7 research outputs found

    SeeChart: Enabling Accessible Visualizations Through Interactive Natural Language Interface For People with Visual Impairments

    Full text link
    Web-based data visualizations have become very popular for exploring data and communicating insights. Newspapers, journals, and reports regularly publish visualizations to tell compelling stories with data. Unfortunately, most visualizations are inaccessible to readers with visual impairments. For many charts on the web, there are no accompanying alternative (alt) texts, and even if such texts exist they do not adequately describe important insights from charts. To address the problem, we first interviewed 15 blind users to understand their challenges and requirements for reading data visualizations. Based on the insights from these interviews, we developed SeeChart, an interactive tool that automatically deconstructs charts from web pages and then converts them to accessible visualizations for blind people by enabling them to hear the chart summary as well as to interact through data points using the keyboard. Our evaluation with 14 blind participants suggests the efficacy of SeeChart in understanding key insights from charts and fulfilling their information needs while reducing their required time and cognitive burden.Comment: 28 pages, 13 figure

    Employing data visualization for effective health communication in Nairobi, Kenya: a study of select media houses.

    Get PDF
    This capstone project analyzes how journalists use data visualization to communicate health information. With the advent of evidence-based practice in medical communication, it is necessary to provide health information in a way that raises public health awareness and changes individual behaviour for beneficial health outcomes. The use of data visualization tools such as charts, graphs, and maps aids in the presentation of data patterns and insights, improving knowledge, engagement, and decision-making in the field of health communication. The study seeks to identify the types of health data visualization commonly employed by journalists in Kenya; assess the level of training and resources available to journalists for utilizing data visualization in health reporting and analyse challenges faced by journalists in incorporating data visualization into health reporting. The rationale for this study lies in the pivotal role journalists play as intermediaries between data producers and the public. Effective health communication, particularly through data visualization, has the potential to influence public behaviour, policy decisions, and ultimately the well-being of a nation\u27s population. This study employed descriptive research design and also used the mixed-methods approach to collect data for both quantitative and qualitative data. It underscores the significance of effective data visualization in health reporting, emphasizing its role in enhancing audience comprehension, and story simplification. While traditional methods like pie charts and bar graphs persist, newer formats such as 3D and heatmaps are gaining traction, offering multimedia and dynamic features. Despite a high knowledge base among journalists and media professionals about data visualization, challenges persist. Issues such as limited access, technical proficiency, space constraints, and insufficient training hinder the effective use of data visualization in health reporting, emphasizing the need to address these obstacles to maximize its impact

    Analysis and Modular Approach for Text Extraction from Scientific Figures on Limited Data

    Get PDF
    Scientific figures are widely used as compact, comprehensible representations of important information. The re-usability of these figures is however limited, as one can rarely search directly for them, since they are mostly indexing by their surrounding text (e. g., publication or website) which often does not contain the full-message of the figure. In this thesis, the focus is on making the content of scientific figures accessible by extracting the text from these figures. A modular pipeline for unsupervised text extraction from scientific figures, based on a thorough analysis of the literature, was built to address the problem. This modular pipeline was used to build several unsupervised approaches, to evaluate different methods from the literature and new methods and method combinations. Some supervised approaches were built as well for comparison. One challenge, while evaluating the approaches, was the lack of annotated data, which especially needed to be considered when building the supervised approach. Three existing datasets were used for evaluation as well as two datasets of 241 scientific figures which were manually created and annotated. Additionally, two existing datasets for text extraction from other types of images were used for pretraining the supervised approach. Several experiments showed the superiority of the unsupervised pipeline over common Optical Character Recognition engines and identified the best unsupervised approach. This unsupervised approach was compared with the best supervised approach, which, despite of the limited amount of training data available, clearly outperformed the unsupervised approach.Infografiken sind ein viel verwendetes Medium zur kompakten Darstellung von Kernaussagen. Die Nachnutzbarkeit dieser Abbildungen ist jedoch häufig limitiert, da sie schlecht auffindbar sind, da sie meist über die umschließenden Medien, wie beispielsweise Publikationen oder Webseiten, und nicht über ihren Inhalt indexiert sind. Der Fokus dieser Arbeit liegt auf der Extraktion der textuellen Inhalte aus Infografiken, um deren Inhalt zu erschließen. Ausgehend von einer umfangreichen Analyse verwandter Arbeiten, wurde ein generalisierender, modularer Ansatz für die unüberwachte Textextraktion aus wissenschaftlichen Abbildungen entwickelt. Mit diesem modularen Ansatz wurden mehrere unüberwachte Ansätze und daneben auch noch einige überwachte Ansätze umgesetzt, um diverse Methoden aus der Literatur sowie neue und bisher noch nicht genutzte Methoden zu vergleichen. Eine Herausforderung bei der Evaluation war die geringe Menge an annotierten Abbildungen, was insbesondere beim überwachten Ansatz Methoden berücksichtigt werden musste. Für die Evaluation wurden drei existierende Datensätze verwendet und zudem wurden zusätzlich zwei Datensätze mit insgesamt 241 Infografiken erstellt und mit den nötigen Informationen annotiert, sodass insgesamt 5 Datensätze für die Evaluation verwendet werden konnten. Für das Pre-Training des überwachten Ansatzes wurden zudem zwei Datensätze aus verwandten Textextraktionsbereichen verwendet. In verschiedenen Experimenten wird gezeigt, dass der unüberwachte Ansatz besser funktioniert als klassische Texterkennungsverfahren und es wird aus den verschiedenen unüberwachten Ansätzen der beste ermittelt. Dieser unüberwachte Ansatz wird mit dem überwachten Ansatz verglichen, der trotz begrenzter Trainingsdaten die besten Ergebnisse liefert

    Advancing Multi-Modal Deep Learning: Towards Language-Grounded Visual Understanding

    Get PDF
    Using deep learning, computer vision now rivals people at object recognition and detection, opening doors to tackle new challenges in image understanding. Among these challenges, understanding and reasoning about language grounded visual content is of fundamental importance to advancing artificial intelligence. Recently, multiple datasets and algorithms have been created as proxy tasks towards this goal, with visual question answering (VQA) being the most widely studied. In VQA, an algorithm needs to produce an answer to a natural language question about an image. However, our survey of datasets and algorithms for VQA uncovered several sources of dataset bias and sub-optimal evaluation metrics that allowed algorithms to perform well by merely exploiting superficial statistical patterns. In this dissertation, we describe new algorithms and datasets that address these issues. We developed two new datasets and evaluation metrics that enable a more accurate measurement of abilities of a VQA model, and also expand VQA to include new abilities, such as reading text, handling out-of-vocabulary words, and understanding data-visualization. We also created new algorithms for VQA that have helped advance the state-of-the-art for VQA, including an algorithm that surpasses humans on two different chart question answering datasets about bar-charts, line-graphs and pie charts. Finally, we provide a holistic overview of several yet-unsolved challenges in not only VQA but vision and language research at large. Despite enormous progress, we find that a robust understanding and integration of vision and language is still an elusive goal, and much of the progress may be misleading due to dataset bias, superficial correlations and flaws in standard evaluation metrics. We carefully study and categorize these issues for several vision and language tasks and outline several possible paths towards development of safe, robust and trustworthy AI for language-grounded visual understanding
    corecore