
Learning Multi-Tree Classification Models with Ant Colony Optimization

Khalid M. Salama and Fernando E. B. Otero
School of Computing, University of Kent, Canterbury, UK

{kms39,F.E.B.Otero}@kent.ac.uk

Keywords: Ant Colony Optimization (ACO), Data Mining, Classification, Decision Trees, Multi-trees.

Abstract: Ant Colony Optimization (ACO) is a meta-heuristic for solving combinatorial optimization problems, inspired
by the behaviour of biological ant colonies. One of the successful applications of ACO is learning classifi-
cation models (classifiers). A classifier encodes the relationships between the input attribute values and the
values of a class attribute in a given set of labelled cases and it can be used to predict the class value of new
unlabelled cases. Decision trees have been widely used as a type of classification model that represent com-
prehensible knowledge to the user. In this paper, we propose the use of ACO-based algorithms for learning an
extended multi-tree classification model, which consists of multiple decision trees, one for each class value.
Each class-based decision trees is responsible for discriminating between its class value and all other values
available in the class domain. Our proposed algorithms are empirically evaluated against well-known decision
trees induction algorithms, as well as the ACO-based Ant-Tree-Miner algorithm. The results show an overall
improvement in predictive accuracy over 32 benchmark datasets. We also discuss how the new multi-tree
models can provide the user with more understanding and knowledge-interpretability in a given domain.

1 INTRODUCTION

Data mining is an active research area involving the
development and analysis of algorithms for extracting
interesting knowledge (or patterns) from real-world
datasets. Classification is a central problem in the
data mining and machine learning fields, where the
goal is to build a model (classifier) using a set of la-
belled cases (of which the class values are known) that
captures the relationships between the input attribute
values and the values of the target (class) attribute.
The classifier is then used to predict the class of new,
unlabelled cases (of cases of which the class values
are unknown). While the literature includes several
types of classification models, such as classification
rules, artificial neural networks, support vector ma-
chines and Bayesian network classifiers (Witten and
Frank, 2010), in this paper we focus on the popular
and widely used classification models, namely deci-
sion trees.

Decision trees (Tan et al., 2005; Han and Kamber,
2000) are widely used as a comprehensible represen-
tation model, given that they can be easily represented
in a graphical form and also be represented as a set of
classification rules, which generally can be expressed
in the form of IF-THEN rules. In a decision tree, the
internal nodes correspond to attribute tests (decision

nodes) and leaf nodes correspond to predicted class
labels. In order to classify a case, the tree is traversed
from the root node towards a leaf node by selecting
branches according to internal nodes’ tests, until a leaf
node (class prediction) is reached.

Top-Down Induction of Decision Trees (TDIDT)
is the most common approach in the literature of
learning decision trees, which employs a divide-and-
conquer of approach: 1) select the best attribute to
use as internal node of the tree at a certain level; 2)
divide the dataset into several subsets according to
the branches (values) of the selected node (attribute);
and 3) recursively apply the previous steps on each
subset until all cases from the subset have the same
class label or when another stopping criterion is sat-
isfied, creating a leaf node to represent a class label
to be predicted. The well-known ID3, C4.5 (Quinlan,
1993) and CART (Breiman et al., 1984) algorithms
follow such approach for learning decision trees.

Nonetheless, the divide-and-conquer approach
represents a deterministic, greedy search strategy to
create a decision tree; the selection of the best at-
tribute is made locally at each iteration, without tak-
ing into consideration its influence over the subse-
quent iterations. This makes the algorithm prone to
get stuck in local optima. While several heuristics
(functions) for choosing attributes have been used in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30703737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the literature, such as Gini Index, Information Gain,
and Gain Ratio (Tan et al., 2005), the idea of utiliz-
ing stochastic, global search algorithms – that are less
likely to get stuck into local optima – to learn decision
trees is under-explored; only three related papers can
be found in the literature (see Section 2.2).

Ant Colony Optimization (ACO) is a meta-
heuristic for solving combinatorial optimization prob-
lems, inspired by the behaviour of biological ant
colonies. Ant-Tree-Miner (Otero et al., 2012) is a re-
cently introduced ACO-based algorithm for inducing
decision trees. In this paper, we extend the Ant-Tree-
Miner algorithm to build a new multi-tree classifica-
tion model. In essence, a multi-tree model consists
of several class-based decision trees, where each tree
is responsible for discriminating between a specific
class value and all other values in the class domain.
The multi-tree model can provide the user with a po-
tentially useful representation of the knowledge dis-
covered from the dataset, by focusing on the specific
patterns describing each class value and differentiat-
ing it from the other ones.

In this context, we propose two new ACO-based
algorithms to build multi-tree classifiers: 1) Ant-Tree-
MinerML, which learns one class-based tree at a time
in a local approach, and 2) Ant-Tree-MinerMI, which
learns a complete multi-tree model in an integrated
approach. Our proposed algorithms are empirically
evaluated against the C4.5 and CART decision trees
induction algorithms, as well as the original Ant-Tree-
Miner. The results show that Ant-Tree-MinerML and
Ant-Tree-MinerMI achieve an overall improvement in
predictive accuracy over 32 benchmark datasets.

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview on ACO and its related
work in the classification learning domain, focusing
on the Ant-Tree-Miner decision tree induction algo-
rithm. In Section 3, we describe the multi-tree classi-
fication model. We introduce our two new ACO algo-
rithms for learning multi-trees in Section 4. The ex-
perimental methodology and results are discussed in
Section 5, followed by concluding remarks and fur-
ther research directions in Section 6.

2 CLASSIFICATION WITH ANT
COLONY ALGORITHMS

2.1 Ant Colony Optimization Overview

Inspired by the behaviour of natural ant colonies,
Dorigo et al. (Dorigo and Stützle, 2004; Dorigo and
Stützle, 2003) have defined Ant Colony Optimization

(ACO) as a meta-heuristic that has been widely ap-
plied to solve combinatorial optimization problems.
The basic principle of ACO is that a population of ar-
tificial ants cooperates with each other to find the best
path in a graph, representing a candidate solution to
the target problem, analogously to the way that nat-
ural ants cooperate to find the shortest path between
two points like their nest and a food source. The out-
line of the basic ACO procedures is presented in Al-
gorithm 1.

Algorithm 1 Pseudo-code of basic ACO algorithm.
Begin ACO
ConstructionGraph← Problem definition;
Initialize();
best← ϕ; /* best solution found so far */
repeat

current← ant.ConstructSolution();
ApplyLocalSearch(current); /* Optional */
if Quality(current)> Quality(best) then

best← current;
end if
ant.U pdatePheromone(current);

until termination condition
return best;
End

In order to design an ACO algorithm to solve a
specific type of problem, the following components
of the algorithm should be designed:
Construction Graph - This graph defines the search
space to be explored by the ACO algorithm, which
consists of the various components (nodes or edges)
by which an ant constructs a solution to the target
problem.
Heuristic Function - This function uses problem-
specific information to locally evaluate the quality of
each candidate solution component available in the
construction graph.
State Transition Rule - This probabilistic transition
rule determines how each ant decides which solution
component will be visited next in the construction
graph, in order to continue the creation of its candi-
date solution. This rule is based on both the heuristic
function value η and the pheromone amount τ associ-
ated with the available components.
Quality Evaluation Function - This is a problem-
specific function used to evaluate the quality of a can-
didate solution constructed by an ant. The higher the
quality of a solution, the more pheromone will be de-
posited on the construction graph components used in
that solution.
Local Search - An optional procedure to improve the
quality of a constructed solution. This can be per-

formed on each constructed candidate solution, or just
on the best solution among the colony to reduce com-
putational time.

In ACO, an ant incrementally constructs a candi-
date solution by visiting nodes and edges in the graph,
creating a search path. An ant deposits pheromone
on the nodes or edges of the path corresponding to its
constructed solution, where the amount of pheromone
deposited is proportional to the quality of that so-
lution. The higher the amount of pheromone on a
node or edge, the higher the probability that other
ants will decide to visit that node or edge when con-
structing their solution. The iterative process of solu-
tion construction, quality evaluation, and pheromone
update incorporates an aspect of global search into
an ACO algorithm, which makes it less likely to get
trapped into local optima than conventional greedy al-
gorithms.

2.2 ACO Related Work

ACO has been successful in tackling the classifica-
tion problem of data mining. A number of ACO-
based algorithms have been introduced in the litera-
ture with different classification learning approaches.
Ant-Miner (Parpinelli et al., 2002), is the first ant-
based classification algorithm, which discovers a list
of IF-THEN classification rules.

Ant-Miner is a sequential covering ACO-based
rule induction algorithm, where in which iteration
the algorithm, the ACO meta-heuristic is utilized to
discover the best classification rule using the current
training set. The rule is then add the discovered rule
list, and all the instances covered by this rule are re-
moved from the training set. The algorithms continu-
ous until all the training instances are covered by the
discovered rules, or until the maximum number of it-
eration is reached.

The Ant-Miner algorithm has been followed by
several extensions. Ant-Miner+ (Martens et al.,
2007) used the M AX -M I N Ant System (Stützle
and Hoos, 1997), the class is selected before the an-
tecedent construction. The Multi-pheromone Ant-
Miner (Salama et al., 2011; Salama et al., 2013) in-
troduced the idea of class-based pheromone. That is,
the ant select class values prior to the rule antecedent
construction process, and the ant is only influenced
by the pheromone dropped by previous ant that con-
structed rules with the same current class value, so
that pheromone information is not shared by ant con-
structing rules with different consequent classes.

cAnt-Miner (Otero et al., 2009) is the version of
the Ant-Miner algorithm that copes with continues at-
tributes, by dynamically creating intervals that best

fits the rule that is currently being constructed. Re-
cently, cAnt-MinerPB (Otero et al., 2013; Otero and
Freitas, 2013) was introduced as a new sequential
covering strategy for ACO classification algorithms,
where the whole rule list is constructed in one ant it-
eration. The order of the rules is implicitly encoded
as pheromone values and the search is guided by the
quality of a candidate list of rules.

In addition, ACO has also been employed to learn
various types of Bayesian network classifiers. ABC-
Miner (Salama and Freitas, 2013d) learns Bayesian
Augmented Naı̈ve-Bayes (BAN) classifier, while
ABC-Miner+ (Salama and Freitas, 2013c) builds
Markov Blanket classifiers, which the algorithms per-
form embedded feature selection and produces more
flexible Bayesian network structures. ACO for learn-
ing Bayesian Multi-nets is introduced in (Salama and
Freitas, 2013a; Salama and Freitas, 2013b).

ACO-PB (Liu et al., 2006) ia a hybrid of the
ant colony and back-propagation algorithms to opti-
mize the network weights. It adopts ACO to search
the optimal combination of weights in the solution
space, and then uses BP algorithm to obtain the accu-
rate optimal solution quickly. ACOR, an ant colony
optimization algorithm for continuous optimization
(Socha and Dorigo, 2008), was used to train feed-
forward neural networks (Socha and Blum, 2005;
Socha and Blum, 2007).

As for learning decision trees, only ACDT (Bo-
ryczka and Kozak, 2010; Boryczka and Kozak, 2011),
and Ant-Tree-Miner (Otero et al., 2012), were in-
troduced as ACO-based algorithms. Since our algo-
rithms are built upon Ant-Tree-Miner, it is described
in more details in the following subsection.

2.3 The Ant-Tree-Miner Algorithm

The Ant-Tree-Miner algorithm (Otero et al., 2012)
follows the traditional divide-and-conquer approach,
with the difference that an ACO procedure is used
during the tree construction to select the nodes
(attributes) of the tree. Instead of applying a
greedy deterministic selection, Ant-Tree-Miner uses a
stochastic process based on heuristic information and
pheromone values. To create a candidate decision tree
DT , an ant starts by selecting an attribute from the
construction graph. The probability of selecting an at-
tribute is based on both their heuristic function value
η and the pheromone amount τ.

Each entry in the pheromone matrix is represented
by a triple [Ei j,L,xk], where Ei j is the edge represent-
ing the j-th attribute condition of the attribute xi in the
construction graph, L is the level of the decision tree
where the Ei j appears and xk is its destination attribute

vertex. The level information of the edge is associ-
ated with an entry to discriminate between multiple
occurrences of the same type of edge (i.e., the same
attribute condition) at different levels of the tree, ei-
ther for occurrences in the same tree path – possible
in the case of edges of continuous attribute vertices –
or in different tree paths.

Once an attribute is selected to represent a deci-
sion node, branches corresponding to each attribute-
condition are created. At this point, the training set
is divided into one subset for each branch, where
each subset contains the training cases satisfying the
attribute-condition represented by the branch. When
an ant follows a branch, it checks whether a leaf node
should be added or if it should recursively add a sub-
tree below its current branch. An ant chooses to add a
leaf node if one of the following conditions occur:

1. the branch’s subset is empty —i.e., no training
case satisfy the branch’s condition;

2. all cases in the subset have the same class label;

3. the subset size is smaller than or equal to the
min cases per branch user-defined value;

4. there are no more (unused) attributes to be se-
lected.

If none of the above conditions is observed, the con-
struction procedure is applied recursively to create a
sub-tree given the subset of training cases.

When all ants create a decision tree, they are eval-
uated and the iteration-best tree (DT tbest) is used to
update pheromone values. The creation process is re-
peated until a user-defined maximum number of iter-
ations is reached or the algorithm has converged (i.e.,
the pheromone values lead the algorithm to create the
same solution). The pheromone update procedure is
given by:

τ(E,L,xk) =

ρ.τ(E,L,xk), i f (E,L,xk) /∈ DT tbest ;

ρ.τ(E,L,xk)+Q(DT tbest),

i f (E,L,xk) ∈ DT tbest ;

(1)

where ρ is the evaporation factor parameter,
τ(E,L,xk) – E is the attribute condition of the edge that
this pheromone entry corresponds to, L is the level in
which the edge occurs and xk s the edge’s destination
attribute vertex – and Q(DT) is the quality of the can-
didate constructed decision tree DT .

3 MULTI-TREE MODELS

Unlike a decision tree classification model, which
represents the induced knowledge from a given

dataset as a tree model, the multi-tree model repre-
sents the induced knowledge in several decision trees,
one from each class value perspective. More pre-
cisely, a multi-tree model MT consists of a set of sep-
arate local decision trees {DT1,DT2, ...DT|C|}, where
|C| is the number of the available class values. DTl is
responsible for discriminating between a class value
l and all the other values in the class domain. In
other words, each tree in the multi-tree model treats
its related class values as the positive class, and all
the other class values as one negative class. Hence,
DTl concerned with classifying a case to one of two
class values: one natural positive class value (C = l),
and other artificial negative class value (C ̸= l). Thus,
the knowledge captured in each tree of a multi-tree
model only describes the attribute-value relationships
that are relevant to specific class value, regardless of
the other relationships that might be relevant to the
other classes.

Therefore, for each Dl , an induction algorithm
will only focus on discovering the specific patterns
that describe class value l, and will not get distracted
by patterns related to other classes. This should make
the induction process of Dl effective in terms of dis-
criminating l from other class values. This is opposite
to the conventional decision tree induction algorithms
that try to discriminate between all the class values in
a single model.

In essence, in order to predict the label of a new
test case x using a multi-tree classification model, x is
classified using each tree DTl in the model. Each DTl
produces a classification output: P(C = l|x), which is
the probability that x belongs to local positive class l.
The outputs of the different trees in a multi-tree can
take on of the following forms:
– P(C = l|x) > 0.5 in only one tree in the set, then x
is assigned to class l;
– P(C = l|x) > 0.5 in multiple trees in the set, then
x is assigned to class value l of the tree that has the
highest probability;
– P(C = l|x) ≤ 0.5 for all the trees in the set, then x
is also assigned to class value l of the tree that has the
highest probability as well.

4 LEARNING MULTI-TREES
WITH ACO ALGORITHMS

4.1 A Local ACO Approach for
Learning Multi-Trees

Ant-Tree-MinerML is the first ACO algorithm we pro-
pose in this paper to build multi-tree classification

models. The algorithm employs a local approach to
build a multi-tree, in which each tree in the model is
learnt in a one-at-a-time fashion. In other words, there
is no dependency between the processes of learning
different trees in the model — each tree induction pro-
cess is considered as a separate optimization problem,
carried out by a separate ACO procedure. Algorithm
2 shows the overall process of Ant-Tree-MinerML.

Algorithm 2 Pseudo-code of Ant-Tree-MinerML

1: Begin
2: D = training set; MT ← ϕ;
3: for l = 1 to |C| do
4: Dl = GetBinaryDataset(D, l);
5: InitializeConstructionGraph();
6: DT gbest

l = ϕ;
7: Qgbest = 0;
8: t = 1;
9: repeat

10: DT tbest
l = ϕ; Qtbest = 0;

11: for i = 1 to colony size do
12: DT i

l = ant i.CreateTree(Dl);
13: Qi = EvaluateQuality(DT i

l ,Dl);
14: if Qi > Q(tbest) then
15: BNtbest

l = BNi
l ;

16: Qtbest = Qi;
17: end if
18: end for
19: PruneTree(DT tbest

l);
20: U pdatePheromone(DTltbest);
21: if Qtbest > Qgbest then
22: DT gbest

l = DT tbest
l ;

23: Qgbest = Qtbest ;
24: end if
25: t← t +1;
26: until t = max iterations or Convergence()
27: append DT gbest

l to MT ;
28: end for
29: return MT ;
30: End

The following course of actions are repeated for
each class label l available in the class domain C (lines
3 to 28), in order to produce a decision tree for each
class. For class l, a new modified binary class training
dataset copy DTl is generated from the original train-
ing dataset D (line 4). In each new dataset Dl , cases
labelled with class l are considered positive cases; all
the cases that are labelled with class values other than
l are considered the negative cases, and re-labelled to
class l−. Hence, cases in each Dl will be either la-
belled with l or l−.

At this point, an ACO procedure is responsible

inducing a decision tree on the new binary dataset.
In essence, a construction graph (similar to the one
discussed in Section 2.3) is constructed and the
pheromone amounts are initialized as is done in Ant-
Tree-Miner (Otero et al., 2012). Now, each ant i in
the colony creates a candidate decision tree DT i

l (line
12), using the decision tree construction procedure
described in Section 2.3. Then, the predictive accu-
racy of DT i

l is evaluated, however, using its related
new training dataset Dl (line 13). That is, a correct
classification occurs when DT i

l correctly classify a
case to either positive (l) or negative (l−) class (re-
gardless of the specific negative classes). Predictive
accuracy (the quality Qi of the current local decision
tree DT i

l) is calculated as the number of correctly clas-
sified instances by DT i

l over the total number of in-
stance in the binary training dataset Dl .

The iteration-best DT tbest
l (best tree constructed

in the colony during the iteration) is selected to un-
dergo pruning and perform pheromone update, using
the same error-based pruning procedure and level-
based pheromone update strategy used in the Ant-
Tree-Miner algorithm, with respect to Dl . The global
best solution DT gbest

l is updated – if possible – at the
end of each iteration (lines 21 to 23).

This set of steps is considered one iteration of the
outer repeat-until loop (lines 9 to 26) and it is itera-
tively performed is repeated until the same DT is gen-
erated for a number of consecutive trials specified by
the conv iterations parameter (indicating conver-
gence) or until max iterations is reached (see Table
1 for parameter settings). The induced decision tree
DT gbest

l for class label l is appended to the multi-tree
model MT and then the algorithm moves to build the
next decision tree for class label l +1.

4.2 An Integrated ACO Approach for
Learning Multi-Trees

The second algorithm proposed in this paper follows
an integrated approach. Ant-Tree-MinerMI works in
a different way from its local counterpart. A single
run of ACO is used to build the whole solution; each
ant builds a complete multi-tree classification model
as a candidate solution at once. This is accomplished
by building a candidate local DTl for each class value
l in each single ant trial, appending them to current
candidate multi-tree model.

Unlike Ant-Tree-MinerML, which has to com-
pletely finish building the local tree DTl before start-
ing to build DTl+1, in Ant-Tree-MinerMI the whole
multi-tree model is constructed before performing the
quality evaluation and pheromone update. In this
case, the integrated approach is not concerned with

the quality of each individual decision tree DTl—in
classifying the artificial training dataset Dl—per se,
rather it is concerned with the quality of the complete
multi-tree model when used to classify the original
training set D.

Algorithm 3 Pseudo-code of Ant-Tree-MinerMI

1: Begin
2: D = training set; MT gbest = ϕ;
3: Qgbest = 0;
4: t = 1;
5: InitializeConstructionGraphs();
6: repeat
7: MT tbest = ϕ; Qtbest = 0;
8: for i = 1 to colony size do
9: MT i← ϕ;

10: for l = 1 to |C| do
11: Dl = GetBinaryDataset(D, l);
12: DT i

l = ant i.CreateTree(Dl);
13: append DT i

l to MT i;
14: end for
15: Qi = EvaluateQuality(MT i

l ,D);
16: if Qi > Qtbest then
17: MT tbest = MT i;
18: Qtbest = Qi;
19: end if
20: end for
21: PruneMultitree(MT tbest);
22: U pdatePheromone(MT tbest);
23: if Qtbest > Qgbest then
24: MT gbest = MT tbest ;
25: Qgbest = Qtbest ;
26: end if
27: t = t +1;
28: until t = max iterations or Convergence()
29: return MT gbest ;
30: End

As shown in Algorithm 3, each ant i in the colony
creates a candidate solution MT i—i.e., a complete
multi-tree model (lines 10 to 13). Then, the quality
of the constructed MT i is evaluated on the original
training set D (line 15). The best solution MT tbest pro-
duced in the colony at iteration t is selected to undergo
pruning before the ant updates the pheromone trail ac-
cording to the classification quality Qtbest of the multi-
tree MT tbest (line 21 and 22). Finally, MT tbest is com-
pared with the global best solution MT gbest to keep
track of the best multi-tree found so far (lines 23 to
26). This is iteratively repeated until the termination
conditions are met. At the end, MT gbest is considered
the final induced multi-tree classification model.

In order to apply such an integrated approach us-
ing ACO, we use several construction graphs for a

given dataset. More precisely, we use |C| construction
graphs, one for each class value l ∈ C. Pheromone
amounts and heuristic information initialization are
performed on all the used construction graphs. As
for solution creation, an ant uses each construction
graph to build each local DTl , one for each class la-
bel l. Once an ant creates the local DTl , it proceeds to
the construction of the local DTl+1, using the (l+1)th
construction graph and the Dl+1.

The tree pruning procedure is applied on each tree
DTl in the the iteration-best MT tbest multi-tree model.
As for pheromone update, it is performed on all con-
struction graphs according to the quality of the con-
structed MT tbest as a whole.

5 EXPERIMENTS AND RESULTS

We compare the predictive performance of the two
proposed ACO algorithms for learning multi-tree
classification models against the well-known CART
and C4.5 decision trees induction algorithms. In our
experiments, we used the WEKA (Witten and Frank,
2010) implementations for these algorithms, Simple-
CART and J48, respectively.

In addition, we implemented a greedy algorithm
for learning multi-tree models, C4.5-MTree, as an-
other baseline for our comparisons. In essence, sev-
eral binary datasets are generated for a given dataset,
one for each available class value (as described in
Section 4.1). Then, the C4.5 algorithm is used to in-
duce a decision tree from each binary dataset. The
final multi-tree model would be the set of the induced
decision trees. We also compare the predictive perfor-
mance of the multi-tree models produced by the pro-
posed algorithms against the decision trees produced
by the Ant-Tree-Miner algorithm.

The experiments were carried out using the strat-
ified ten-fold cross validation procedure. In essence,
a dataset is divided into ten mutually exclusive par-
titions (folds), with approximately the same number
of cases in each partition. Then each classification
algorithm is run ten times, where each time a differ-
ent partition is used as the test set and the other nine
partitions are used as the training set. The results (ac-
curacy rate on the test set) are then averaged and re-
ported as the accuracy rate of the classifier. For the
ACO algorithms, we run them ten times – using a dif-
ferent random seed to initialize the search each time
– for each of the ten iterations of the cross-validation
procedure (i.e., 100 runs in total, for each dataset). In
the case of the deterministic algorithms, each one is
run just once for each iteration of the cross-validation
procedure.

The parameter configuration used in our ex-
periments is shown in Table 1. Note that the
max iterations parameter refers to the maximum
number of iterations used to build a single local tree
in the Ant-Tree-MinerML algorithm. The value of this
parameter is multiplied by the number of class val-
ues when used with Ant-Tree-MinerMI. However, this
maximum number is not fully tilized, since the algo-
rithms converge earlier. The WEKA default parame-
ter settings were used for CART and C4.5.

Table 1: ACO Parameter settings used in experiments.
Parameter Value

max iterations 500
colony size 50
conv iterations 10
min cases per branch 3
evaporation factor 0.9

5.1 Predictive Accuracy Results

The experimental evaluation was performed using 32
public-domain datasets from the University of Cal-
ifornia at Irvine (UCI) dataset repository (Asuncion
and Newman, 2007). The main characteristics of the
datasets are shown in Table 2

Table 3 reports the average predictive accuracy
values obtained by ten-fold cross validation for the 32
datasets, where the highest accuracy value for each
dataset is shown in bold face. The last row shows the
average rank of each algorithm in terms of predictive
accuracy according to the non-parametric Friedman
test (Garca and Herrera, 2008). The average rank for
a given algorithm g is obtained by first computing the
rank of g on each dataset individually. The individual
ranks are then averaged across all datasets to obtain
the overall average rank. Note that the lower the value
of the rank, the better the algorithm performance.

As shown in Table 3, the proposed Ant-Tree-
MinerMI—which uses the ACO integrated approach
to learn multi-tree models—obtained the best over-
all average ranking of 2.64 and achieved the high-
est predictive accuracy in 8 datasets. In the second
place is Ant-Tree-MinerML—the local approach ACO
algorithm for learning multi-tree models—obtained
an overall average ranking of 2.89 and achieved
the highest predictive accuracy in 6 datasets. Ant-
Tree-Miner—the ACO algorithm for learning deci-
sion trees—came in the third place with overall av-
erage ranking of 2.95 and achieved the highest pre-
dictive accuracy in 5 datasets. The C4.5 And CART

Table 2: Description of datasets.
Dataset Instacnes Attributes Classes

annealing 896 38 6
audiology 200 70 24
balance 625 4 3
breast-l 286 9 2
breast-p 198 32 2
breast-tissue 106 9 2
breast-w 569 30 2
car 1,728 6 4
credit-a 690 14 2
credit-g 1,000 20 2
dermatology 366 33 6
heart-c 303 12 3
heart-h 293 13 5
hepatitis 155 19 2
horse 356 22 2
ionosphere 351 34 2
lymphography 148 18 4
monks 432 6 2
parkinsons 197 23 2
pima diabetes 768 8 2
pop 90 8 3

s-heart 267 22 2
segmentation 2,310 19 7
soybean 307 35 19
thyriod 215 5 3
transfusion 722 4 2
tic-tac-to 958 9 2
voting 435 16 2
wine 178 13 3
zoo 101 17 7

decision tree induction algorithms came in the fourth
and the fifth place with overall average rankings of
4.05 and 4.1, and achieved the highest predictive ac-
curacy in 6 and 9 datasets, respectively. The multi-
tree C4.5-MTree obtained an overall average ranking
of 4.28 and performed last.

The non-parametric Friedman statistical test
(Garca and Herrera, 2008) with the Holm’s post-hoc
test was applied to the predictive accuracy results
shown in Table 3. The test showed that both Ant-
Tree-MinerML and Ant-Tree-MinerMI are statistically
better than CART, C4.5 and C4.5-MTree with a sig-

Table 3: Average predictive accuracy for each algorithm in the 32 datasets. The columns annotated with ATM
correspond to Ant-Tree-Miner and the proposed multi-tree extensions.

Dataset CART C4.5 C4.5-MTree ATM ATMML ATMMI

annealing 94.1 91.1 93.49 95.2 95.31 94.61
audiology 80 88.33 81.67 80 82.17 88.33
automobile 75.91 81.4 77.48 77.17 79.57 82.95
balance 68.39 63.83 65.67 74.5 78.5 80.67
breast-l 72.39 72.86 72.86 72.91 73 73.31
breast-p 76.29 64 64 76.29 76.29 76.29
breast-tissue 62.46 59.6 60.55 64.45 64.55 69.18
breast-w 92.61 94.56 94.56 91.38 92.1 94.2
car 97.63 93.27 93.74 93.8 93.39 93.8
credit-a 84.93 86.38 86.38 86.64 86.65 86.2
credit-g 75.5 70.9 70.9 71.3 69.9 69.9
cylinder 71.48 73.75 73.75 73.92 75.08 72.98
dermatology 94.01 93.5 91.79 95.35 95.35 94.53
heart-c 51.46 51.2 53.86 54.46 52.82 54.81
heart-h 63.97 66.7 61.65 67.45 67.38 66.13
hepatitis 78.04 79.38 79.38 81.29 83.83 83.29
horse 85.02 85.02 85.02 83.57 82.71 82.98
ionosphere 89.18 89.67 89.67 90.21 90.23 90.26
lymphography 74.43 77.71 78.57 77.8 79.19 78.8
monks 66.55 60.73 60.73 61.64 63.64 62.73
parkinsons 85 83.58 83.58 84.58 87.63 85.58
pima 72.92 74.73 74.73 71.23 69.92 69.54
pop 73.75 75 75 75 73.75 75
s-heart 77.78 74.81 74.81 75.56 77.41 77.78
segmentation 95.37 96.76 95.02 96.23 95.39 95.67
soybean 86.32 85.86 83.1 86.55 86.21 86.55
thyroid 91.58 91.6 89.76 91.6 91.69 92.14
transfusion 71.27 74.56 74.56 72.6 71.72 71.93
tic-tac-to 92.28 85.58 85.58 87.05 89.68 92.11
voting 95.41 94.48 94.48 94.91 94.94 94.91
wine 90.98 93.3 92.75 93.82 93.3 93.82
zoo 90.09 95 97.5 100 97.5 97.5

Average rank 4.1 4.05 4.28 2.95 2.89 2.64

nificance level of 5%. Besides that, Ant-Tree-Miner is
shown to be statistically better than CART, C4.5 and
C4.5-MTree with a significance level of 10%. Table 4
shows the results of non-parametric Friedman Statis-
tical test.

Table 4: The results of non-parametric Friedman Sta-
tistical test. p-values are shown in bold-face, while
Holm values are shown between brackets.

Algorithm ATM ATMML ATMMI

CART 0.017 (0.141) 0.012 (0.122) 0.002 (0.026)

C4.5 0.019 (0.141) 0.013 (0.122) 0.002 (0.028)

C4.5-MTree 0.005 (0.061) 0.003 (0.043) 4.5E-4 (0.006)

One notice regarding the results of C4.5-MT,
which uses the C4.5 in a local approach to build multi-
tree models, is that it did not performed, overall, bet-
ter than C4.5 decision tree induction algorithm. One
important reason is the function used to select the best
attribute to create an internal tree node, and its at-
tribute values become branches to split the training set
into more pure data subset relative to the class values.
C4.5 uses Information Gain Ration (Quinlan, 1993),
which is proper for reducing the entropy (impurity)
of the data subsets with respect to all the class values.
However, a multi-tree induction algorithm may need
to use a different function that focus on the quality
of the split with respect to the specific (positive) class
value for which the current local tree is built. This can
also be beneficial in class imbalance problems, where
one (or more) class values has a low occurrence in the
dataset compared to other class values. Precision and
Recall measures are candidate functions for this task,
yet we leave this for future investigation.

On the other hand, the ACO algorithms do not
have the same problem, since ACO perform a global
search to build the tree model as a whole, rather than
local decision of selecting the next attribute to add to
the tree model.

5.2 Model Comprehensibility Results

Although predictive accuracy improvements that
multi-tree induction ACO-based algorithms made
over the Ant-tree-Miner decision tree induction algo-
rithm are not statistically significant according to the
used test, and therefore are regarded as similar, we
claim that our proposed algorithm have advantages re-
garding comprehensibility of their produced model. It
is controversial to state which one is more easily com-
prehensible from the user perspective: one relatively
large decision tree model (produced by a decision tree
induction algorithm) or several relatively small class-

based trees in the multi-tree models.
Therefore, for fair size comparison, we extracted

a set of rules from the constructed models and we
compared the total number of the terms in these rules.
In essence, for decision tree models, each path from
the root node to a leaf node represents a rule, where
the rule terms (antecedent) are the node-branch condi-
tions in the path, and the rule consequent is the major-
ity class predicted by the leaf node. As for the multi-
tree models, the rules are extracted as follows. First,
we extract the rules from each local tree in the same
aforementioned way. However, for each tree Dl , we
only keep the rules where the consequent is the tree’s
positive class l and discard the rules where the con-
sequent is the tree’s negative class l−. Second, since
there may be two (or more) rules—with different con-
sequent classes—that can classify the same instance
(i.e., one of them contains all the antecedent terms of
the other), we only keep the rule with the highest con-
sequent class probability.

The size results are in Table 5, which shows that,
overall, the total terms in the rules extracted from the
multi-tree model is smaller than the total terms in the
rules extracted from the single decision tree model
built for the same dataset, supporting our claim that
the multi-tree model provides a model that is sim-
pler to interpret. This is shown in the ratio of each
multi-tree induction algorithm’s size results to its cor-
responding decision tree induction algorithm’s size
results.

6 CONCLUDING REMARKS

In this paper, we have introduced two new ACO-
based algorithm for learning multi-tree classification
model. A multi-tree model consists of several class-
based decision trees, each is responsible for discrim-
inating between a specific class value and all other
values in the class domain. We empirically evaluated
the performance of our algorithms over 32 bench-
mark UCI datasets and compared their results against
the results of well-known CART and C4.5 decision
trees induction algorithms, as well as the Ant-Tree-
Miner ACO-based algorithm. In addition, we com-
pared our results to C4.5-MT, a greedy implementa-
tion for learning multi-tree models.

The results showed that the two proposed ACO
algorithms are statistically significantly better than
the three greedy algorithms and produces compara-
ble predictive accuracy results compared to Ant-Tree-
Miner. An interesting aspect of the multi-tree mod-
els induced by our ACO algorithms is that they can
provide the user with a potentially useful view of the

Table 5: Average size (in terms of the total number of rules’ terms extracted from each model) results. The ratio
results represent the size results ratio of a multi-tree induction algorithm to the size results of its corresponding
decision tree induction algorithm.

Dataset C4.5 C4.5-MTree ATM ATMML ATMMI
size size ratio to C4.5 size size ratio to ATM size ratio to ATM

annealing 300.7 210.5 0.7 388.1 280.6 0.72 271.8 0.7
audiology 234.8 139.8 0.6 251.6 130.1 0.52 141 0.56
automobile 214.8 102.2 0.48 325 169.5 0.52 204.7 0.63
balance 84.2 71.8 0.85 110.3 91.2 0.83 108.9 0.99
breast-l 16.4 16.4 1 116.6 88 0.75 126.6 1.09
breast-p 43.1 99.9 2.32 2 2 1 2 1
breast-tissue 66 36.1 0.55 104.7 69.4 0.66 93.3 0.89
breast-w 47.7 50.9 1.07 82.9 77.3 0.93 81.1 0.98
car 605.4 492 0.81 612.8 499.8 0.82 524.9 0.86
credit-a 103.3 90.6 0.88 267.1 272.3 1.02 252.6 0.95
credit-g 507 543.4 1.07 775.2 856.4 1.1 812.7 1.05
cylinder 489.2 449.4 0.92 575.3 617.3 1.07 587.7 1.02
dermatology 118 73.3 0.62 101.4 96.6 0.95 79 0.78
heart-c 260.5 121.1 0.46 302.9 126.6 0.42 72.7 0.24
heart-h 156.7 14.5 0.09 172.2 52.5 0.3 50.1 0.29
hepatitis 37.9 39.5 1.04 37.1 39.6 1.07 46.8 1.26
horse 11.6 16.4 1.41 49.5 39.4 0.8 47 0.95
ionosphere 75.7 88.8 1.17 85.9 83.9 0.98 103.7 1.21
lymphography 67.8 49.6 0.73 60.9 58.4 0.96 63.7 1.05
monks 18.9 18.9 1 8.5 1.1 0.13 2.5 0.29
parkinsons 51.8 52 1 67.1 64.5 0.96 61.5 0.92
pima 123.9 237.3 1.92 748.3 676.9 0.9 686.8 0.92
pop 2 2.4 1.2 2 3.6 1.8 3.6 1.8
s-heart 82.9 89.1 1.07 130.8 126.6 0.97 121.1 0.93
segmentation 315.9 250.4 0.79 442.1 535.2 1.21 458.8 1.04
soybean 330.8 80.4 0.24 353.5 130.2 0.37 155.3 0.44
thyroid 30.3 26.6 0.88 36.1 30.9 0.86 40.3 1.12
transfusion 24.9 36.6 1.47 112.8 93.2 0.83 109.3 0.97
ttt 396.5 396.5 1 536 507.2 0.95 539.8 1.01
voting 18.2 18.2 1 25.7 18.3 0.71 27.1 1.05
wine 12.8 19.4 1.52 27.7 24.2 0.87 26.6 0.96
zoo 43.8 28.8 0.66 66.7 19.1 0.29 23.8 0.36

Average size/ratio 152.9 123.8 0.95 218.1 183.8 0.82 1852 0.88

knowledge discovered from the dataset by producing
several classification trees, each one focusing on the
specific patterns describing one class value and differ-
entiating it from the other classes. Moreover, predic-
tions made by the multi-tree model involve a smaller
number of terms, which contributes to the compre-
hensibility of the model. Therefore, the user needs
to analyze a smaller number of attribute-value condi-
tions in order understand a prediction.

In the future, an interesting direction is to explore
different measures, other than accuracy, to evaluate
the quality of the candidate constructed decision trees
in the local approach, where the focus might be in-
creasing the true positives rate of each tree rather than
improving the its general predictive accuracy. We
can also explore more sophisticated quality evaluation
measures in both approaches, such as Quadratic Loss
Function and Bayesian Information Reward.

REFERENCES

Asuncion, A. and Newman, D. (2007).
UCI Machine Learning Repository.
URL:http://www.ics.uci.edu/ mlearn/MLRepository.html.

Boryczka, U. and Kozak, J. (2010). Ant Colony Decision
Trees. In 4th International Conference on Computa-
tional Collective Intelligence: Technologies and Ap-
plications (ICCCI’11), pages 4373–382, Berlin, Hei-
delberg. Springer.

Boryczka, U. and Kozak, J. (2011). An Adaptive Discretiza-
tion in the ACDT Algorithm for Continuous At-
tributes. In 3rd International Conference on Compu-
tational Collective Intelligence: Technologies and Ap-
plications (ICCCI’11), pages 475–484, Berlin, Hei-
delberg. Springer.

Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984).
Classification and Regression Trees. Chapman and
Hall.

Dorigo, M. and Stützle, T. (2003). The Ant Colony Op-
timization Metaheuristic: Algorithms, Applications,
and Advances. In Handbook of Metaheuristics, vol-
ume 57 of OPRMS, pages 250–28, New York, NY,
USA. Springer.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimiza-
tion. MIT Press, Cambridge, MA, USA.

Garca, S. and Herrera, F. (2008). An Extension on ”Sta-
tistical Comparisons of Classifiers over Multiple Data
Sets” for all Pairwise Comparisons. Journal of Ma-
chine Learning Research, 9:2677–2694.

Han, J. and Kamber, M. (2000). Data Mining: Concepts
and Techniques. Morgan Kaufmann, San Francisco,
CA, USA, 2nd edition.

Liu, Y.-P., Wu, M.-G., and Qian, J.-X. (2006). Evolving
neural networks using the hybrid of ant colony opti-
mization and bp algorithms. In 3rd International Con-
ference on Advances in Neural Networks (ISNN’06),
pages 714–722, Berlin, Heidelberg. Springer-Verlag.

Martens, D., Backer, M. D., Haesen, R., Vanthienen, J.,
Snoeck, M., and Baesens, B. (2007). Classification
with ant colony optimization. IEEE Transactions on
Evolutionary Computation, 11:651–665.

Otero, F. and Freitas, A. (2013). Improving the Inter-
pretability of Classification Rules Discovered by an
Ant Colony Algorithm. In Genetic and Evolutionary
Computation Conference (GECCO-2013), pages 73–
80, New York, NY, USA. ACM Press.

Otero, F., Freitas, A., and Johnson, C. (2009). Handling
continuous attributes in ant colony classification algo-
rithms. In IEEE Symposium on Computational Intelli-
gence in Data Mining (CIDM 2009), pages 225–231,
New York, NY, USA. IEEE Press.

Otero, F., Freitas, A., and Johnson, C. (2013). A New Se-
quential Covering Strategy for Inducing Classification
Rules with Ant Colony Algorithms. IEEE Transac-
tions on Evolutionary Computation, 17(1):64–74.

Otero, F. E. B., Freitas, A. A., and Johnson, C. G.
(2012). Inducing Decision Trees with an Ant Colony
Optimization Algorithm. Applied Soft Computing,
12(11):3615–3626.

Parpinelli, R. S., Lopes, H. S., and Freitas, A. A. (2002).
Data mining with an ant colony optimization algo-
rithm. IEEE Transactions on Evolutionary Compu-
tation, 6(4):321–332.

Quinlan, J. (1993). Programs for Machine Learning. Mor-
gan Kaufmann.

Salama, K., Abdelbar, A., and Freitas, A. (2011). Mul-
tiple Pheromone Types and Other Extensions to the
Ant-Miner Classification Rule Discovery Algorithm.
Swarm Intelligence, 5(3-4):149–182.

Salama, K., Abdelbar, A., Otero, F., and Freitas, A. (2013).
Utilizing multiple pheromones in an ant-based algo-
rithm for continuous-attribute classification rule dis-
covery. Applied Soft Computing, 13(1):667–675.

Salama, K. and Freitas, A. (2013a). Ant Colony Algorithms
for Constructing Bayesian Multi-net Classifiers. Ma-
chine Learning - (Under Review).

Salama, K. and Freitas, A. (2013b). Clustering-based
Bayesian Multi-net Classifier Construction with Ant
Colony Optimization. In IEEE Congress on Evo-
lutionary Computation (IEEE CEC) (2013), pages
3079–3086, New York, NY, USA. IEEE Press.

Salama, K. and Freitas, A. (2013c). Extending the ABC-
Miner Bayesian Classification Algorithm. In 6th In-
ternational Workshop on Nature Inspired Cooperative
Strategies for Optimization (NICSO’13), volume 512
of SCI, pages 1–12, Berlin. Springer.

Salama, K. and Freitas, A. (2013d). Learning Bayesian
Network Classifiers Using Ant Colony Optimization.
Swarm Intelligence, 7(2-3):229–254.

Socha, K. and Blum, C. (2005). Training feed-forward neu-
ral networks with ant colony optimization: An appli-
cation to pattern classification. In 5th International
Conference on Hybrid Intelligent Systems (HIS ’05),
pages 233–238, Washington, DC, USA. IEEE Com-
puter Society.

Socha, K. and Blum, C. (2007). An ant colony optimization
algorithm for continuous optimization: Application to

feed-forward neural network training. Neural Com-
puting & Applications, 16:235–247.

Socha, K. and Dorigo, M. (2008). Ant colony optimization
for continuous domains. European Journal of Opera-
tional Research, 185:1155–1173.

Stützle, T. and Hoos, H. (1997). MAX-MIN Ant System
and local search for the traveling salesman problem.
Evolutionary Computation, 1997., IEEE International
Conference on, pages 309–314.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduc-
tion to Data Mining. Addison Wesley, 2nd edition.

Witten, I. H. and Frank, E. (2010). Data Mining: Practi-
cal Machine Learning Tools and Techniques. Morgan
Kaufmann, San Francisco, CA, USA, 3rd edition.

