random search but
will help to reintroduce lost genetic material [22].

V. LIMITATIONS OF EHW EVOLUTION

In order to identify the limitations of the previous systems,
a number of experiments have been carried out. The purpose
of these experiments was to quantify how the performance of
the evolutionary process is dependent on the complexity of the
tasks used. Logic circuits have been evolved using the extrinsic
EHW approach with (1 + λ) ES described in detail in the
previous section, with λ = 5. Each logic circuit, randomly gen-
erated, has been evolved either 50 or 100 times, and the average
number of generations needed for each run has been reported.
The initial configuration used for evolving the logic circuits
has been set out in Table II, where all the parameters for the
ES are outlined. The obtained results were classified according
to the number of inputs, number of outputs of logic circuits,
and number of generations required to evolve such circuits. In
Fig. 1, the relationship between the dimension of the circuits
and the required number of generations in order to evolve
them has been considered. The experimental results have shown
that the number of generations required in order to evolve a

STOMEO et al.: GENERALIZED DISJUNCTION DECOMPOSITION FOR EVOLVABLE HARDWARE 1031

Fig. 11. Average number of generations required to evolve logic circuits with
n inputs and m outputs using (1 + λ) ES.

logic circuit is mainly dependent on the number of inputs. The
system set-up together with the EHW algorithm used was able
to evolve only the circuit for which the results are given in
Fig. 11. The considered system has not been able to evolve
more complex logic circuits. Based on the obtained results, one
may conclude that there is a need for the development of a
method that would concentrate on the input decomposition for
EHW systems. That method is proposed in the next section. The
experimental results prove that such a method will tackle the
scalability problem better than the methods focused on output
decomposition. This paper is devoted to proposing that method.

Therefore, a new system that is capable of reducing the
number of required generations and at the same time improving
the fitness values and evolving larger logic circuits has been
introduced.

VI. GENERALIZED DISJUNCTION DECOMPOSITION

In this section, the proposed method, GDD, which speeds
up the evolutionary process and optimizes the logic circuit, is
explained. This method improves the scalability for evolving
logic circuits. This method has been introduced as a result of
the limitation of EHW evolution demonstrated in the previous
section: the number of generations required to evolve a circuit
is mainly dependent on the number of inputs rather than on the
number of outputs.

A. Proposed Method

This method is based on rewriting the truth table in such a
way that the inputs needed to describe the system are decom-
posed in two parts. Supposing that a system with n inputs and
m outputs, see Fig. 12(a), should be evolved using either the
extrinsic EHW approach previously described or other EAs.
The functionality of this system can be described by the truth
table given in Fig. 12(b), where p = 2n is the number of prod-
ucts (or the so-called number of input–output combinations).
The system depicted in Fig. 12(a) can be decomposed into two
subsystems as shown in Fig. 13(a).

Fig. 12. General description of logic circuits.

Subsystem G with r inputs and s outputs represents the
evolvable part of the newly created system, where

s = m × 2n−r (7)

and subsystem H with (s + n − r) inputs and m outputs rep-
resents the fixed part of the circuit that is generated using
multiplexers. This part does not participate in the evolution-
ary process. The structure of this subcircuit depends on the
number of used inputs and outputs. The next section gives a
description of the system H. The decomposition of the system
F into the two subsystems (G and H) is done automatically.
At the moment, the user decides how many inputs G should
have. Then the initial system F, defined by its truth table, is
decomposed. Software in C++ has been written to accomplish
this decomposition. Subsystem G can be evolved using either
the traditional EHW approach or any other scalable approach
such as divide-and-conquer, BIE, etc. The complexity of the
evolutionary process will depend on the type of method used.
Let us consider the process of generating the truth table for
subsystem G. Let us assume that r should be always less than
n(r < n), where r is the number of inputs in the G subsystem
and n is the number of inputs in the initial system. The new truth
table, shown in Fig. 13(b), has been calculated by applying the
following procedure.

• Generation of all the input combinations of the truth
table G.

• Identification, per each input combinations, of the truth
table G, s/m output combinations on truth table F, wher-
ever the input combinations of the truth table G match
in sequence the input combinations of the initial system
(truth table F).

• The outputs, of the initial system (truth table F) previously
identified, become the outputs of the reduced truth table
(output of G).

B. Multiplexer Part

In this section, the complexity of subsystem H, the multi-
plexer part, is shown. A multiplexer with two inputs and one
control signal is composed of four logic gates: one NOT, two
AND, and one OR, as shown in Fig. 14.

1032 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

Fig. 13. (a) Proposed decomposition of the initial logic circuit. r and g refer to the number of inputs and outputs of the reduced subsystem, respectively. (b) Truth
table of the evolved part of the proposed subsystem.

Fig. 14. Multiplexer with one control signal and how it is built with
logic gates.

Fig. 15. Multiplexer with two control signals.

In Fig. 15, a multiplexer with two control signals is shown,
as well as the process for constructing it. The number of logic
gates required for a generic multiplexer is given by

Nlg = 4(2c − 1) (8)

where Nlg is the number of logic gates required to build the
multiplexer with c control signals.

C. Case Study

In this section, a case study regarding the generation of a
truth table for subsystem G based on a simple example is
considered. The truth table corresponding to the function given
in (6) with four inputs and three outputs has been taken into
account as an initial system to be decomposed. Therefore,
the system F has n = 4 [number of inputs (x0, x1, x2, x3)],
m = 3 [number of outputs (f0, f1, f2)], and p = 16 (number
of products or input combinations).

The truth table of this function is shown in Fig. 16(a).
Supposing that a subsystem G with only two inputs is to be
generated. Therefore, the new system will have r = 2 [number
of inputs of the subsystem G (x0, x1)] and s = 12 [number of
outputs of G, calculated based on (7)].

The new system is shown in Fig. 17. In order to generate
the truth table of G, the procedure described in the previous
section should be followed. First, all of the input combinations
have been generated. Therefore, in this case, the input combi-
nations of subsystem G are 4: (x0, x1) = (00), (01), (10), (11).
Second, for each input combination generated, the s/m out-
put combinations of the initial system, wherever the input

STOMEO et al.: GENERALIZED DISJUNCTION DECOMPOSITION FOR EVOLVABLE HARDWARE 1033

Fig. 16. (a) Truth table of the initial function F. (b) Newly generated truth table for subsystem G.

Fig. 17. Decomposed subsystems obtained using generalized decomposition
strategy. G is the evolvable part, and H is the multiplexer part.

combinations of the truth table G match in sequence the in-
put combinations of F, should be identified. Let us identify
the s/m = 4 output combinations for the input combination
(x0, x1) = (0, 0). The truth table F has been examined and the
output of all the s/m input combinations that include (0, 0) for
(x0, x1) have been considered as outputs for subcircuit G when
(x0, x1) = (0, 0). Once the outputs for the input combination
(x0, x1) = (0, 0) have been generated, the input combination
(0, 1) is considered. The truth table generated for subsystem G
is given in Fig. 16(b).

The number of logic gates required to implement the fixed
part (H-system) of the new system, based on (8), is 12.

VII. SETTING PARAMETERS

In this section, the system setup used to simulate the GDD
is provided. The building blocks (a combination of primitive
logic gates) that participate in evolutionary processes are AND,
OR, XOR, NOT, and a multiplexer with two inputs and one
control. Each logic gate has up to four inputs. The connections
between building blocks inside the chromosome are interactive
and in cascade mode (see Fig. 18). The mode in which they are

Fig. 18. Connections between building blocks in cascade and interactive
mode. This figure explains how building blocks could be connected inside the
circuit layout. The mode in which they are connected is automatically selected
during the evolution.

connected is automatically selected. Furthermore, the output of
a primitive logic gate of the nth columns could be connected
to the input of a primitive logic gate of (n − l)th columns with
l < n, where l represents the level back [34], and of (n + k)th
columns, where k ≥ 0 and (n + k) is less than or equal to the
number of columns of the circuit layout.

The truth tables used to describe the logic circuits are
compatible with the Berkeley standard format for the physical
description of a PLA [119].

The system used for evolving circuits with BIE is shown in
Fig. 10, while for the GDD the schema is shown in Fig. 19.

In Table III, EA’s parameters are given, where the number of
generations refers to the number of cycles that each experiment
has been evolved, population size refers to the number of
different chromosomes, and gene mutation rate and elitism are
the genetic operators used.

Each logic circuit has been evolved 100 times. For the given
logic functions, the results are considered only if the logic
circuit has a success rate of 100%. In Table IV, the features
of the circuit layout used during evolution are given. The size of
the chromosome (i.e., circuit layout) is chosen according with
the complexity of the task being evolved. The more complex the
task being evolved, the larger the circuit layout selected. Those
parameters are not chosen according to previously published
results; rather, they are tuned in order to obtain the best results.
Definitions of the number of rows, columns, and level back have
been provided in Section IV-B. The experiments are run with a

1034 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

Fig. 19. System used for evolving logic circuits. The GDD is implemented
into BIE.

TABLE III
INITIAL PARAMETER FOR THE EXPERIMENT CARRIED OUT

WITH BIE AND WITH THE PROPOSED APPROACH

desktop PC with a Pentium IV at 3.00 GHz and 768 MB of
RAM. The software is written in C++.

VIII. EXPERIMENTAL RESULTS

In this section, the results of the logic circuits evolved by
using the GDD together with BIE are shown.

The aim of the experiments is to prove that the proposed
method requires less generations and improves scalability for
designing logic circuits in EHW in comparison with exist-
ing evolutionary computation methods. As the standard EHW
approach, which does not use any decomposition technique,
has high limitations in the evolution of relatively large logic
circuits, it was decided not to compare the results of this method
with the results obtained with GDD. The logic circuits analyzed
in this paper have been taken from different sources: some of
them were randomly generated, others were taken from MCNC
benchmark [81], others describe the behavior of multipliers of
different complexity, and others are even n-bit parity circuits
traditionally used within the EHW community. In this section,
another benefit of the use of GDD is also shown: GDD is capa-
ble of reducing the time required for a single iteration, therefore
reducing the time required for the entire evolutionary process.

A. Evolving Randomly Generated Logic Circuits

The circuits analyzed here are randomly generated. The
complexity of these circuits is quite low; therefore, it is easy
to evolve them. However, it has been decided to evolve those
circuits in order to show how the use of GDD could bring
some benefits to the evolution of small logic circuits over BIE.

TABLE IV
INITIAL DATA. DIMENSION SIZE AND CONNECTIVITY OF THE

CIRCUIT LAYOUT USED DURING SIMULATIONS

In Table V, the experimental results are shown. The circuits
evolved with the GDD are better optimized and the number of
generations is significantly reduced. In that table, all the char-
acteristics of the circuits have been given: name, number of in-
puts, outputs, and products. For example, by looking at the logic
circuit 6–4, it has six inputs, four outputs, and 64 input–output
combinations. Then, the numbers of generations (average out
of 100 runs and the best run) needed for evolving the logic
circuits have been reported. The next two columns give the
average and best times (values are expressed in seconds) for
each experiment. The next two columns provide the value of
the fitness function for the final optimized solutions. For circuits
6–4, it can be observed that it is evolved using BIE (first row,
six inputs and four outputs) and a different configuration (four
inputs and 16 outputs) is obtained using the GDD.

B. Evolving Multipliers

The evolution of multipliers is a quite difficult task. Several
researchers have recognized the importance of the evolution
of these circuits, and in the past few years this benchmark has
become widely used within the EHW community. In Table VI,
experimental results regarding the evolution of multipliers are
given. Like BIE, GDD is not able to evolve a six-bit multiplier
within the maximum number of generations set for this exper-
iment. Therefore, the maximum number of generations for this

STOMEO et al.: GENERALIZED DISJUNCTION DECOMPOSITION FOR EVOLVABLE HARDWARE 1035

TABLE V
EXPERIMENTAL RESULTS FROM BIE AND GDD, WHERE IN, OUT, AND P ARE THE NUMBER OF INPUTS, OUTPUTS, AND PRODUCTS IN THE

GIVEN LOGIC FUNCTION. EACH LOGIC CIRCUIT HAS BEEN EVOLVED 100 TIMES WITH A SUCCESS RATE OF 100%

TABLE VI
EXPERIMENTAL RESULTS FROM BIE AND GDD. EACH LOGIC CIRCUIT HAS BEEN EVOLVED 100 TIMES WITH A SUCCESS RATE OF 100%. FOR THE

EVOLUTION OF THE SIX-BIT MULTIPLIER, THE MAXIMUM NUMBER OF GENERATIONS WAS SET TO 3 000 000 BECAUSE OF THE DIFFICULTIES TO

EVOLVE IT. ONLY THREE RUNS HAVE BEEN CARRIED OUT FOR THIS MULTIPLIER AS THE AVERAGE REQUIRED EVOLUTION TIME IS 48.48 h

circuit was increased to 3 000 000. In [117], it has already been
proven for one run that GDD is able to solve this multiplier,
but only by using a higher number of generations. The six-bit
multiplier is also evolved using another configuration of GDD,
with nine inputs and 96 outputs. Three experiments have been
carried out with this configuration, and the average number
of generations required is 2 536 135 while the average time
per experiment is 32.00 h; a bit less than the configuration
with ten inputs.

C. Evolving Even n-Bit Parity Function

Parity functions are often used to check the accuracy of
stored or transmitted binary data in computers because a change
in the value of any one of its arguments toggles the value of
the function. As a result of this sensitivity to its inputs, the
parity function is difficult to learn [29]. This benchmark, as with
the multipliers, is popular within the evolutionary computation
community. The even n-bit parity circuit produces a response
equal to the sum modulo 2 of its inputs. Table VII shows the
experimental results for the evolution of those circuits. From
that table, it can be observed that with the use of GDD the
evolution of a large circuit is feasible. GDD is able to evolve

large even parity bit circuits never evolved before. The best
parity bit circuit successfully evolved previously was presented
in [86], and it was a 12-bit parity circuit. It was evolved using
a developmental model based on a biological map between
genotype and phenotype.

D. Evolving Logic Circuits From MCNC Benchmark

The experimental results reported in this section are those
in relation to the evolution of circuits taken from the MCNC
benchmark [81], [110]. This benchmark was first presented
at the 1990 International Workshop on Layout Synthesis.
Since then, several researchers within the GA community
have used it as a test bench for floor planning [111], cell
placement [112], [113], power consumption [114], etc. It is
still not popular within the EHW community because of the
complexities of those circuits. However, here, it has been de-
cided to evolve those circuits in order to show that GDD has
the capability to cope with these circuits. Figs. 20–23 show
the relationships between the values of the fitness function, the
number of generations, and the time spent for each experiment.
“Reduced circuit” refers to a circuit that has been obtained
by applying the proposed method to the original circuit. Each

1036 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

TABLE VII
EXPERIMENTAL RESULTS FROM BIE AND GDD. THE LOGIC CIRCUITS PARITY16E AND PARITY17E HAVE BEEN EVOLVED TEN TIMES,

THE OTHERS 100 TIMES. ALL THE CIRCUITS HAVE BEEN EVOLVED WITH A SUCCESS RATE OF 100%

Fig. 20. Relationship between the final value of the fitness function reached at the end of each experiment and the number of generations required for evolving
the circuit 9sym. The circuit has been evolved 100 times, and all the results are shown.

Fig. 21. Relationship between the final value of the fitness function reached at the end of each experiment and the CPU time required for evolving the circuit
9sym. The circuit has been evolved 100 times.

STOMEO et al.: GENERALIZED DISJUNCTION DECOMPOSITION FOR EVOLVABLE HARDWARE 1037

Fig. 22. Relationship between the final value of the fitness function reached at the end of each experiment and the number of generations required for evolving
the circuit rd84. The circuit has been evolved 100 times.

Fig. 23. Relationship between the final value of the fitness function reached at the end of each experiment and the CPU time required for evolving the circuit
rd84. The circuit has been evolved 100 times.

graph compares the evolution results between the original
logic circuits and two different configurations of the “reduced
circuit.” For all the evolved logic circuits, it has been observed
that a smaller number of generations is required for the evo-
lution of the “reduced circuits” and at the same time better
values of fitness are achieved. The same results for the time
required for each experiment have been found. For any of the
given graphs, it can be seen that when the number of inputs is
reduced the fitness value for each experiment is increased and
the time and number of generations are reduced. In Table VIII,
all the experimental results obtained by using BIE and GDD are
shown. It should be noted that for the evolution of the circuit
alu4, only five runs are analyzed and the maximum number of
generations for those experiments was set at 2 000 000; this was
done because of the high computational time required for the
simulations. Even with this initial set up, BIE was not able to
completely solve the task.

E. Reduction of Time Required for a Single Iteration

Another benefit of GDD is that it is able to reduce the time re-
quired for a single iteration µ [see (1)]. This leads to a reduction
of the total time required for the entire evolutionary process.

To illustrate this advantage, the time required for a single
iteration for circuits with different numbers of inputs has been
calculated. The system set up for those simulations is a circuit
layout with three rows and 80 columns and level back equal to
the number of columns.

The logic circuit in examination was the 17-bit even parity.
Using GDD, circuits with 16 inputs and two outputs, with
15 inputs and four outputs, and so on, down to a circuit with two
inputs, were created, and those circuits were used as a test bench
for this experiment. As can be observed from the results shown
in Fig. 24, the required time for a single iteration increases with
the number of inputs: going from 16.172 ms for a circuit with
two inputs to 35.79 s for a circuit with 17 inputs.

1038 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

TABLE VIII
EXPERIMENTAL RESULTS FROM BIE AND GDD. EACH LOGIC CIRCUIT HAS BEEN EVOLVED 100 TIMES, WITH THE EXCEPTION OF alu4,

WHICH HAS BEEN EVOLVED FIVE TIMES. ALL EXPERIMENTS HAVE REACHED A SUCCESS RATE OF 100%

Fig. 24. Time per iteration for circuits with different numbers of inputs.

These experiments were performed with a personal computer
with 768 MB of RAM and a Pentium IV processor at 3.00 GHz.

F. Analysis of Results and Comparison to Techniques

In this section, an analysis of the obtained results is outlined.
The experimental results have shown a reduction of the number

TABLE IX
REDUCTIONS, EXPRESSED IN PERCENTAGE, OF THE NUMBER OF

GENERATIONS, THE TIME SPENT, AND THE IMPROVEMENTS OF

THE FITNESS VALUE BY USING THE PROPOSED METHOD

COMPARED WITH BIE SOLUTIONS

of generations required to fully evolve combinational circuits
for all the benchmarks used following a reduction in time spent
performing the evolution.

Furthermore, increased fitness function values have been no-
ticed, which leads on to better optimized logic circuits, although
the presented method aims to improve scalability rather than
optimization of the evolved logic circuits.

STOMEO et al.: GENERALIZED DISJUNCTION DECOMPOSITION FOR EVOLVABLE HARDWARE 1039

TABLE X
MOST COMPLEX COMBINATIONAL CIRCUITS PREVIOUSLY EVOLVED KNOWN TO THE AUTHORS AND COMPARISON

OF THOSE WITH GDD. “IN” REFERS TO THE NUMBER OF INPUTS

The best results for GDD are scalability. Several combi-
national circuits, taken from different benchmarks, never pre-
viously evolved, have been successfully evolved. Table IX
shows improvements in terms of the number of generations,
evolution time, and fitness values that GDD brought over the
BIE evolutionary method. The best result is a reduction of 84%
of the number of generations required to fully evolve a circuit.
This result was obtained for the circuit 9sym taken from the
MCNC benchmark.

In Table X, the most complex parity bit circuits, multipliers,
and circuits from the MCNC benchmark before evolving are
considered and compared with the results obtained by GDD.
A comparison of GDD against the conventional method is not
given because the aim of the experiments set in this paper is to
show that the proposed method is able to automatically design
large combinational logic circuits. The method proposed here
does not deal with the optimization of the evolved circuits. It
means that hand design logic circuits are better optimized in
terms of number of logic gates, but GDD can design the same
circuits avoiding the high cost of human design.

In conclusion, the main advantages of this method, as proven
from the simulations, are as follows.

• Fewer numbers of generations required to evolve the sys-
tem in comparison with BIE.

• Less computation time, for two reasons. First, the com-
putation time required is smaller because the number of

generations is less [see (1)]. Second, because the truth
table treated with GDD is much smaller and can be
processed quickly; therefore, the required time for a single
iteration is reduced, as exposed in Section VIII-E. For
instance, an even parity circuit with 17 inputs (as evolved
in Section VIII-C) described with the Berkley format is
2689 KB. The same truth table rewritten with GDD is
only 157 KB. Therefore, the necessary time to run a single
generation for the EA is reduced.

• Improved optimization of the evolved circuit. The circuits
evolved here using GDD have better fitness values when
compared with those evolved by BIE, although the aim
of the experiments was to show that bigger logic circuits
could be evolved and not specifically to show that better
optimization could be achieved. To show that the proposed
method actually tackles the optimization problem, the
number of generations for the experiments would not be
set at 1 000 000, rather a much larger number would have
been chosen.

• The possibility of evolving larger circuits, as the 17-bit
even parity, the six-bit multiplier, and the alu4 (14 inputs).

• GDD is independent of the strategies used; therefore,
it could be implemented in different evolvable system
environments. Here, it has been implemented into BIE;
therefore, the system is completely automatic and does not
require any information from the user.

1040 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

Fig. 25. Example of output and Shannon decompositions of a system (with
seven inputs and ten outputs) into several subsystems. The EA is applied untill
a subsystem is small enough to be completely evolved. If it will not become
evolved within a certain number of generations, it will be decomposed into
subsystems.

G. Evolving Complex Logic Circuits

The necessary time to evolve a circuit, as reported in (1),
is dependent on the number of required generations and the
time necessary for a single iteration. GDD is able to reduce the
number of generations and also to reduce the time required for
a single iteration as shown in Section VIII-E.

The time required for a single iteration is highly dependent
on the complexity of the fitness function and on the hardware
used. Further reductions of the evolution time will be achieved
by using faster hardware. The experimental results presented
here have shown a success rate of 100% for all the analyzed
circuits. This success rate is as a result of the nature of the
core of the system used, which is BIE [62], [84]. BIE works
by progressively reducing the complexity of the logic circuits,
which should be evolved. Therefore, a complex task, which is
difficult to evolve, will be decomposed until the EA is able to
evolve it. In Fig. 25, an example of how the decomposition
of the initial system would be done with the use of BIE is
reported. The method of decomposing a system into other sub-
systems (using output and Shannon decomposition see Fig. 2)
is completely automatic. The initial system is decomposed into
smaller subsystems until the EA is able to evolve them.

IX. CONCLUSION

In this paper, the GDD for EHW, which is used for the
evolution of logic circuits, has been presented and compared
with other EHW techniques.

The proposed algorithm has been tested based on the evo-
lution of not only multipliers and even n-bit parity circuits,
traditionally used by the EHW community, but also with logic
circuits taken from MCNC benchmark library, traditionally
used in logic design, and also randomly generated circuits.

The experimental results have confirmed that GDD requires
significantly fewer generations to evolve fully functional solu-
tions, reduces the time for a single iteration during the evolu-
tionary process, and allows the evolution of large circuits. The
17-bit parity circuit, the six-bit multiplier, and the alu4, which is
a circuit with 14 inputs and eight outputs never evolved before
with any other techniques, were evolved using the method
proposed here.

GDD demonstrates that is beneficial for solving more com-
plex logic circuits. Furthermore, the evolved circuits have
reached higher values of fitness during the optimization stages
when compared with BIE, although the work presented here
is based on the evolution of large circuits rather than into the
optimization.

ACKNOWLEDGMENT

The first author would like to thank A. M. Walsh for help and
support, and the BIIS Research Group at Brunel University. The
authors acknowledge the anonymous referees.

REFERENCES

[1] X. Yao and T. Higuchi, “Promises and challenges of evolvable hard-
ware,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 29, no. 1,
pp. 87–97, Feb. 1999.

[2] H. de Garis, “Evolvable hardware: Principles and practice,” Com-
mun. ACM, vol. 40, no. 8, Aug. 1997. [Online]. Available: http:
//www.cs.usu.edu/~degaris/papers/CACM-Hard.html

[3] M. Sipper and E. M. A. Ronald, “A new species of hardware,” IEEE
Spectr., vol. 37, no. 3, pp. 59–64, Mar. 2000.

[4] A. Stoica, R. Zebulum, and D. Keymeulen, “Mixtrinsic evolution,” in
Proc. 3rd Int. Conf. Evolvable Syst.: From Biol. Hardw., Edinburgh,
U.K., Apr. 17–19, 2000, pp. 208–217.

[5] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa,
I. Kajitani, E. Takahashi, K. Toda, N. Salami, N. Kajihara, and N. Otsu,
“Real-world applications of analog and digital evolvable hardware,”
IEEE Trans. Evol. Comput., vol. 3, no. 3, pp. 220–235, Sep. 1999.

[6] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, “Fault-tolerant
evolvable hardware using field-programmable transistor arrays,” IEEE
Trans. Rel., vol. 49, no. 3, pp. 305–316, Sep. 2000.

[7] A. Stoica, R. S. Zebulum, M. I. Ferguson, D. Keymeulen, V. Duong,
and T. Daud, “Evolutionary configuration of field programmable analog
devices,” in Proc. IEEE Aerosp. Conf., Mar. 8–15, 2003, vol. 6,
pp. 2565–2572.

[8] J. Torresen, “An evolvable hardware tutorial,” in Proc. 14th Int. Conf.
FPL, Antwerp, Belgium, Aug. 2004, pp. 821–830.

[9] J. F. Miller, D. Job, and K. Vassilev, “Principles in the evolutionary
design of digital circuits—Part I,” Genet. Program. Evolvable Mach.,
vol. 1, no. 1/2, pp. 7–35, Apr. 2000.

[10] A. Thompson, “On the automatic design of robust electronics through
artificial evolution,” in Proc. 2nd Int. Conf. ICES, 1998, pp. 13–24.

[11] P. Haddow and G. Tufte, “Bridging the genotype–phenotype mapping for
digital FPGAs,” in Proc. 3rd NASA/DoDWorkshop Evolvable Hardware,
Long Beach, CA, 2001, pp. 109–115.

[12] K. C. Tan, L. F. Wang, T. H. Lee, and P. Vadakkepat, “Evolvable hard-
ware in evolutionary robotics,” Auton. Robots, vol. 16, no. 1, pp. 5–21,
Jan. 2004.

[13] M. Hartmann and P. C. Haddow, “Evolution of fault-tolerant and noise-
robust digital designs,” Proc. Inst. Elect Eng.—Comput. Digit. Tech.,
vol. 151, no. 4, pp. 287–294, Jul. 18, 2004.

[14] J. D. Lohn, “Experiments on evolving software models of analog cir-
cuits,” Commun. ACM, vol. 42, no. 4, pp. 67–69, Apr. 1999.

[15] J. D. Lohn and S. P. Colombano, “Automated analog circuit synthesis
using a linear representation,” in Proc. 2nd Int. Conf Evolvable Syst.:
From Biol. Hardware, 1998, pp. 125–133.

[16] S. V. Hum, M. Okoniewski, and R. J. Davies, “An evolvable an-
tenna platform based on reconfigurable reflectarrays,” in Proc. NASA/
DoD Conf. Evolvable Hardware, Washington, DC, Jun. 29–1, 2005,
pp. 139–146.

STOMEO et al.: GENERALIZED DISJUNCTION DECOMPOSITION FOR EVOLVABLE HARDWARE 1041

[17] J. D. Lohn, D. S. Linden, G. S. Hornby, W. F. Kraus, A. Rodriguez, and
S. Seufert, “Evolutionary design of an x-band antenna for NASA’s space
technology 5 mission,” in Proc. IEEE Antenna Propag. Soc. Int. Symp.
USNC/URSI Natl. Radio Sci. Meeting, 2004, vol. 3, pp. 2313–2316.

[18] J. D. Lohn, G. S. Hornby, and D. S. Linden, “An evolved antenna
for deployment on NASA’s space technology 5 mission,” in Genetic
Programming Theory and Practice II. Boston, MA: Kluwer, ch. 18.

[19] A. M. Tyrrell, R. A. Krohling, and Y. Zhou, “Evolutionary algorithm for
the promotion of evolvable hardware,” Proc. Inst. Elect. Eng.—Comput.
Digit. Tech., vol. 151, no. 4, pp. 267–275, Jul. 18, 2004.

[20] R. J. Terrile, H. Aghazarian, M. I. Ferguson, W. Fink, T. L. Huntsberger,
D. Keymeulen, G. Klimeck, M. A. Kordon, L. Seungwon, and P. von
Allmen, “Evolutionary computation technologies for the automated de-
sign of space systems,” in Proc. NASA/DoD Conf. Evolvable Hardware,
Washington, DC, Jun. 29–1, 2005, pp. 131–138.

[21] D. E. Goldberg,Genetic Algorithm in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[22] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” IEEE
JNL Comput., vol. 27, no. 6, pp. 17–26, Jun. 1994.

[23] D. B. Fogel, “What is evolutionary computation? ”IEEE Spectr., vol. 37,
no. 2, pp. 26–32, Feb. 2000.

[24] T. Bäck, F. Hoffmeister, and H. P. Schwefel, “A survey of evolutionary
strategies,” in Proc. 4th Int. Conf. Genetic Algorithms, R. Belew and
L. Booker, Eds, San Francisco, CA, 1991, pp. 2–9.

[25] H.-P. Schwefel, Numerical Optimization of Computer Models. Chich-
ester, U.K.: Wiley, 1981.

[26] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: Univ. of Michigan Press, 1975.

[27] M. D. Vose, The Simple Genetic Algorithm. Cambridge, MA: MIT
Press, 1999.

[28] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[29] ——, Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. Cambridge, MA: MIT Press, 1994.

[30] R. Riolo and B. Worzel, Genetic Programming Theory and Practice
(Genetic Programming), vol. 6. Norwell, MA: Kluwer, 2004, p. 336.

[31] C. Ryan, J. J. Collins, and M. O. Neill, “Grammatical evolution:
Evolving programs for an arbitrary language,” in Proc. 1st Eur. Work-
shop Genetic Program.. New York: Springer-Verlag, 1998, vol. 1391,
pp. 83–95.

[32] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence Through
Simulated Evolution. New York: Wiley, 1966.

[33] J. Miller, “An empirical study of the efficiency of learning Boolean
functions using a Cartesian genetic programming approach,” in
Proc. Genetic Evol. Comput. Conf., Orlando, FL, Jul. 1999, vol. 1,
pp. 1135–1142.

[34] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Proc.
EuroGP, vol. 1802, R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller,
P. Nordin, and T. C. Forgaty, Eds. Edinburgh, U.K., Apr. 16, 2000,
pp. 121–132.

[35] M.-S. Ko, T.-W. Kang, and C.-S. Hwang, “Function optimisation using
an adaptive crossover operator based on locality,” Eng. Appl. Artif. In-
tell., vol. 10, no. 6, pp. 519–524, Dec. 1997.

[36] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs
Paralleles, Reseaux et Systems Repartis, vol. 10, no. 2, pp. 141–171,
1998.

[37] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
IEEE Trans. Evol. Comput., vol. 6, no. 5, pp. 443–462, Oct. 2002.

[38] A. D. Bethke, “Comparison of genetic algorithms and gradient-based op-
timizers on parallel processors: Efficiency of use of processing capacity,”
Logic Comput. Group, Univ. Michigan, Ann Arbor, MI, Tech. Rep. 197,
1976.

[39] G. Harik, F. Lobo, and D. Goldberg, “The compact genetic algo-
rithm,” IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 287–297,
Nov. 1999.

[40] C. A. Coello, A. D. Christiansen, and A. A. Hernández, “Use of evolu-
tionary techniques to automate the design of combinational circuits,” Int.
J. Smart Eng. Syst. Des., vol. 2, no. 4, pp. 299–314, Jun. 2000.

[41] J. Torresen, “Possibilities and limitations of applying evolvable hardware
to real-world applications,” in Proc. 10th Int. Conf. Field Program. Logic
Appl., Villach, Austria, 2000, pp. 230–239.

[42] T. Higuchi, M. Iwata, I. Kaijitani, M. Murakawa, S. Yoshizawa, and
T. Furuya, “Hardware evolution at gate and function level,” in Proc.
Int. Conf. Biologically Inspired Auton. Syst.: Comput. Cogn. Action,
Durham, NC, Mar. 1996, pp. 4–5.

[43] T. Higuchi, M. Iwata, I. Kajitani, H. Yamada, B. Manderick, Y. Hirao,
M. Murakawa, S. Yoshizawa, and T. Furuya, “Evolvable hardware with

genetic learning,” in Proc. IEEE ISCAS, May 12–15, 1996, vol. 4,
pp. 29–32.

[44] D. Job, V. K. Vassilev, and J. Miller, “Towards the automatic design
of more efficient digital circuits,” in Proc. 2nd NASA/DoD Workshop
Evolvable Hardware, Jul. 13–15, 2000, pp. 151–160.

[45] E. Stomeo and T. Kalganova, “Improving EHW performance introducing
a new decomposition strategy,” in Proc. IEEE Conf. Cybern. Intell. Syst.,
Singapore, Dec. 1–3, 2004, pp. 439–444.

[46] C. C. Santini, J. F. M. Amaral, M. A. C. Pacheco, and R. Tanscheit,
“Evolvability and reconfigurability,” in Proc. IEEE Int. Conf. Field-
Program. Technol., 2004, pp. 105–112.

[47] S. Verel, P. Collard, and M. Clergue, “Scuba search: When selection
meets innovation,” in Proc. CEC, Jun. 19–23, 2004, vol. 1, pp. 924–931.

[48] J. F. Miller and P. Thomson, “Aspects of digital evolution: Evolvability
and architecture,” in Proc. Parallel Probl. Solving Nature V, A. E. Eiben,
T. Bäck, M. Schoenauer, and H. P. Schwefel, Eds., Lecture Notes in
Computer Science, vol. 1498, Berlin, Germany, Springer-Verlag 1998,
pp. 927–936.

[49] V. K. Vassilev and J. F. Miller, “Scalability problems of digital circuit
evolution evolvability and efficient designs,” in Proc. 2nd NASA/DoD
Workshop Evolvable Hardware, Jul. 13–15, 2000, pp. 55–64.

[50] H. Hemmi, J. Mizoguchi, and K. Shimohara, “Development and evo-
lution of hardware behaviours,” in Toward Evolvable Hardware: The
Evolutionary Engineering Approach, vol. 1062, E. Sanchez and M.
Tomassini, Eds. Berlin, Germany: Springer-Verlag, 1996, pp. 250–265.

[51] G. W. Greenwood, “On the practicality of using intrinsic reconfiguration
for fault recovery,” IEEE Trans. Evol. Comput., vol. 9, no. 4, pp. 398–
405, Aug. 2005.

[52] L. Altenberg, “The evolution of evolvability in genetic programming,” in
Advances in Genetic Programming, K. Kinnear, Ed. Cambridge, MA:
MIT Press, 1994, ch. 3, pp. 47–74.

[53] A. Thompson, “An evolved circuit, intrinsic in silicon, entwined with
physics,” in Proc. 1st ICES, 1996, pp. 390–405.

[54] I.-L. Yen and R. Paul, “Key applications for high-assurance systems,”
IEEE J. Comput., vol. 31, no. 4, pp. 35–36, Apr. 1998.

[55] H. de Garis, “An artificial brain: ATR’s CAM-brain project aims to
build/evolve an artificial brain with a million neural net modules inside a
trillion cell cellular automata machine,” New Gener. Comput. J., vol. 12,
no. 2, pp. 215–221, Jul. 1994.

[56] P. Andersen, “Evolvable hardware: Artificial evolution of hardware cir-
cuits in simulation and reality,” M.S. thesis, Dept. Comput. Sci., Univ.
Aarhus, Aarhus, Denmark, 1998.

[57] T. G. W. Gordon and P. J. Bentley, “On evolvable hardware,” in Soft
Computing in Industrial Electronics, S. Ovaska and L. Sztandera, Eds.
Heidelberg, Germany: Physica-Verlag, 2002, pp. 279–323.

[58] A. J. Hirst, “Notes on the evolution of adaptive hardware,” in Proc.
Adapt. Comput. Eng. Des. Control, Plymouth, U.K., 1996, pp. 212–219.

[59] G. Tufte and P. Haddow, “Prototyping a GA pipeline for complete hard-
ware evolution,” in Proc. 1st NASA/DoDWorkshop Evolvable Hardware,
Jul. 19–21, 1999, pp. 18–25.

[60] C. A. Coello, A. D. Christiansen, and A. A. Hernández, “Towards au-
tomated evolutionary design of combinational circuits,” Comput. Electr.
Eng., vol. 27, no. 1, pp. 1–28, Jan. 2001.

[61] A. Thompson, I. Harvey, and P. Husbands, “Unconstrained evolution and
hard consequences,” in Toward Evolvable Hardware: The Evolutionary
Engineering Approach, vol. 1062, E. Sanchez and M. Tomassini, Eds.
Berlin, Germany: Springer-Verlag, 1996, pp. 136–165.

[62] T. Kalganova, “Bidirectional incremental evolution in evolvable hard-
ware,” in Proc. 2nd NASA/DoD Workshop Evolvable Hardware,
Jul. 13–15, 2000, pp. 65–74.

[63] D. J. Xu and M. L. Daley, “Design of optimal digital filter using a parallel
genetic algorithm,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal
Process., vol. 42, no. 10, pp. 673–675, Oct. 1995.

[64] T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, W. Liu, and M. Salami,
“Evolvable hardware at function-level,” in Proc. IEEE Int. Conf. Evol.
Comput., Apr. 1997, pp. 187–192.

[65] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and
T. Higuchi, “Hardware evolution at function-level,” in Proc. Parallel
Probl. Solving Nature IV, M. Voigt, W. Ebeling, I. Rechenberg, and
H. P. Schwefel, Eds., Berlin, Germany, 1996, vol. 1141, pp. 62–71.

[66] A. Thompson, P. Layzell, and R. S. Zebulum, “Explorations in de-
sign space: Unconventional electronics design through artificial evo-
lution,” IEEE Trans. Evol. Comput., vol. 3, no. 3, pp. 167–196,
Sep. 1999.

[67] T. Kalganova, “An extrinsic function-level evolvable hardware ap-
proach,” in Proc. 3rd EuroGP, R. Poli and W. Banzhaf, Eds, Edinburgh,
U.K., Apr. 2000, pp. 60–75.

1042 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 5, OCTOBER 2006

[68] H.-S. Seok, K.-J. Lee, B.-T. Zhang, D.-W. Lee, and K.-B. Sim, “Ge-
netic programming of process decomposition strategies for evolvable
hardware,” in Proc. 2nd NASA/DoD Workshop Evolvable Hardware,
Jul. 13–15, 2000, pp. 25–34.

[69] K. A. Vinger and J. Torresen, “Implementing evolution of FIR-filters
efficiently in an FPGA,” in Proc. NASA/DoD Conf. Evolvable Hardware,
Chicago, IL, Jul. 2003, pp. 26–29.

[70] J. Torresen, “Evolving multiplier circuits by training set and training
vector partitioning,” in Proc. 5th ICES. New York: Springer-Verlag,
Mar. 2003, vol. 2606, pp. 228–237.

[71] ——, “Exploring knowledge schemes for efficient evolution of hard-
ware,” in Proc. NASA/DoD Conf. Evolvable Hardware, Seattle, WA,
Jun. 24–26, 2004, pp. 209–216.

[72] J. Torresen, J. W. Bakke, and L. Sekanina, “Recognizing speed limit
sign numbers by evolvable hardware,” in Proc. 8th Int. Conf. PPSN VIII,
Birmingham, U.K., Sep. 2004, vol. 3242, pp. 682–691.

[73] Y. Zhang, S. L. Smith, and A. M. Tyrrell, “Digital circuit design us-
ing intrinsic evolvable hardware,” in Proc. NASA/DoD Conf. Evolvable
Hardware, Seattle, WA, Jun. 24–26, 2004, pp. 55–62.

[74] J. C. Gallagher, S. Vigraham, and G. Kramer, “A family of compact
genetic algorithms for intrinsic evolvable hardware,” IEEE Trans. Evol.
Comput., vol. 8, no. 2, pp. 111–126, Apr. 2004.

[75] L. Sekanina and R. Ruzicka, “Easily testable image operators: The class
of circuits where evolution beats engineers,” in Proc. Conf. Evolvable
Hardware NASA/DoD, Jul. 9–11, 2003, pp. 135–144.

[76] K. A. De Jong, “An analysis of the behavior of a class of genetic adap-
tive systems,” Ph.D. dissertation, Dept. Comput. Commun. Sci., Univ.
Michigan, Ann Arbor, MI, 1975.

[77] L. Sekanina, “Design methods for polymorphic digital circuits,” in
Proc. 8th IEEE Des. Diagn. Electron. Circuits Syst. Workshop, Sopron,
Hungary, 2005, pp. 145–150.

[78] ——, “Evolutionary design of gate-level polymorphic digital circuits,”
in Proc. Appl. Evol. Comput., 2005, pp. 185–194.

[79] J. Torresen, “A divide-and-conquer approach to evolvable hardware,” in
Proc. 2nd Int. Conf Evolvable Syst.: Biol. Hardware, 1998, pp. 57–65.

[80] ——, “Increased complexity evolution applied to evolvable hardware,”
in Proc. ANNIE, St. Louis, MO, Nov. 1999, pp. 429–436.

[81] S. Yang, Logic Synthesis and Optimisation Benchmark User Guide Ver-
sion 3.0, Microelectronics Center of North Carolina, Research Triangle
Park, NC, 1991.

[82] I. Baradavka and T. Kalganova, “Assembling strategies in extrinsic
evolvable hardware with bi-directional incremental evolution,” in Proc.
6th EuroGP, Essex, U.K.: Springer-Verlag, vol. 2610, pp. 276–285.

[83] T. Kalganova and J. Miller, “Evolving more efficient digital circuits
by allowing circuit layout evolution and multi-objective fitness,” in
Proc. 1st NASA/DoD Workshop Evolvable Hardware, Jul. 1999,
pp. 54–63.

[84] T. Kalganova and M. Wilson, “Bi-directional incremental evolution:
An approach for evolving relatively large combinational logic circuits,”
J. Evol. Comput., submitted for publication.

[85] J. F. Miller and P. Thomson, “A developmental method for growing
graphs and circuits,” Proc. 5th Int. Conf. Evolvable Syst.: Biol. Hard-
ware, Trondheim, Norway, Mar. 17–20, 2003, pp. 93–104.

[86] T. G. W. Gordon and P. J. Bentley, “Development brings scalability to
hardware evolution,” in Proc. NASA/DoD Conf. Evolvable Hardware,
Washington, DC, Jun. 29–01, 2005, pp. 272–279.

[87] A. J. Walker and J. F. Miller, “Evolution and acquisition of modules
in Cartesian genetic programming,” in Proc. EuroGp, 2004, vol. 3003,
pp. 187–197.

[88] M. Hartmann, P. K. Lehre, and P. C. Haddow, “Evolved digital circuits
and genome complexity,” in Proc. NASA/DoD Conf. Evolvable Hard-
ware, Washington, DC, Jun. 29–01, 2005, pp. 79–86.

[89] J. Koza, F. H. Bennett, D. Andre, and M. A. Keane, Genetic Program-
ming III. Darwinian Invention and Problem Solving. San Mateo, CA:
Morgan Kaufmann, 1999.

[90] D. Levi, “HereBoy: A fast evolutionary algorithm,” in Proc. 2nd NASA/
DoD Workshop Evolvable Hardware, Jul. 13–15, 2000, pp. 17–24.

[91] T. G. W. Gordon and P. J. Bentley, “Bias and scalability in evolutionary
development,” in Proc. Genetic Evol. Comput. Conf., Jun. 29–Jul. 1,
2005, pp. 83–90.

[92] P. van Remortel, B. Manderick, and T. Lenaerts, “Gene interaction and
modularisation in a model for gene-regulated development,” in Proc.
NASA/DoD Conf. Evolvable Hardware, Seattle, WA, Jun. 24–26, 2004,
pp. 253–260.

[93] S. Xian-He and D. T. Rover, “Scalability of parallel algorithm–
machine combinations,” IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 6,
pp. 599–613, Jun. 1994.

[94] T. Arslan and B. I. Hounsell, “A novel genetic algorithm for the auto-
mated design of performance driven digital circuits,” in Proc. Congr.
Evol. Comput., Jul. 6–19, 2000, vol. 1, pp. 601–608.

[95] M. Hartmann, P. Haddow, and F. Eskelund, “Evolving robust digital
designs,” in Proc. Conf. Evolvable Hardware NASA/DoD, Jul. 15–18,
2002, pp. 36–45.

[96] D. Keymeulen, A. Stoica, R. Zebulum, Y. Jin, and V. Duong, “Fault-
tolerant approaches based on evolvable hardware and using a reconfig-
urable electronic devices,” in Proc. IEEE Int. Integr. Rel. Workshop Final
Rep., Oct. 23–26, 2000, pp. 32–39.

[97] J. Langeheine, K. Meier, J. Schemmel, and M. Trefzer, “Intrinsic evolu-
tion of digital-to-analog converters using a CMOS FPTA chip,” in Proc.
NASA/DoD Conf. Evolvable Hardware, Seattle, WA, pp. 18–25.

[98] A. Stoica, “Toward evolvable hardware chips: Experiments with a
programmable transistor array,” in Proc. 7th Int. Conf. Microelec-
tron. Neural Fuzzy Bio-Inspired Syst., Granada, Spain, Apr. 7–9, 1999,
pp. 156–162.

[99] A. Stoica, R. Zebulum, and D. Keymeulen, “Progress and challenges
in building evolvable devices,” in Proc. 3rd NASA/DoD Workshop
Evolvable Hardware, Jul. 12–14, 2001, pp. 33–35.

[100] Xilinx, Inc., XC6200 Field Programmable Gate Arrays, Apr. 1997. Data
Sheet, Version 1.10.

[101] ——, Virtex 2.5V Field Programmable Gate Arrays, 2000, Xilinx.
[102] ——, XC400XLA/XV Field Programmable Gate Arrays, Oct. 1999,

Xilinx.
[103] ——, Virtex-II Platform FPGA User Guide, Mar. 2005, Xilinx UG002

(v2.0).
[104] B. L. Miller and D. E. Goldberg, “Genetic algorithms, tournament selec-

tion, and the effects of noise,” Complex Syst., vol. 9, no. 3, pp. 193–212,
Jun. 1995.

[105] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Foundations of Genetic Algo-
rithms, G. J. E. Rawlins, Ed., 1991, pp. 69–93.

[106] J. R. Koza, S. H. Al-Sakran, and L. W. Jones, “Cross-domain
features of runs of genetic programming used to evolve designs
for analog circuits, optical lens systems, controllers, antennas, me-
chanical systems, and quantum computing circuits,” in Proc. NASA/
DoD Conf. Evolvable Hardware, Washington, DC, Jun. 29–01, 2005,
pp. 205–214.

[107] J. R. Koza, M. A. Keane, and M. J. Streeter, “Routine high-return human-
competitive evolvable hardware,” in Proc. NASA/DoD Conf. Evolvable
Hardware, Seattle, WA, Jun. 24–26, 2004, pp. 3–17.

[108] M. Oltean, “Solving even-parity problems using traceless genetic pro-
gramming,” in Proc. CEC, vol. 2, Jun. 19–23, 2004, pp. 1813–1819.

[109] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, “Multiobjective genetic
programming: Reducing bloat using SPEA2,” in Proc. Congr. Evol.
Comput., May 27–30, 2001, vol. 1, pp. 536–543.

[110] K. Kozminski, “Benchmarks for layout synthesis—Evolution and cur-
rent status,” in Proc. 28th ACM/IEEE Des. Autom. Conf., Jun. 17–21,
1991, pp. 265–270.

[111] L. Chang-Tzu, C. De-Sheng, and W. Yi-Wen, “An efficient genetic al-
gorithm for slicing floorplan area optimization,” in Proc. IEEE ISCAS,
May 26–29, 2002, vol. 2, pp. 879–882.

[112] H. Esbensen, “A genetic algorithm for macro cell placement,” in Proc.
EURO-VHDL/EURO-DAC, Sep. 7–10, 1992, pp. 52–57.

[113] G. Holt and A. Tyagi, “GEEP: A low power genetic algorithm layout
system,” in Proc. 39th IEEE Midwest Symp. Circuits Syst., Aug. 18–21,
1996, vol. 3, pp. 1337–1340.

[114] S. Roy and B. K. Sikdar, “Power conscious BIST design for sequen-
tial circuits using ghost-FSM,” in Proc. 12th ATS, Nov. 16–19, 2003,
pp. 190–195.

[115] B. Ali, A. E. A. Almaini, and T. Kalganova, “Evolutionary algorithms
and their use in the design of sequential logic circuits,” in Genetic
Program. Evolvable Mach., Mar. 2004, vol. 5, pp. 11–29.

[116] A. P. Shanthi, L. K. Singaram, and R. Parthasarathi, “Evolution of
asynchronous sequential circuits,” in Proc. NASA/DoD Conf. Evolvable
Hardware, Washington, DC, Jun. 29–Jul.1 2005, pp. 93–96.

[117] E. Stomeo, T. Kalganova, C. Lambert, N. Lipnitsakya, and Y. Yatskevich,
“On evolution of relatively large combinational logic circuits,” in Proc.
NASA/DoD Conf. Evolvable Hardware, Washington, DC, Jun. 29–Jul. 1,
2005, pp. 59–66.

[118] M. Oltean and C. Grosan, “Evolving digital circuits using multi expres-
sion programming,” in Proc. NASA/DoD Conf. Evolvable Hardware,
Seattle, WA, pp. 87–94.

[119] E. Stomeo, T. Kalganova, and C. Lambert, “Analysis of genotype size for
an evolvable hardware system,” in Proc. ICCI, Prague, Czech Republic,
Aug. 26–28, 2005, pp. 74–79.

STOMEO et al.: GENERALIZED DISJUNCTION DECOMPOSITION FOR EVOLVABLE HARDWARE 1043

Emanuele Stomeo (S’06) received the Laurea de-
gree in electronic engineering from Politecnico di
Torino, Turin, Italy, in 2003. From 2000 to 2003,
he studied image processing and digital design at
RWTH Aachen University, Aachen, Germany. He is
currently working toward the Ph.D. degree in com-
puter science and engineering at Brunel University,
West London, U.K. He carried out his Master’s thesis
work at Philips Research Laboratories, Aachen, in
2002–2003.

He is currently a member of the Bio-Inspired
Intelligent Systems Research Group at Brunel University. His research interests
are in evolvable hardware, evolutionary computation, design of digital circuits,
and bioengineering applications.

Tatiana Kalganova received M.Sc. degree from
the Belarusian State University of Informatics and
Radioelectronics, Minsk, Belarus, in 1994 and the
Ph.D. degree from Napier University, Edinburgh,
U.K., in 2000.

In August 2000, she joined the Electronic and
Computer Engineering Department, Brunel Univer-
sity, Middlesex, U.K. Her research interests are
evolvable hardware, ant colony algorithms, and scal-
ability in AI systems.

Dr. Kalganova was awarded a grant from the In-
ternational Soros Science Education Program (ISSEP) for distinctive achieve-
ments in the field of exact sciences in 1996, and a personal grant by the
Education Ministry of the Republic of Belarus for distinctive achievements in
the field of exact sciences in 1997.

Cyrille Lambert received the diplôme d’éducation
supérieure spécialisée degree in microelectronic en-
gineering from Pierre et Marie Currie University,
Paris, France, in 2000, and is currently working
toward the Ph.D. degree at Brunel University, Mid-
dlesex, U.K. He carried out his thesis work at the
Swiss Centre for Electronics and Microtechnology,
Inc., Neuchâtel, Switzerland in 1999–2000.

After spending three years in the industry as a Dig-
ital Design Engineer, he joined, in 2003, the Com-
puter Science and Engineering Department, Brunel

University, and is currently a member of Bio-Inspired Intelligent Systems at
Brunel University.

