15,582 research outputs found

    Tight Analysis of a Multiple-Swap Heuristic for Budgeted Red-Blue Median

    Get PDF
    Budgeted Red-Blue Median is a generalization of classic kk-Median in that there are two sets of facilities, say R\mathcal{R} and B\mathcal{B}, that can be used to serve clients located in some metric space. The goal is to open krk_r facilities in R\mathcal{R} and kbk_b facilities in B\mathcal{B} for some given bounds kr,kbk_r, k_b and connect each client to their nearest open facility in a way that minimizes the total connection cost. We extend work by Hajiaghayi, Khandekar, and Kortsarz [2012] and show that a multiple-swap local search heuristic can be used to obtain a (5+ϵ)(5+\epsilon)-approximation for Budgeted Red-Blue Median for any constant ϵ>0\epsilon > 0. This is an improvement over their single swap analysis and beats the previous best approximation guarantee of 8 by Swamy [2014]. We also present a matching lower bound showing that for every p≥1p \geq 1, there are instances of Budgeted Red-Blue Median with local optimum solutions for the pp-swap heuristic whose cost is 5+Ω(1p)5 + \Omega\left(\frac{1}{p}\right) times the optimum solution cost. Thus, our analysis is tight up to the lower order terms. In particular, for any ϵ>0\epsilon > 0 we show the single-swap heuristic admits local optima whose cost can be as bad as 7−ϵ7-\epsilon times the optimum solution cost

    An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem

    Full text link
    We obtain a 1.5-approximation algorithm for the metric uncapacitated facility location problem (UFL), which improves on the previously best known 1.52-approximation algorithm by Mahdian, Ye and Zhang. Note, that the approximability lower bound by Guha and Khuller is 1.463. An algorithm is a {\em (λf\lambda_f,λc\lambda_c)-approximation algorithm} if the solution it produces has total cost at most λf⋅F∗+λc⋅C∗\lambda_f \cdot F^* + \lambda_c \cdot C^*, where F∗F^* and C∗C^* are the facility and the connection cost of an optimal solution. Our new algorithm, which is a modification of the (1+2/e)(1+2/e)-approximation algorithm of Chudak and Shmoys, is a (1.6774,1.3738)-approximation algorithm for the UFL problem and is the first one that touches the approximability limit curve (γf,1+2e−γf)(\gamma_f, 1+2e^{-\gamma_f}) established by Jain, Mahdian and Saberi. As a consequence, we obtain the first optimal approximation algorithm for instances dominated by connection costs. When combined with a (1.11,1.7764)-approximation algorithm proposed by Jain et al., and later analyzed by Mahdian et al., we obtain the overall approximation guarantee of 1.5 for the metric UFL problem. We also describe how to use our algorithm to improve the approximation ratio for the 3-level version of UFL.Comment: A journal versio

    LP-Based Algorithms for Capacitated Facility Location

    Full text link
    Linear programming has played a key role in the study of algorithms for combinatorial optimization problems. In the field of approximation algorithms, this is well illustrated by the uncapacitated facility location problem. A variety of algorithmic methodologies, such as LP-rounding and primal-dual method, have been applied to and evolved from algorithms for this problem. Unfortunately, this collection of powerful algorithmic techniques had not yet been applicable to the more general capacitated facility location problem. In fact, all of the known algorithms with good performance guarantees were based on a single technique, local search, and no linear programming relaxation was known to efficiently approximate the problem. In this paper, we present a linear programming relaxation with constant integrality gap for capacitated facility location. We demonstrate that the fundamental theories of multi-commodity flows and matchings provide key insights that lead to the strong relaxation. Our algorithmic proof of integrality gap is obtained by finally accessing the rich toolbox of LP-based methodologies: we present a constant factor approximation algorithm based on LP-rounding.Comment: 25 pages, 6 figures; minor revision

    Sherali-Adams gaps, flow-cover inequalities and generalized configurations for capacity-constrained Facility Location

    Get PDF
    Metric facility location is a well-studied problem for which linear programming methods have been used with great success in deriving approximation algorithms. The capacity-constrained generalizations, such as capacitated facility location (CFL) and lower-bounded facility location (LBFL), have proved notorious as far as LP-based approximation is concerned: while there are local-search-based constant-factor approximations, there is no known linear relaxation with constant integrality gap. According to Williamson and Shmoys devising a relaxation-based approximation for \cfl\ is among the top 10 open problems in approximation algorithms. This paper advances significantly the state-of-the-art on the effectiveness of linear programming for capacity-constrained facility location through a host of impossibility results for both CFL and LBFL. We show that the relaxations obtained from the natural LP at Ω(n)\Omega(n) levels of the Sherali-Adams hierarchy have an unbounded gap, partially answering an open question of \cite{LiS13, AnBS13}. Here, nn denotes the number of facilities in the instance. Building on the ideas for this result, we prove that the standard CFL relaxation enriched with the generalized flow-cover valid inequalities \cite{AardalPW95} has also an unbounded gap. This disproves a long-standing conjecture of \cite{LeviSS12}. We finally introduce the family of proper relaxations which generalizes to its logical extreme the classic star relaxation and captures general configuration-style LPs. We characterize the behavior of proper relaxations for CFL and LBFL through a sharp threshold phenomenon.Comment: arXiv admin note: substantial text overlap with arXiv:1305.599

    Constant-Factor Approximation Algorithms for the Parity-Constrained Facility Location Problem

    Get PDF
    Facility location is a prominent optimization problem that has inspired a large quantity of both theoretical and practical studies in combinatorial optimization. Although the problem has been investigated under various settings reflecting typical structures within the optimization problems of practical interest, little is known on how the problem behaves in conjunction with parity constraints. This shortfall of understanding was rather discouraging when we consider the central role of parity in the field of combinatorics. In this paper, we present the first constant-factor approximation algorithm for the facility location problem with parity constraints. We are given as the input a metric on a set of facilities and clients, the opening cost of each facility, and the parity requirement - odd, even, or unconstrained - of every facility in this problem. The objective is to open a subset of facilities and assign every client to an open facility so as to minimize the sum of the total opening costs and the assignment distances, but subject to the condition that the number of clients assigned to each open facility must have the same parity as its requirement. Although the unconstrained facility location problem as a relaxation for this parity-constrained generalization has unbounded gap, we demonstrate that it yields a structured solution whose parity violation can be corrected at small cost. This correction is prescribed by a T-join on an auxiliary graph constructed by the algorithm. This auxiliary graph does not satisfy the triangle inequality, but we show that a carefully chosen set of shortcutting operations leads to a cheap and sparse T-join. Finally, we bound the correction cost by exhibiting a combinatorial multi-step construction of an upper bound

    Minimum-Cost Coverage of Point Sets by Disks

    Full text link
    We consider a class of geometric facility location problems in which the goal is to determine a set X of disks given by their centers (t_j) and radii (r_j) that cover a given set of demand points Y in the plane at the smallest possible cost. We consider cost functions of the form sum_j f(r_j), where f(r)=r^alpha is the cost of transmission to radius r. Special cases arise for alpha=1 (sum of radii) and alpha=2 (total area); power consumption models in wireless network design often use an exponent alpha>2. Different scenarios arise according to possible restrictions on the transmission centers t_j, which may be constrained to belong to a given discrete set or to lie on a line, etc. We obtain several new results, including (a) exact and approximation algorithms for selecting transmission points t_j on a given line in order to cover demand points Y in the plane; (b) approximation algorithms (and an algebraic intractability result) for selecting an optimal line on which to place transmission points to cover Y; (c) a proof of NP-hardness for a discrete set of transmission points in the plane and any fixed alpha>1; and (d) a polynomial-time approximation scheme for the problem of computing a minimum cost covering tour (MCCT), in which the total cost is a linear combination of the transmission cost for the set of disks and the length of a tour/path that connects the centers of the disks.Comment: 10 pages, 4 figures, Latex, to appear in ACM Symposium on Computational Geometry 200
    • …
    corecore