950 research outputs found

    Complete Acyclic Colorings

    Full text link
    We study two parameters that arise from the dichromatic number and the vertex-arboricity in the same way that the achromatic number comes from the chromatic number. The adichromatic number of a digraph is the largest number of colors its vertices can be colored with such that every color induces an acyclic subdigraph but merging any two colors yields a monochromatic directed cycle. Similarly, the a-vertex arboricity of an undirected graph is the largest number of colors that can be used such that every color induces a forest but merging any two yields a monochromatic cycle. We study the relation between these parameters and their behavior with respect to other classical parameters such as degeneracy and most importantly feedback vertex sets.Comment: 17 pages, no figure

    On retracts, absolute retracts, and folds in cographs

    Full text link
    Let G and H be two cographs. We show that the problem to determine whether H is a retract of G is NP-complete. We show that this problem is fixed-parameter tractable when parameterized by the size of H. When restricted to the class of threshold graphs or to the class of trivially perfect graphs, the problem becomes tractable in polynomial time. The problem is also soluble when one cograph is given as an induced subgraph of the other. We characterize absolute retracts of cographs.Comment: 15 page

    b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs

    Get PDF
    A b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph G, denoted by \chi_b(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is called b-continuous if it admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of G, and every induced subgraph H_2 of H_1. We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: - We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. - We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at most a given threshold. - We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. - Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic

    The 4-girth-thickness of the complete multipartite graph

    Full text link
    The gg-girth-thickness θ(g,G)\theta(g,G) of a graph GG is the smallest number of planar subgraphs of girth at least gg whose union is GG. In this paper, we calculate the 44-girth-thickness θ(4,G)\theta(4,G) of the complete mm-partite graph GG when each part has an even number of vertices.Comment: 6 pages, 1 figur

    Forbidden subgraphs and complete partitions

    Full text link
    A graph is called an (r,k)(r,k)-graph if its vertex set can be partitioned into rr parts of size at most kk with at least one edge between any two parts. Let f(r,H)f(r,H) be the minimum kk for which there exists an HH-free (r,k)(r,k)-graph. In this paper we build on the work of Axenovich and Martin, obtaining improved bounds on this function when HH is a complete bipartite graph, even cycle, or tree. Some of these bounds are best possible up to a constant factor and confirm a conjecture of Axenovich and Martin in several cases. We also generalize this extremal problem to uniform hypergraphs and prove some initial results in that setting

    Native NIR-emitting single colour centres in CVD diamond

    Get PDF
    Single-photon sources are a fundamental element for developing quantum technologies, and sources based on colour centres in diamonds are among the most promising candidates. The well-known NV centres are characterized by several limitations, thus few other defects have recently been considered. In the present work, we characterize in detail native efficient single colour centres emitting in the near infra-red in both standard IIa single-crystal and electronic-grade polycrystalline commercial CVD diamond samples. In the former case, a high-temperature annealing process in vacuum is necessary to induce the formation/activation of luminescent centres with good emission properties, while in the latter case the annealing process has marginal beneficial effects on the number and performances of native centres in commercially available samples. Although displaying significant variability in several photo physical properties (emission wavelength, emission rate instabilities, saturation behaviours), these centres generally display appealing photophysical properties for applications as single photon sources: short lifetimes, high emission rates and strongly polarized light. The native centres are tentatively attributed to impurities incorporated in the diamond crystal during the CVD growth of high-quality type IIa samples, and offer promising perspectives in diamond-based photonics.Comment: 27 pages, 10 figures. Submitted to "New Journal of Phsyics", NJP-100003.R
    • …
    corecore