418 research outputs found

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    A General Framework to Compare Announcement Accuracy: Static vs LES-based Announcement

    Get PDF
    Service providers often share delay information, in the form of delay announcements, with their customers. In practice, simple delay announcements, such as average waiting times or a weighted average of previously delayed customers, are often used. Our goal in this paper is to gain insight into when such announcements perform well. Specifically, we compare the accuracies of two announcements: (i) a static announcement that does not exploit real-time information about the state of the system and (ii) a dynamic announcement, specifically the last-to-enter-service (LES) announcement, which equals the delay of the last customer to have entered service at the time of the announcement. We propose a novel correlation-based approach that is theoretically appealing because it allows for a comparison of the accuracies of announcements across different queueing models, including multiclass models with a priority service discipline. It is also practically useful because estimating correlations is much easier than fitting an entire queueing model. Using a combination of queueing-theoretic analysis, real-life data analysis, and simulation, we analyze the performance of static and dynamic announcements and derive an appropriate weighted average of the two which we demonstrate has a superior performance using both simulation and data from a call center.

    Flexible bed allocations for hospital wards

    Get PDF

    Planning and Routing Algorithms for Multi-Skill Contact Centers

    Get PDF
    Koole, G.M. [Promotor

    Recent Advances in Accumulating Priority Queues

    Get PDF
    This thesis extends the theory underlying the Accumulating Priority Queue (APQ) in three directions. In the first, we present a multi-class multi-server accumulating priority queue with Poisson arrivals and heterogeneous services. The waiting time distributions for different classes have been derived. A conservation law for systems with heterogeneous servers has been studied. We also investigate an optimization problem to find the optimal level of heterogeneity in the multi-server system. Numerical investigations through simulation are carried out to validate the model. We next focus on a queueing system with Poisson arrivals, generally distributed service times and nonlinear priority accumulation functions. We start with an extension of the power-law APQ in Kleinrock and Finkelstein (1967), and use a general argument to show that there is a linear system of the form discussed in Stanford, Taylor, and Ziedins (2014) which has the same priority ordering of all customers present at any given instant in time, for any sample path. Beyond the power-law case, we subsequently characterize the class of nonlinear accumulating priority queues for which an equivalent linear APQ can be found, in the sense that the waiting time distributions for each of the classes are identical in both the linear and nonlinear systems. Many operational queuing systems must adhere to waiting time targets known as Key Performance Indicators (KPIs), particularly in health care applications. In the last aspect, we address an optimization problem to minimize the weighted average of the expected excess waiting time (WAE), so as to achieve the optimal performance of a system operating under KPIs. We then find that the Accumulating Priority queuing discipline is well suited to systems with KPIs, in that each class of customers progresses fairly towards timely access by its own waiting time limit. Due to the difficulties in minimizing the WAE, we introduce a surrogate objective function, the integrated weighted average excess (IWAE), which provides a useful proxy for WAE. Finally, we propose a rule of thumb in which patients in the various classes accumulate priority credit at a rate that is inversely proportional to their time limits

    Control of multiclass queueing systems with abandonments and adversarial customers

    Get PDF
    This thesis considers the defensive surveillance of multiple public areas which are the open, exposed targets of adversarial attacks. We address the operational problem of identifying a real time decision-making rule for a security team in order to minimise the damage an adversary can inflict within the public areas. We model the surveillance scenario as a multiclass queueing system with customer abandonments, wherein the operational problem translates into developing service policies for a server in order to minimise the expected damage an adversarial customer can inflict on the system. We consider three different surveillance scenarios which may occur in realworld security operations. In each scenario it is only possible to calculate optimal policies in small systems or in special cases, hence we focus on developing heuristic policies which can be computed and demonstrate their effectiveness in numerical experiments. In the random adversary scenario, the adversary attacks the system according to a probability distribution known to the server. This problem is a special case of a more general stochastic scheduling problem. We develop new results which complement the existing literature based on priority policies and an effective approximate policy improvement algorithm. We also consider the scenario of a strategic adversary who chooses where to attack. We model the interaction of the server and adversary as a two-person zero-sum game. We develop an effective heuristic based on an iterative algorithm which populates a small set of service policies to be randomised over. Finally, we consider the scenario of a strategic adversary who chooses both where and when to attack and formulate it as a robust optimisation problem. In this case, we demonstrate the optimality of the last-come first-served policy in single queue systems. In systems with multiple queues, we develop effective heuristic policies based on the last-come first-served policy which incorporates randomisation both within service policies and across service policies

    Using Hybrid Simulation/Analytical Queueing Networks to Capacitate USAF Air Mobility Command Passenger Terminals

    Get PDF
    The objective of this study is to model operations at an airport passenger terminal to determine the optimal service capacities at each station given estimated passenger flow patterns and service rates. The central formulation is an open Jackson queueing network that can be applied to any USAF Air Mobility Command (AMC) terminal regardless of passenger type mix and flow data. A complete methodology for analyzing passenger flows and queue performance of a single flight is produced and then embedded in a framework to analyze the same for multiple departing flights. Queueing network analysis (QNA) is used because no special software license or methodological training is required, results are obtained in a spreadsheet model with computational response times that are instantaneous, and data requirements are substantially reduced compared with discrete-event simulation (DES). However, because of the assumptions of QNA, additional research contributions were required. First, arrivals of passengers are time-dependent, not steady-state. Theoretical results for time-dependent queue networks in the literature are limited, so a method for using DES to adjust for arrival time-dependency in QNA is developed. Second, beyond quality of service in the network, a key performance measure is the percentage of passengers who do not clear the system by a fixed time. To populate the QNA mean value system sojourn time, DES is used to develop a generic sojourn time probability distribution. All DES computations have been pre-calculated off-line in this thesis and complete a hybrid DES/QNA analytical model. The model is exercised and validated through analysis of the facility at Hickam AFB, which is currently undergoing redesign. For larger flights, adding a server at the high-utilization queues, namely the USDA inspection and security screening stations, halve system congestion and dramatically increase throughput
    • …
    corecore