7,393 research outputs found

    Rule pruning techniques in the ant-miner classification algorithm and its variants: A review

    Get PDF
    Rule-based classification is considered an important task of data classification.The ant-mining rule-based classification algorithm, inspired from the ant colony optimization algorithm, shows a comparable performance and outperforms in some application domains to the existing methods in the literature.One problem that often arises in any rule-based classification is the overfitting problem. Rule pruning is a framework to avoid overfitting.Furthermore, we find that the influence of rule pruning in ant-miner classification algorithms is equivalent to that of local search in stochastic methods when they aim to search for more improvement for each candidate solution.In this paper, we review the history of the pruning techniques in ant-miner and its variants.These techniques are classified into post-pruning, pre-pruning and hybrid-pruning.In addition, we compare and analyse the advantages and disadvantages of these methods. Finally, future research direction to find new hybrid rule pruning techniques are provided

    Learning Multi-Tree Classification Models with Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is a meta-heuristic for solving combinatorial optimization problems, inspired by the behaviour of biological ant colonies. One of the successful applications of ACO is learning classification models (classifiers). A classifier encodes the relationships between the input attribute values and the values of a class attribute in a given set of labelled cases and it can be used to predict the class value of new unlabelled cases. Decision trees have been widely used as a type of classification model that represent comprehensible knowledge to the user. In this paper, we propose the use of ACO-based algorithms for learning an extended multi-tree classification model, which consists of multiple decision trees, one for each class value. Each class-based decision trees is responsible for discriminating between its class value and all other values available in the class domain. Our proposed algorithms are empirically evaluated against well-known decision trees induction algorithms, as well as the ACO-based Ant-Tree-Miner algorithm. The results show an overall improvement in predictive accuracy over 32 benchmark datasets. We also discuss how the new multi-tree models can provide the user with more understanding and knowledge-interpretability in a given domain

    A new sequential covering strategy for inducing classification rules with ant colony algorithms

    Get PDF
    Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms

    Discovering Regression Rules with Ant Colony Optimization

    Get PDF
    The majority of Ant Colony Optimization (ACO) algorithms for data mining have dealt with classification or clustering problems. Regression remains an unexplored research area to the best of our knowledge. This paper proposes a new ACO algorithm that generates regression rules for data mining applications. The new algorithm combines components from an existing deterministic (greedy) separate and conquer algorithm—employing the same quality metrics and continuous attribute processing techniques—allowing a comparison of the two. The new algorithm has been shown to decrease the relative root mean square error when compared to the greedy algorithm. Additionally a different approach to handling continuous attributes was investigated showing further improvements were possible
    corecore