153 research outputs found

    Characterizing the role of vehicular cloud computing in road traffic management

    Get PDF
    Vehicular cloud computing is envisioned to deliver services that provide traffic safety and efficiency to vehicles. Vehicular cloud computing has great potential to change the contemporary vehicular communication paradigm. Explicitly, the underutilized resources of vehicles can be shared with other vehicles to manage traffic during congestion. These resources include but are not limited to storage, computing power, and Internet connectivity. This study reviews current traffic management systems to analyze the role and significance of vehicular cloud computing in road traffic management. First, an abstraction of the vehicular cloud infrastructure in an urban scenario is presented to explore the vehicular cloud computing process. A taxonomy of vehicular clouds that defines the cloud formation, integration types, and services is presented. A taxonomy of vehicular cloud services is also provided to explore the object types involved and their positions within the vehicular cloud. A comparison of the current state-of-the-art traffic management systems is performed in terms of parameters, such as vehicular ad hoc network infrastructure, Internet dependency, cloud management, scalability, traffic flow control, and emerging services. Potential future challenges and emerging technologies, such as the Internet of vehicles and its incorporation in traffic congestion control, are also discussed. Vehicular cloud computing is envisioned to have a substantial role in the development of smart traffic management solutions and in emerging Internet of vehicles. © The Author(s) 2017

    Characterizing the role of vehicular cloud computing in road traffic management

    Full text link
    Vehicular cloud computing is envisioned to deliver services that provide traffic safety and efficiency to vehicles. Vehicular cloud computing has great potential to change the contemporary vehicular communication paradigm. Explicitly, the underutilized resources of vehicles can be shared with other vehicles to manage traffic during congestion. These resources include but are not limited to storage, computing power, and Internet connectivity. This study reviews current traffic management systems to analyze the role and significance of vehicular cloud computing in road traffic management. First, an abstraction of the vehicular cloud infrastructure in an urban scenario is presented to explore the vehicular cloud computing process. A taxonomy of vehicular clouds that defines the cloud formation, integration types, and services is presented. A taxonomy of vehicular cloud services is also provided to explore the object types involved and their positions within the vehicular cloud. A comparison of the current state-of-the-art traffic management systems is performed in terms of parameters, such as vehicular ad hoc network infrastructure, Internet dependency, cloud management, scalability, traffic flow control, and emerging services. Potential future challenges and emerging technologies, such as the Internet of vehicles and its incorporation in traffic congestion control, are also discussed. Vehicular cloud computing is envisioned to have a substantial role in the development of smart traffic management solutions and in emerging Internet of vehicles

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue lT Market Clock for Enterprise Networking lnfrastructure, 2010 Emerging Technology Trends-Finding the Next Big Thing Money and Mobile Access Challenge Community Colleges A Business Perspective on Hosted Communications FMC: Ready to Fly or Flop? Challenges Facing Broadband Wireless Providers Deploying IEEE 802.11n Data and Security Networks Campuswide While Optimizing Energy Efficiency Interview President\u27s Message. From the Executive Director O&A from the CI

    Industrial Revolution and Environmental Sustainability: An Analytical Interpretation of Research Constituents in Industry 4.0

    Get PDF
    Purpose – Environmental sustainability is quickly becoming one of the most critical issues in industry development. This study aims to conduct a systematic literature review through which the author can provide various research areas to work on for future researchers and provide insight into industry 4.0 and environmental sustainability. Design/methodology/approach – This study accomplishes this by performing a backward analysis using text mining on the Scopus database. Latent Semantic Analysis (LSA) was used to analyze the corpus of 4,364 articles published between 2013 and 2023. The authors generated 10 clusters using keywords in the industrial revolution and environmental sustainability domain, highlighting ten research avenues for further exploration. Findings – In this study, three research questions discuss the role of environmental sustainability with industry 4.0. The author predicted 10 clusters treated as recent trends on which more insight is required from future researchers. The authors provided year-wise analysis, top authors, top countries, top sources, and network analysis related to the topic. Finally, the study provided industrialization's effect on environmental sustainability and the future aspect of automation. Originality/value – This research is the first-ever study in which a natural language processing technique is implemented to predict future research areas based on the keywords-document relationship

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue lT Market Clock for Enterprise Networking lnfrastructure, 2010 Emerging Technology Trends-Finding the Next Big Thing Money and Mobile Access Challenge Community Colleges A Business Perspective on Hosted Communications FMC: Ready to Fly or Flop? Challenges Facing Broadband Wireless Providers Deploying IEEE 802.11n Data and Security Networks Campuswide While Optimizing Energy Efficiency Interview President\u27s Message. From the Executive Director O&A from the CI

    From security to assurance in the cloud: a survey

    Get PDF
    The cloud computing paradigm has become a mainstream solution for the deployment of business processes and applications. In the public cloud vision, infrastructure, platform, and software services are provisioned to tenants (i.e., customers and service providers) on a pay-as-you-go basis. Cloud tenants can use cloud resources at lower prices, and higher performance and flexibility, than traditional on-premises resources, without having to care about infrastructure management. Still, cloud tenants remain concerned with the cloud's level of service and the nonfunctional properties their applications can count on. In the last few years, the research community has been focusing on the nonfunctional aspects of the cloud paradigm, among which cloud security stands out. Several approaches to security have been described and summarized in general surveys on cloud security techniques. The survey in this article focuses on the interface between cloud security and cloud security assurance. First, we provide an overview of the state of the art on cloud security. Then, we introduce the notion of cloud security assurance and analyze its growing impact on cloud security approaches. Finally, we present some recommendations for the development of next-generation cloud security and assurance solutions

    Innovative Technologies and Services for Smart Cities

    Get PDF
    A smart city is a modern technology-driven urban area which uses sensing devices, information, and communication technology connected to the internet of things (IoTs) for the optimum and efficient utilization of infrastructures and services with the goal of improving the living conditions of citizens. Increasing populations, lower budgets, limited resources, and compatibility of the upgraded technologies are some of the few problems affecting the implementation of smart cities. Hence, there is continuous advancement regarding technologies for the implementation of smart cities. The aim of this Special Issue is to report on the design and development of integrated/smart sensors, a universal interfacing platform, along with the IoT framework, extending it to next-generation communication networks for monitoring parameters of interest with the goal of achieving smart cities. The proposed universal interfacing platform with the IoT framework will solve many challenging issues and significantly boost the growth of IoT-related applications, not just in the environmental monitoring domain but in the other key areas, such as smart home, assistive technology for the elderly care, smart city with smart waste management, smart E-metering, smart water supply, intelligent traffic control, smart grid, remote healthcare applications, etc., signifying benefits for all countries

    Safe Intelligent Driver Assistance System in V2X Communication Environments based on IoT

    Get PDF
    In the modern world, power and speed of cars have increased steadily, as traffic continued to increase. At the same time highway-related fatalities and injuries due to road incidents are constantly growing and safety problems come first. Therefore, the development of Driver Assistance Systems (DAS) has become a major issue. Numerous innovations, systems and technologies have been developed in order to improve road transportation and safety. Modern computer vision algorithms enable cars to understand the road environment with low miss rates. A number of Intelligent Transportation Systems (ITSs), Vehicle Ad-Hoc Networks (VANETs) have been applied in the different cities over the world. Recently, a new global paradigm, known as the Internet of Things (IoT) brings new idea to update the existing solutions. Vehicle-to-Infrastructure communication based on IoT technologies would be a next step in intelligent transportation for the future Internet-of-Vehicles (IoV). The overall purpose of this research was to come up with a scalable IoT solution for driver assistance, which allows to combine safety relevant information for a driver from different types of in-vehicle sensors, in-vehicle DAS, vehicle networks and driver`s gadgets. This study brushed up on the evolution and state-of-the-art of Vehicle Systems. Existing ITSs, VANETs and DASs were evaluated in the research. The study proposed a design approach for the future development of transport systems applying IoT paradigm to the transport safety applications in order to enable driver assistance become part of Internet of Vehicles (IoV). The research proposed the architecture of the Safe Intelligent DAS (SiDAS) based on IoT V2X communications in order to combine different types of data from different available devices and vehicle systems. The research proposed IoT ARM structure for SiDAS, data flow diagrams, protocols. The study proposes several IoT system structures for the vehicle-pedestrian and vehicle-vehicle collision prediction as case studies for the flexible SiDAS framework architecture. The research has demonstrated the significant increase in driver situation awareness by using IoT SiDAS, especially in NLOS conditions. Moreover, the time analysis, taking into account IoT, Cloud, LTE and DSRS latency, has been provided for different collision scenarios, in order to evaluate the overall system latency and ensure applicability for real-time driver emergency notification. Experimental results demonstrate that the proposed SiDAS improves traffic safety
    • …
    corecore