35 research outputs found

    Denoising by multiwavelet singularity detection

    Get PDF
    Wavelet denoising by singularity detection was proposed as an algorithm that combines Mallat and Donoho’s denoising approaches. With wavelet transform modulus sum, we can avoid the error and ambiguities of tracing the modulus maxima across scales and the complicated and computationally demanding reconstruction process. We can also avoid the visual artifacts produced by shrinkage. In this paper, we investigate a multiwavelet denoising algorithm based on a modified singularity detection approach. Improved signal denoising results are obtained in comparison to the single wavelet case

    The Application of Legendre Multiwavelet Functions in Image Compression

    Get PDF
    Legendre multiwavelets are introduced. These functions can be designed in such a way that the properties of orthogonality, polynomial approximation, and symmetry hold at the same time. In this way, they can be effectively deployed in image compression

    Spatial damage identification in composite plates using multiwavelets

    Full text link
    The wavelet transform is one of the most effective tools for many tasks concerning signal and image processing, however it is difficult to obtain all of the necessary properties in one scalar wavelet. This leads to the development of new types of transforms such as a multiwavelet transform, which possesses more than one scaling and wavelet function and makes a possibility to combine these functions in order to obtain necessary properties. In the present study the CL2, LV and DGHM multiwavelets were used for an identification of spatial damage in a composite plate based on the analysis of its modal shapes. The obtained results show that some properties of the multiwavelet transform may improve the damage identification algorithm and replace the classical wavelet-based method

    Application of symmetric orthogonal multiwavelets and prefilter technique for image compression

    Get PDF
    Multiwavelets are new addition to the body of wavelet theory. There are many types of symmetric multiwavelets such as Geronimo-Hardin-Massopust (GHM) and Chui-Lian (CL) multiwavelets. However, the matrix filter generating the GHM system multiwavelets does not satisfy the symmetric property. For this reason, this paper presents a new method to construct the symmetric orthogonal matrix filter, which leads to the symmetric orthogonal multiwavelets (SOM). Moreover, we analyze the prefilter technique, corresponding to the symmetric orthogonal matrix filter, to get a good combining frequency response. To prove the good property of SOM in image compression application, we compared the compression effect with other writers' work, which was in published literature.Facultad de Informátic

    Mine gearbox fault diagnosis based on multiwavelets and maximum correlated kurtosis deconvolution

    Get PDF
    As the mine gearbox working conditions are poor, the fault signal is weak and usually drowned in background noise when gearbox occurring fault. The fault feature is very difficult to extract. Aiming at solving this problem, this paper proposed a mine gearbox fault feature extraction method which combines multiwavelets decomposition with maximum correlated kurtosis deconvolution (MCKD).The component of multiwavelets decomposing was processed by MCKD method, MCKD suppress the noise in the signal and enhance the weak impact feature of fault signal, the envelope of its deconvolution signal was calculated, then the fault could be judged by analyzing the prominent frequency component of envelope spectrum. Thus, the experiment analysis and engineering application verify the effectiveness of the proposed method

    Compression of an ECG Signal Using Mixed Transforms

    Get PDF
    Electrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the ECG data in the 2- D form. The compression algorithms were implemented and tested using multiwavelet, wavelet and slantlet transforms to form the proposed method based on mixed transforms. Then vector quantization technique was employed to extract the mixed transform coefficients. Some selected records from MIT/BIH arrhythmia database were tested contrastively and the performance of the proposed methods was analyzed and evaluated using MATLAB package. Simulation results showed that the proposed methods gave a high compression ratio (CR) for the ECG signals comparing with other available methods. For example, the compression of one record (record 100) yielded CR of 24.4 associated with percent root mean square difference (PRD) of 2.56% was achieved
    corecore