20 research outputs found

    Prediction with Expert Advice under Discounted Loss

    Full text link
    We study prediction with expert advice in the setting where the losses are accumulated with some discounting---the impact of old losses may gradually vanish. We generalize the Aggregating Algorithm and the Aggregating Algorithm for Regression to this case, propose a suitable new variant of exponential weights algorithm, and prove respective loss bounds.Comment: 26 pages; expanded (2 remarks -> theorems), some misprints correcte

    Competing with Markov prediction strategies

    Get PDF
    Assuming that the loss function is convex in the prediction, we construct a prediction strategy universal for the class of Markov prediction strategies, not necessarily continuous. Allowing randomization, we remove the requirement of convexity.Comment: 11 page

    Generalised Mixability, Constant Regret, and Bayesian Updating

    Full text link
    Mixability of a loss is known to characterise when constant regret bounds are achievable in games of prediction with expert advice through the use of Vovk's aggregating algorithm. We provide a new interpretation of mixability via convex analysis that highlights the role of the Kullback-Leibler divergence in its definition. This naturally generalises to what we call Φ\Phi-mixability where the Bregman divergence DΦD_\Phi replaces the KL divergence. We prove that losses that are Φ\Phi-mixable also enjoy constant regret bounds via a generalised aggregating algorithm that is similar to mirror descent.Comment: 12 page

    Competing with stationary prediction strategies

    Get PDF
    In this paper we introduce the class of stationary prediction strategies and construct a prediction algorithm that asymptotically performs as well as the best continuous stationary strategy. We make mild compactness assumptions but no stochastic assumptions about the environment. In particular, no assumption of stationarity is made about the environment, and the stationarity of the considered strategies only means that they do not depend explicitly on time; we argue that it is natural to consider only stationary strategies even for highly non-stationary environments.Comment: 20 page

    Generalized Mixability via Entropic Duality

    Full text link
    Mixability is a property of a loss which characterizes when fast convergence is possible in the game of prediction with expert advice. We show that a key property of mixability generalizes, and the exp and log operations present in the usual theory are not as special as one might have thought. In doing this we introduce a more general notion of Φ\Phi-mixability where Φ\Phi is a general entropy (\ie, any convex function on probabilities). We show how a property shared by the convex dual of any such entropy yields a natural algorithm (the minimizer of a regret bound) which, analogous to the classical aggregating algorithm, is guaranteed a constant regret when used with Φ\Phi-mixable losses. We characterize precisely which Φ\Phi have Φ\Phi-mixable losses and put forward a number of conjectures about the optimality and relationships between different choices of entropy.Comment: 20 pages, 1 figure. Supersedes the work in arXiv:1403.2433 [cs.LG

    Competitive on-line learning with a convex loss function

    Get PDF
    We consider the problem of sequential decision making under uncertainty in which the loss caused by a decision depends on the following binary observation. In competitive on-line learning, the goal is to design decision algorithms that are almost as good as the best decision rules in a wide benchmark class, without making any assumptions about the way the observations are generated. However, standard algorithms in this area can only deal with finite-dimensional (often countable) benchmark classes. In this paper we give similar results for decision rules ranging over an arbitrary reproducing kernel Hilbert space. For example, it is shown that for a wide class of loss functions (including the standard square, absolute, and log loss functions) the average loss of the master algorithm, over the first NN observations, does not exceed the average loss of the best decision rule with a bounded norm plus O(N−1/2)O(N^{-1/2}). Our proof technique is very different from the standard ones and is based on recent results about defensive forecasting. Given the probabilities produced by a defensive forecasting algorithm, which are known to be well calibrated and to have good resolution in the long run, we use the expected loss minimization principle to find a suitable decision.Comment: 26 page

    Prediction with expert advice for the Brier game

    Get PDF
    We show that the Brier game of prediction is mixable and find the optimal learning rate and substitution function for it. The resulting prediction algorithm is applied to predict results of football and tennis matches. The theoretical performance guarantee turns out to be rather tight on these data sets, especially in the case of the more extensive tennis data.Comment: 34 pages, 22 figures, 2 tables. The conference version (8 pages) is published in the ICML 2008 Proceeding

    From Stochastic Mixability to Fast Rates

    Get PDF
    Empirical risk minimization (ERM) is a fundamental algorithm for statistical learning problems where the data is generated according to some unknown distribution P and returns a hypothesis f chosen from a fixed class F with small loss `. In the parametric setting, depending upon (`,F,P) ERM can have slow (1/ n) or fast (1/n) rates of convergence of the excess risk as a function of the sample size n. There exist several results that give sufficient conditions for fast rates in terms of joint properties of `, F, and P, such as the margin condition and the Bernstein condition. In the non-statistical prediction with experts setting, there is an analogous slow and fast rate phenomenon, and it is entirely characterized in terms of the mixability of the loss ` (there being no role there for F or P). The notion of stochastic mixability builds a bridge between these two models of learning, reducing to classical mixability in a special case. The present paper presents a direct proof of fast rates for ERM in terms of stochastic mixability of (`,F,P), and in so doing provides new insight into the fast-rates phenomenon. The proof exploits an old result of Kemperman on the solution to the generalized moment problem. We also show a partial converse that suggests a characterization of fast rates for ERM in terms of stochastic mixability is possible.

    From Stochastic Mixability to Fast Rates

    Full text link
    Empirical risk minimization (ERM) is a fundamental learning rule for statistical learning problems where the data is generated according to some unknown distribution P\mathsf{P} and returns a hypothesis ff chosen from a fixed class F\mathcal{F} with small loss â„“\ell. In the parametric setting, depending upon (â„“,F,P)(\ell, \mathcal{F},\mathsf{P}) ERM can have slow (1/n)(1/\sqrt{n}) or fast (1/n)(1/n) rates of convergence of the excess risk as a function of the sample size nn. There exist several results that give sufficient conditions for fast rates in terms of joint properties of â„“\ell, F\mathcal{F}, and P\mathsf{P}, such as the margin condition and the Bernstein condition. In the non-statistical prediction with expert advice setting, there is an analogous slow and fast rate phenomenon, and it is entirely characterized in terms of the mixability of the loss â„“\ell (there being no role there for F\mathcal{F} or P\mathsf{P}). The notion of stochastic mixability builds a bridge between these two models of learning, reducing to classical mixability in a special case. The present paper presents a direct proof of fast rates for ERM in terms of stochastic mixability of (â„“,F,P)(\ell,\mathcal{F}, \mathsf{P}), and in so doing provides new insight into the fast-rates phenomenon. The proof exploits an old result of Kemperman on the solution to the general moment problem. We also show a partial converse that suggests a characterization of fast rates for ERM in terms of stochastic mixability is possible.Comment: 21 pages, accepted to NIPS 201
    corecore