1,017 research outputs found

    Optical tomography: Image improvement using mixed projection of parallel and fan beam modes

    Get PDF
    Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be deļ¬ned by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The ļ¬ndings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam

    Comprehensive Review of Opinion Summarization

    Get PDF
    The abundance of opinions on the web has kindled the study of opinion summarization over the last few years. People have introduced various techniques and paradigms to solving this special task. This survey attempts to systematically investigate the different techniques and approaches used in opinion summarization. We provide a multi-perspective classification of the approaches used and highlight some of the key weaknesses of these approaches. This survey also covers evaluation techniques and data sets used in studying the opinion summarization problem. Finally, we provide insights into some of the challenges that are left to be addressed as this will help set the trend for future research in this area.unpublishednot peer reviewe

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    Automatic Document Summarization Using Knowledge Based System

    Get PDF
    This dissertation describes a knowledge-based system to create abstractive summaries of documents by generalizing new concepts, detecting main topics and creating new sentences. The proposed system is built on the Cyc development platform that consists of the worldā€™s largest knowledge base and one of the most powerful inference engines. The system is unsupervised and domain independent. Its domain knowledge is provided by the comprehensive ontology of common sense knowledge contained in the Cyc knowledge base. The system described in this dissertation generates coherent and topically related new sentences as a summary for a given document. It uses syntactic structure and semantic features of the given documents to fuse information. It makes use of the knowledge base as a source of domain knowledge. Furthermore, it uses the reasoning engine to generalize novel information. The proposed system consists of three main parts: knowledge acquisition, knowledge discovery, and knowledge representation. Knowledge acquisition derives syntactic structure of each sentence in the document and maps words and their syntactic relationships into Cyc knowledge base. Knowledge discovery abstracts novel concepts, not explicitly mentioned in the document by exploring the ontology of mapped concepts and derives main topics described in the document by clustering the concepts. Knowledge representation creates new English sentences to summarize main concepts and their relationships. The syntactic structure of the newly created sentences is extended beyond simple subject-predicate-object triplets by incorporating adjective and adverb modifiers. This structure allows the system to create sentences that are more complex. The proposed system was implemented and tested. Test results show that the system is capable of creating new sentences that include abstracted concepts not mentioned in the original document and is capable of combining information from different parts of the document text to compose a summary

    Improvements to the complex question answering models

    Get PDF
    x, 128 leaves : ill. ; 29 cmIn recent years the amount of information on the web has increased dramatically. As a result, it has become a challenge for the researchers to find effective ways that can help us query and extract meaning from these large repositories. Standard document search engines try to address the problem by presenting the users a ranked list of relevant documents. In most cases, this is not enough as the end-user has to go through the entire document to find out the answer he is looking for. Question answering, which is the retrieving of answers to natural language questions from a document collection, tries to remove the onus on the end-user by providing direct access to relevant information. This thesis is concerned with open-domain complex question answering. Unlike simple questions, complex questions cannot be answered easily as they often require inferencing and synthesizing information from multiple documents. Hence, we considered the task of complex question answering as query-focused multi-document summarization. In this thesis, to improve complex question answering we experimented with both empirical and machine learning approaches. We extracted several features of different types (i.e. lexical, lexical semantic, syntactic and semantic) for each of the sentences in the document collection in order to measure its relevancy to the user query. We have formulated the task of complex question answering using reinforcement framework, which to our best knowledge has not been applied for this task before and has the potential to improve itself by fine-tuning the feature weights from user feedback. We have also used unsupervised machine learning techniques (random walk, manifold ranking) and augmented semantic and syntactic information to improve them. Finally we experimented with question decomposition where instead of trying to find the answer of the complex question directly, we decomposed the complex question into a set of simple questions and synthesized the answers to get our final result
    • ā€¦
    corecore