8 research outputs found

    Procedimiento para el análisis automatizado de la manufactura de la pieza de plástico y del molde de inyección

    Get PDF
    El proceso de manufactura mediante moldes de inyección de plástico es uno de los métodos de producción más versátiles y extendidos para la fabricación de piezas de plástico. Actualmente, existe una amplia variedad de software tipo CAD/CAE/CAM para el análisis y diseño asistido de piezas de plástico y moldes de inyección. Sin embargo, estas herramientas comerciales aún requieren de interacción humana y acceso a información geométrica interna de la pieza de plástico vinculada a su modelo CAD. La presente tesis doctoral propone una metodología universal basada en algoritmos automatizados de tipo geométrico – experto que, mediante el análisis de la geometría discreta de la pieza de plástico (malla en formato discreto definida por los elementos notables nodos y facetas), mejore y optimice el proceso actual de análisis, diseño y dimensionamiento del molde de inyección, sin recurrir a técnicas heurísticas e interacción manual por parte del usuario.Plastic injection molding is one of the most versatile and widespread manufacturing process for the plastic parts manufacture. Nowadays, there is a wide variety of CAD/CAE/CAM type software for the analysis and aided design of plastic parts and injection molds. However, these commercial tools still require human interaction and access to internal geometric information (geometric features) of the plastic part linked to their CAD model. The present PhD thesis proposes a universal methodology based on automated geometrical - expert algorithms that, by means of the analysis of the plastic part discrete geometry (mesh in discrete format defined by notable elements nodes and facets), improve and optimize the current analysis, design and dimensioning process of the injection mold, without resorting to heuristic techniques and manual interaction by the user.Tesis Univ. Jaén. Departamento Ingeniería Gráfica, Diseño y Proyectos. Leída el 3 de mayo de 2019

    Design of Manufacturing Process of Mould for Die Casting by EDM Technology with the Computer Aided

    Get PDF
    At present, we cannot imagine a modern production process without computer support. At the same time, its integral part is the implementation of advanced and highly sophisticated production processes and technologies. Their aim is first and foremost to ensure quality production of products with high economic efficiency of the production process. EDM technology is one of the currently active progressive technologies. This is a technology that in practice is characterized by high product quality. The high quality of products not only through this progressive technology, but also other, whether conventional or progressive, is difficult to achieve without computer support. The aim of the paper is therefore to demonstrate the process of manufacturing a die-casting mould using progressive EDM technology using computer support

    Mold Feature Recognition using Accessibility Analysis for Automated Design of Core, Cavity, and Side-Cores and Tool-Path Generation of Mold Segments

    Get PDF
    Injection molding is widely used to manufacture plastic parts with good surface finish, dimensional stability and low cost. The common examples of parts manufactured by injection molding include toys, utensils, and casings of various electronic products. The process of mold design to generate these complex shapes is iterative and time consuming, and requires great expertise in the field. As a result, a significant amount of the final product cost can be attributed to the expenses incurred during the product’s design. After designing the mold segments, it is necessary to machine these segments with minimum cost using an efficient tool-path. The tool-path planning process also adds to the overall mold cost. The process of injection molding can be simplified and made to be more cost effective if the processes of mold design and tool-path generation can be automated. This work focuses on the automation of mold design from a given part design and the automation of tool-path generation for manufacturing mold segments. The hypothesis examined in this thesis is that the automatic identification of mold features can reduce the human efforts required to design molds. It is further hypothesised that the human effort required in many downstream processes such as mold component machining can also be reduced with algorithmic automation of otherwise time consuming decisions. Automatic design of dies and molds begins with the part design being provided as a solid model. The solid model of a part is a database of its geometry and topology. The automatic mold design process uses this database to identify an undercut-free parting direction, for recognition of mold features and identification of parting lines for a given parting direction, and for generation of entities such as parting surfaces, core, cavity and side-cores. The methods presented in this work are analytical in nature and work with the extended set of part topologies and geometries unlike those found in the literature. Moreover, the methods do not require discretizing the part geometry to design its mold segments, unlike those found in the literature that result in losing the part definition. Once the mold features are recognized and parting lines are defined, core, cavity and side-cores are generated. This work presents algorithms that recognize the entities in the part solid model that contribute to the design of the core, cavity and side-cores, extract the entities, and use them in the design of these elements. The developed algorithms are demonstrated on a variety of parts that cover a wide range of features. The work also presents a method for automatic tool-path generation that takes the designed core/cavity and produces a multi-stage tool-path to machine it from raw stock. The tool-path generation process begins by determining tool-path profiles and tool positions for the rough machining of the part in layers. Typically roughing is done with large aggressive tools to reduce the machining time; and roughing leaves uncut material. After generating a roughing tool-path for each layer, the machining is simulated and the areas left uncut are identified to generate a clean-up tool-path for smaller sized tools. The tool-path planning is demonstrated using a part having obstacles within the machining region. The simulated machining is presented in this work. This work extends the accessibility analysis by retaining the topology information and using it to recognize a larger domain of features including intersecting features, filling a void in the literature regarding a method that could recognize complex intersecting features during an automated mold design process. Using this information, a larger variety of new mold intersecting features are classified and recognized in this approach. The second major contribution of the work was to demonstrate that the downstream operations can also benefit from algorithmic decision making. This is shown by automatically generating roughing and clean-up tool-paths, while reducing the machining time by machining only those areas that have uncut material. The algorithm can handle cavities with obstacles in them. The methodology has been tested on a number of parts

    Computer Aided Design of Side Actions for Injection Molding of Complex Parts

    Get PDF
    Often complex molded parts include undercuts, patches on the part boundaries that are not accessible along the main mold opening directions. Undercuts are molded by incorporating side actions in the molds. Side actions are mold pieces that are removed from the part using translation directions different than the main mold opening direction. However, side actions contribute to mold cost by resulting in an additional manufacturing and assembly cost as well as by increasing the molding cycle time. Therefore, generating shapes of side actions requires solving a complex geometric optimization problem. Different objective functions may be needed depending upon different molding scenarios (e.g., prototyping versus large production runs). Manually designing side actions is a challenging task and requires considerable expertise. Automated design of side actions will significantly reduce mold design lead times. This thesis describes algorithms for generating shapes of side actions to minimize a customizable molding cost function. Given a set of undercut facets on a polyhedral part and the main parting direction, the approach works in the following manner. First, candidate retraction space is computed for every undercut facet. This space represents the candidate set of translation vectors that can be used by the side action to completely disengage from the undercut facet. As the next step, a discrete set of feasible, non-dominated retractions is generated. Then the undercut facets are grouped into undercut regions by performing state space search over such retractions. This search step is performed by minimizing the customizable molding cost function. After identifying the undercut regions that can share a side action, the shapes of individual side actions are computed. The approach presented in this work leads to practically an optimal solution if every connected undercut region on the part requires three or fewer side actions. Results of computational experiments that have been conducted to assess the performance of the algorithms described in the thesis have also been presented. Computational results indicate that the algorithms have acceptable computational performance, are robust enough to handle complex part geometries, and are easy to implement. It is anticipated that the results shown here will provide the foundations for developing fully automated software for designing side actions in injection molding

    Computing tool accessibility of polyhedral models for toolpath planning in multi-axis machining

    Get PDF
    This dissertation focuses on three new methods for calculating visibility and accessibility, which contribute directly to the precise planning of setup and toolpaths in a Computer Numerical Control (CNC) machining process. They include 1) an approximate visibility determination method; 2) an approximate accessibility determination method and 3) a hybrid visibility determination method with an innovative computation time reduction strategy. All three methods are intended for polyhedral models. First, visibility defines the directions of rays from which a surface of a 3D model is visible. Such can be used to guide machine tools that reach part surfaces in material removal processes. In this work, we present a new method that calculates visibility based on 2D slices of a polyhedron. Then we show how visibility results determine a set of feasible axes of rotation for a part. This method effectively reduces a 3D problem to a 2D one and is embarrassingly parallelizable in nature. It is an approximate method with controllable accuracy and resolution. The method’s time complexity is linear to both the number of polyhedron’s facets and number of slices. Lastly, due to representing visibility as geodesics, this method enables a quick visible region identification technique which can be used to locate the rough boundary of true visibility. Second, tool accessibility defines the directions of rays from which a surface of a 3D model is accessible by a machine tool (a tool’s body is included for collision avoidance). In this work, we present a method that computes a ball-end tool’s accessibility as visibility on the offset surface. The results contain all feasible orientations for a surface instead of a Boolean answer. Such visibility-to-accessibility conversion is also compatible with various kinds of facet-based visibility methods. Third, we introduce a hybrid method for near-exact visibility. It incorporates an exact visibility method and an approximate visibility method aiming to balance computation time and accuracy. The approximate method is used to divide the visibility space into three subspaces; the visibility of two of them are fully determined. The exact method is then used to determine the exact visibility boundary in the subspace whose visibility is undetermined. Since the exact method can be used alone to determine visibility, this method can be viewed as an efficiency improvement for it. Essentially, this method reduces the processing time for exact computation at the cost of introducing approximate computation overhead. It also provides control over the ratio of exact-approximate computation

    Algorithms for generating multi-stage molding plans for articulated assemblies

    Get PDF
    Plastic products such as toys with articulated arms, legs, and heads are traditionally produced by first molding individual components separately, and then assembling them together. A recent alternative, referred to as in-mold assembly process, performs molding and assembly steps concurrently inside the mold itself. The most common technique of performing in-mold assembly is through multi-stage molding, in which the various components of an assembly are injected in a sequence of molding stages to produce the final assembly. Multi-stage molding produces better-quality articulated products at a lower cost. It however, gives rise to new mold design challenges that are absent from traditional molding. We need to develop a molding plan that determines the mold design parameters and sequence of molding stages. There are currently no software tools available to generate molding plans. It is difficult to perform the planning manually because it involves evaluating large number of combinations and solving complex geometric reasoning problems. This dissertation investigates the problem of generating multi-stage molding plans for articulated assemblies. The multi-stage molding process is studied and the underlying governing principles and constraints are identified. A hybrid planning framework that combines elements from generative and variant techniques is developed. A molding plan representation is developed to build a library of feasible molding plans for basic joints. These molding plans for individual joints are reused to generate plans for new assemblies. As part of this overall planning framework, we need to solve the following geometric subproblems -- finding assembly configuration that is both feasible and optimal, finding mold-piece regions, and constructing an optimal shutoff surface. Algorithms to solve these subproblems are developed and characterized. This dissertation makes the following contributions. The representation for molding plans provides a common platform for sharing feasible and efficient molding plans for joints. It investigates the multi-stage mold design problem from the planning perspective. The new hybrid planning framework and geometric reasoning algorithms will increase the level of automation and reduce chances of design mistakes. This will in turn reduce the cost and lead-time associated with the deployment of multi-stage molding process

    JTEC Panel report on electronic manufacturing and packaging in Japan

    Get PDF
    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies

    Simulation-Based Innovation and Discovery: Energetics Applications

    Get PDF
    corecore