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Abstract

Empirical risk minimization (ERM) is a fundamental learning rule for statistical
learning problems where the data is generated according to some unknown distri-
bution P and returns a hypothesis f chosen from a fixed class F with small loss `.
In the parametric setting, depending upon (`,F ,P) ERM can have slow (1/

√
n)

or fast (1/n) rates of convergence of the excess risk as a function of the sample
size n. There exist several results that give sufficient conditions for fast rates in
terms of joint properties of `,F , and P, such as the margin condition and the Bern-
stein condition. In the non-statistical prediction with expert advice setting, there
is an analogous slow and fast rate phenomenon, and it is entirely characterized in
terms of the mixability of the loss ` (there being no role there for F or P). The
notion of stochastic mixability builds a bridge between these two models of learn-
ing, reducing to classical mixability in a special case. The present paper presents
a direct proof of fast rates for ERM in terms of stochastic mixability of (`,F ,P),
and in so doing provides new insight into the fast-rates phenomenon. The proof
exploits an old result of Kemperman on the solution to the general moment prob-
lem. We also show a partial converse that suggests a characterization of fast rates
for ERM in terms of stochastic mixability is possible.

1 Introduction

Recent years have unveiled central contact points between the areas of statistical and online learning.
These include Abernethy et al.’s [1] unified Bregman-divergence based analysis of online convex
optimization and statistical learning, the online-to-batch conversion of the exponentially weighted
average forecaster (a special case of the aggregating algorithm for mixable losses) which yields the
progressive mixture rule as can be seen e.g. from the work of Audibert [2], and most recently Van
Erven et al.’s [21] injection of the concept of mixability into the statistical learning space in the form
of stochastic mixability. It is this last connection that will be our departure point for this work.

Mixability is a fundamental property of a loss that characterizes when constant regret is possible in
the online learning game of prediction with expert advice [23]. Stochastic mixability is a natural
adaptation of mixability to the statistical learning setting; in fact, in the special case where the func-
tion class consists of all possible functions from the input space to the prediction space, stochastic
mixability is equivalent to mixability [21]. Just as Vovk and coworkers (see e.g. [24, 8]) have devel-
oped a rich convex geometric understanding of mixability, stochastic mixability can be understood
as a sort of effective convexity.

In this work, we study the O(1/n)-fast rate phenomenon in statistical learning from the perspective
of stochastic mixability. Our motivation is that stochastic mixability might characterize fast rates in
statistical learning. As a first step, Theorem 5 herein establishes via a rather direct argument that
stochastic mixability implies an exact oracle inequality (i.e. with leading constant 1) with a fast rate
for finite function classes, and Theorem 7 extends this result to VC-type classes. This result can be
understood as a new chapter in an evolving narrative that started with Lee et al.’s [13] seminal paper
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showing fast rates for agnostic learning with squared loss over convex function classes, and that was
continued by Mendelson [18] who showed that fast rates are possible for p-losses (y, ŷ) 7→ |y− ŷ|p
over effectively convex function classes by passing through a Bernstein condition (defined in (12)).

We also show that when stochastic mixability does not hold in a certain sense (described in Sec-
tion 5), then the risk minimizer is not unique in a bad way. This is precisely the situation at the
heart of the works of Mendelson [18] and Mendelson and Williamson [19], which show that having
non-unique minimizers is symptomatic of bad geometry of the learning problem. In such situations,
there are certain targets (i.e. output conditional distributions) close to the original target under which
empirical risk minimization learns (ERM) at a slow rate, where the guilty target depends on the sam-
ple size and the target sequence approaches the original target asymptotically. Even the best known
upper bounds have constants that blow up in the case of non-unique minimizers. Thus, whereas
stochastic mixability implies fast rates, a sort of converse is also true, where learning is hard in a
“neighborhood” of statistical learning problems for which stochastic mixability does not hold. In
addition, since a stochastically mixable problem’s function class looks convex from the perspective
of risk minimization, and since when stochastic mixability fails the function class looks non-convex
from the same perspective (it has multiple well-separated minimizers), stochastic mixability char-
acterizes the effective convexity of the learning problem from the perspective of risk minimization.

Much of the recent work in obtaining faster learning rates in agnostic learning has taken place in set-
tings where a Bernstein condition holds, including results based on local Rademacher complexities
[3, 10]. The Bernstein condition appears to have first been used by Bartlett and Mendelson [4] in
their analysis of ERM; this condition is subtly different from the margin condition of Mammen and
Tsybakov [15, 20], which has been used to obtain fast rates for classification. Lecué [12] pinpoints
that the difference between the two conditions is that the margin condition applies to the excess loss
relative to the best predictor (not necessarily in the model class) whereas the Bernstein condition
applies to the excess loss relative to the best predictor in the model class. Our approach in this work
is complementary to the approaches of previous works, coming from a different assumption that
forms a bridge to the online learning setting. Yet this assumption is related; the Bernstein condition
implies stochastic mixability under a bounded losses assumption [21]. Further understanding the
connection between the Bernstein condition and stochastic mixability is an ongoing effort.

Contributions. The core contribution of this work is to show a new path to the Õ(1/n)-fast rate
in statistical learning. We are not aware of previous results that show fast rates from the stochastic
mixability assumption. Secondly, we establish intermediate learning rates that interpolate between
the fast and slow rate under a weaker notion of stochastic mixability. Finally, we show that in a
certain sense stochastic mixability characterizes the effective convexity of the statistical problem.

In the next section we formally define the statistical problem, review stochastic mixability, and
explain our high-level approach toward getting fast rates. This approach involves directly appealing
to the Cramér-Chernoff method, from which nearly all known concentration inequalities arose in one
way or another. In Section 3, we frame the problem of computing a particular moment of a certain
excess loss random variable as a general moment problem. We sufficiently bound the optimal value
of the moment, which allows for a direct application of the Cramér-Chernoff method. These results
easily imply a fast rates bound for finite classes that can be extended to parametric (VC-type) classes,
as shown in Section 4. We describe in Section 5 how stochastic mixability characterizes a certain
notion of convexity of the statistical learning problem. In Section 6, we extend the fast rates results to
classes that obey a notion we call weak stochastic mixability. Finally, Section 7 concludes this work
with connections to related topics in statistical learning theory and a discussion of open problems.

2 Stochastic mixability, Cramér-Chernoff, and ERM

Let (`,F ,P) be a statistical learning problem with ` : Y × R→ R+ a nonnegative loss, F ⊂ RX a
compact function class, and P a probability measure over X ×Y for input space X and output/target
space Y . Let Z be a random variable defined as Z = (X,Y ) ∼ P. We assume for all f ∈ F ,
`(Y, f(X)) ≤ V almost surely (a.s.) for some constant V .

A probability measure P operates on functions and loss-composed functions as:

P f = E(X,Y )∼P f(X) P `(·, f) = E(X,Y )∼P `
(
Y, f(X)

)
.
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Similarly, an empirical measure Pn associated with an n-sample z, comprising n iid samples
(x1, y1), . . . , (xn, yn), operates on functions and loss-composed functions as:

Pn f =
1

n

n∑
j=1

f(xj) Pn `(·, f) =
1

n

n∑
j=1

`
(
yj , f(xj)

)
.

Let f∗ be any function for which P `(·, f∗) = inff∈F P `(·, f). For each f ∈ F define the excess
risk random variable Zf := `

(
Y, f(X)

)
− `
(
Y, f∗(X)

)
.

We frequently work with the following two subclasses. For any ε > 0, define the subclasses
F�ε := {f ∈ F : PZf ≤ ε} F�ε := {f ∈ F : PZf ≥ ε} .

2.1 Stochastic mixability

For η > 0, we say that (`,F ,P) is η-stochastically mixable if for all f ∈ F
log E exp(−ηZf ) ≤ 0. (1)

If η-stochastic mixability holds for some η > 0, then we say that (`,F ,P) is stochastically mixable.
Throughout this paper it is assumed that the stochastic mixability condition holds, and we take η∗ to
be the largest η such that η-stochastic mixability holds. Condition (1) has a rich history, beginning
from the foundational thesis of Li [14] who studied the special case of η∗ = 1 in density estimation
with log loss from the perspective of information geometry. The connections that Li showed between
this condition and convexity were strengthened by Grünwald [6, 7] and Van Erven et al. [21].

2.2 Cramér-Chernoff

The high-level strategy taken here is to show that with high probability ERM will not select a fixed
hypothesis function f with excess risk above a

n for some constant a > 0. For each hypothesis, this
guarantee will flow from the Cramér-Chernoff method [5] by controlling the cumulant generating
function (CGF) of −Zf in a particular way to yield exponential concentration. This control will be
possible because the η∗-stochastic mixability condition implies that the CGF of−Zf takes the value
0 at some η ≥ η∗, a fact later exploited by our key tool Theorem 3.

Let Z be a real-valued random variable. Applying Markov’s inequality to an exponentially trans-
formed random variable yields that, for any η ≥ 0 and t ∈ R

Pr(Z ≥ t) ≤ exp(−ηt+ log E exp(ηZ)); (2)
the inequality is non-trivial only if t > EZ and η > 0.

2.3 Analysis of ERM

We consider the ERM estimator f̂z := arg minf∈F Pn `(·, f). That is, given an n-sample z, ERM
selects any f̂z ∈ F minimizing the empirical risk Pn `(·, f). We say ERM is ε-good when f̂z ∈ F�ε.
In order to show that ERM is ε-good it is sufficient to show that for all f ∈ F \ F�ε we have
PZf > 0. The goal is to show that with high probability ERM is ε-good, and we will do this by
showing that with high probability uniformly for all f ∈ F \ F�ε we have Pn Zf > t for some
slack t > 0 that will come in handy later.

For a real-valued random variable X , recall that the cumulant generating function of X is η 7→
ΛX(η) := log E eηX ; we allow ΛX(η) to be infinite for some η > 0.
Theorem 1 (Cramér-Chernoff Control on ERM). Let a > 0 and select f such that EZf > 0.
Let t < EZf . If there exists η > 0 such that Λ−Zf (η) ≤ − a

n , then

Pr
{

Pn `(·, f) ≤ Pn `(·, f∗) + t
}
≤ exp(−a+ ηt).

Proof. Let Zf,1, . . . , Zf,n be iid copies of Zf , and define the sum Sf,n :=
∑n
j=1−Zf,j . Since

(−t) > E 1
nSf,n, then from (2) we have

Pr

(
1

n

n∑
j=1

Zf,j ≤ t
)

= Pr

(
1

n
Sf,n ≥ −t

)
≤ exp (ηt+ log E exp(ηSf,n))

= exp(ηt)
(
E exp(−ηZf )

)n
.
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Making the replacement Λ−Zf (η) = log E exp(−ηZf ) yields

log Pr

(
1

n
Sf,n ≥ −t

)
≤ ηt+ nΛ−Zf (η).

By assumption, Λ−Zf (η) ≤ − a
n , and so Pr{Pn Zf ≤ t} ≤ exp(−a+ ηt) as desired.

This theorem will be applied by showing that for an excess loss random variable Zf taking values in
[−1, 1], if for some η > 0 we have E exp(−ηZf ) = 1 and if EZf = a

n for some constant a (that can
and must depend on n), then Λ−Zf (η/2) ≤ − cηan where c > 0 is a universal constant. This is the
nature of the next section. We then extend this result to random variables taking values in [−V, V ].

3 Semi-infinite linear programming and the general moment problem

The key subproblem now is to find, for each excess loss random variable Zf with mean a
n and

Λ−Zf (η) = 0 (for some η ≥ η∗), a pair of constants η0 > 0 and c > 0 for which Λ−Zf (η0) ≤ − can .
Theorem 1 would then imply that ERM will prefer f∗ over this particular f with high probability for
ca large enough. This subproblem is in fact an instance of the general moment problem, a problem
on which Kemperman [9] has conducted a very nice geometric study. We now describe this problem.

The general moment problem. Let P(A) be the space of probability measures over a measurable
space A = (A,S). For real-valued measurable functions h and (gj)j∈[m] on a measurable space
A = (A,S), the general moment problem is

inf
µ∈P(A)

EX∼µ h(X)

subject to EX∼µ gj(X) = yj , j ∈ {1, . . . ,m}.
(3)

Let the vector-valued map g : A → Rm be defined in terms of coordinate functions as (g(x))j =
gj(x), and let the vector y ∈ Rm be equal to (y1, . . . , ym).

Let D∗ ⊂ Rm+1 be the set

D∗ :=

{
d∗ = (d0, d1, . . . , dm) ∈ Rm+1 : h(x) ≥ d0 +

m∑
j=1

djgj(x) for all x ∈ A
}
. (4)

Theorem 3 of [9] states that if y ∈ int conv g(A), the optimal value of problem (3) equals

sup

{
d0 +

m∑
j=1

djyj : d∗ = (d0, d1, . . . , dm) ∈ D∗
}
. (5)

Our instantiation. We choose A = [−1, 1], set m = 2 and define h, (gj)j∈{1,2}, and y ∈ R2 as:

h(x) = −e(η/2)x, g1(x) = x, g2(x) = eηx, y1 = −a
n
, y2 = 1,

for any η > 0, a > 0, and n ∈ N. This yields the following instantiation of problem (3):

inf
µ∈P([−1,1])

EX∼µ−e(η/2)X (6a)

subject to EX∼µX = −a
n

(6b)

EX∼µ e
ηX = 1. (6c)

Note that equation (5) from the general moment problem now instantiates to

sup
{
d0 −

a

n
d1 + d2 : d∗ = (d0, d1, d2) ∈ D∗

}
, (7)

with D∗ equal to the set{
d∗ = (d0, d1, d2) ∈ R3 : −e(η/2)x ≥ d0 + d1x+ d2e

ηx for all x ∈ [−1, 1]
}
. (8)

Applying Theorem 3 of [9] requires the condition y ∈ int conv g([−1, 1]). We first characterize
when y ∈ conv g([−1, 1]) holds and handle the int conv g([−1, 1]) version after Theorem 3.

4



Lemma 2 (Feasible Moments). The point y =
(
− a
n , 1
)
∈ conv g([−1, 1]) if and only if

a

n
≤ eη + e−η − 2

eη − e−η
=

cosh(η)− 1

sinh(η)
. (9)

Proof. Let W denote the convex hull of g([−1, 1]). We need to see if
(
− a
n , 1
)
∈ W . Note that W

is the convex set formed by starting with the graph of x 7→ eηx on the domain [−1, 1], including the
line segment connecting this curve’s endpoints (−1, e−η) to (1, eηx), and including all of the points
below this line segment but above the aforementioned graph. That is, W is precisely the set

W :=

{
(x, y) ∈ R2 : eηx ≤ y ≤ eη + e−η

2
+
eη − e−η

2
x, ∀x ∈ [−1, 1]

}
.

It remains to check that 1 is sandwiched between the lower and upper bounds at x = − a
n . Clearly

the lower bound holds. Simple algebra shows that the upper bound is equivalent to condition (9).

Note that if (9) does not hold, then the semi-infinite linear program (6) is infeasible; infeasibility in
turn implies that such an excess loss random variable cannot exist. Thus, we need not worry about
whether (9) holds; it holds for any excess loss random variable satisfying constraints (6b) and (6c).

The following theorem is a key technical result for using stochastic mixability to control the CGF.
The proof is long and can be found in Appendix A.
Theorem 3 (Stochastic Mixability Concentration). Let f be an element of F with Zf taking val-
ues in [−1, 1], n ∈ N, EZf = a

n for some a > 0, and Λ−Zf (η) = 0 for some η > 0. If

a

n
<
eη + e−η − 2

eη − e−η
, (10)

then E e(η/2)(−Zf ) ≤ 1− 0.18(η ∧ 1)a

n
.

Note that since log(1− x) ≤ −x when x < 1, we have Λ−Zf (η/2) ≤ − 0.18(η ∧ 1)a
n .

In order to apply Theorem 3, we need (10) to hold, but only (9) is guaranteed to hold. The corner
case is if (9) holds with equality. However, observe that one can always approximate the random
variable X by a perturbed version X ′ which has nearly identical mean a′ ≈ a and a nearly identical
η′ ≈ η for which EX′∼µ′ e

η′X′ = 1, and yet the inequality in (9) is strict. Later, in the proof
of Theorem 5, for any random variable that required perturbation to satisfy the interior condition
(10), we implicitly apply the analysis to the perturbed version, show that ERM would not pick the
(slightly different) function corresponding to the perturbed version, and use the closeness of the two
functions to show that ERM also would not pick the original function.

We now present a necessary extension for the case of losses with range [0, V ], proved in Appendix A.
Lemma 4 (Bounded Losses). Let g1(x) = x and y2 = 1 be common settings for the following two
problems. The instantiation of problem (3) with A = [−V, V ], h(x) = −e(η/2)x, g2(x) = eηx,
and y1 = − a

n has the same optimal value as the instantiation of problem (3) with A = [−1, 1],
h(x) = −e(V η/2)x, g2(x) = e(V η)x, and y1 = −a/Vn .

4 Fast rates

We now show how the above results can be used to obtain an exact oracle inequality with a fast rate.
We first present a result for finite classes and then present a result for VC-type classes (classes with
logarithmic universal metric entropy).
Theorem 5 (Finite Classes Exact Oracle Inequality). Let (`,F ,P) be η∗-stochastically mixable,
where |F| = N , ` is a nonnegative loss, and supf∈F `

(
Y, f(X)

)
≤ V a.s. for a constant V . Then

for all n ≥ 1, with probability at least 1− δ

P `(·, f̂z) ≤ P `(·, f∗) +
6 max

{
V, 1

η∗

}(
log 1

δ + logN
)

n
.
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Proof. Let γn = a
n for a constant a to be fixed later. For each η > 0, let F (η)

�γn ⊂ F�γn correspond
to those functions in F�γn for which η is the largest constant such that E exp(−ηZf ) = 1. Let
Fhyper
�γn ⊂ F�γn correspond to functions f in F�γn for which limη→∞ E exp(−ηZf ) < 1. Clearly,

F�γn =
(⋃

η∈[η∗,∞) F
(η)
�γn

)
∪Fhyper
�γn . The excess loss random variables corresponding to elements

f ∈ Fhyper
�γn are “hyper-concentrated” in the sense that they are infinitely stochastically mixable.

However, Lemma 10 in Appendix B shows that for each hyper-concentrated Zf , there exists another
excess loss random variable Z ′f with mean arbitrarily close to that of Zf , with E exp(−ηZ ′f ) = 1 for
some arbitrarily large but finite η, and with Z ′f ≤ Zf with probability 1. The last property implies
that the empirical risk of Z ′f is no greater than that of Zf ; hence for each hyper-concentrated Zf it is
sufficient (from the perspective of ERM) to study a corresponding Z ′f . From now on, we implicitly

make this replacement in F�γn itself, so that we now have F�γn =
⋃
η∈[η∗,∞) F

(η)
�γn .

Consider an arbitrary a > 0. For some fixed η ∈ [η∗,∞) for which |F (η)
�γn | > 0, consider

the subclass F (η)
�γn . Individually for each such function, we will apply Theorem 1 as follows.

From Lemma 4, we have Λ−Zf (η/2) = Λ− 1
V Zf

(V η/2). From Theorem 3, the latter is at most

− 0.18(V η ∧ 1)(a/V )
n = − 0.18ηa

(V η ∨ 1)n . Hence, Theorem 1 with t = 0 and the η from the Theo-
rem taken to be η/2 implies that the probability of the event Pn `(·, f) ≤ Pn `(·, f∗) is at most
exp

(
−0.18 η

V η ∨ 1a
)

. Applying the union bound over all of F�γn , we conclude that

Pr {∃f ∈ F�γn : Pn `(·, f) ≤ Pn `(·, f∗)} ≤ N exp

(
−η∗

(
0.18a

V η∗ ∨ 1

))
.

Since ERM selects hypotheses on their empirical risk, from inversion it holds that with probability at

least 1− δ ERM will not select any hypothesis with excess risk at least
6 max{V, 1

η∗ }(log 1
δ+logN)

n .

Before presenting the result for VC-type classes, we require some definitions. For a pseudometric
space (G, d), for any ε > 0, let N (ε,G, d) be the ε-covering number of (G, d); that is, N (ε,G, d) is
the minimal number of balls of radius ε needed to cover G. We will further constrain the cover (the
set of centers of the balls) to be a subset of G (i.e. to be proper), thus ensuring that the stochastic
mixability assumption transfers to any (proper) cover of F . Note that the “proper” requirement at
most doubles the constant K below, as shown by Vidyasagar [22, Lemma 2.1].

We now state a localization-based result that allows us to extend the result for finite classes to VC-
type classes. Although the localization result can be obtained by combining standard techniques,1
we could not find this particular result in the literature. Below, an ε-net Fε of a set F is a subset of
F such that F is contained in the union of the balls of radius ε with centers in Fε.
Theorem 6. Let F be a separable function class whose functions have range bounded in [0, V ] and
for which, for a constant K ≥ 1, for each u ∈ (0,K] the L2(P) covering numbers are bounded as

N (u,F , L2(P)) ≤
(
K

u

)C
. (11)

Suppose Fε is a minimal ε-net for F in the L2(P) norm, with ε = 1
n . Denote by π : F → Fε an

L2(P)-metric projection from F to Fε. Then, provided that δ ≤ 1
2 , with probability at most δ can

there exist f ∈ F such that

Pn f < Pn(π(f))− V

n

(
1080C log(2Kn) + 90

√(
log

1

δ

)
C log(2Kn) + log

e

δ

)
.

The proof is presented in Appendix C. We now present the fast rates result for VC-type classes.
The proof (in Appendix C) uses Theorem 6 and the proof of the Theorem 5. Below, we denote the
loss-composed version of a function class F as ` ◦ F := {`(·, f) : f ∈ F}.

1See e.g. the techniques of Massart and Nédélec [16] and equation (3.17) of Koltchinskii [11].
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Theorem 7 (VC-Type Classes Exact Oracle Inequality). Let (`,F ,P) be η∗-stochastically mix-
able with ` ◦ F separable, where, for a constant K ≥ 1, for each ε ∈ (0,K] we have
N (` ◦ F , L2(P), ε) ≤

(
K
ε

)C
, and supf∈F `

(
Y, f(X)

)
≤ V a.s. for a constant V ≥ 1. Then

for all n ≥ 5 and δ ≤ 1
2 , with probability at least 1− δ

P `(·, f̂z) ≤ P `(·, f∗) +
1

n
max

 8max
{
V, 1

η∗

}(
C log(Kn) + log 2

δ

)
,

2V
(
1080C log(2Kn) + 90

√(
log 2

δ

)
C log(2Kn) + log 2e

δ

)
+

1

n
.

5 Characterizing convexity from the perspective of risk minimization

In the following, when we say (`,F ,P) has a unique minimizer we mean that any two minimizers
f∗1 , f

∗
2 of P `(·, f) over F satisfy `

(
Y, f∗1 (X)

)
= `

(
Y, f∗2 (X)

)
a.s. We say the excess loss class

{`(·, f)− `(·, f∗) : f ∈ F} satisfies a (β,B)-Bernstein condition with respect to P for some B > 0
and 0 < β ≤ 1 if, for all f ∈ F :

P
(
`(·, f)− `(·, f∗)

)2 ≤ B (P(`(·, f)− `(·, f∗)
))β

. (12)

It already is known that the stochastic mixability condition guarantees that there is a unique min-
imizer [21]; this is a simple consequence of Jensen’s inequality. This leaves open the question: if
stochastic mixability does not hold, are there necessarily non-unique minimizers? We show that in
a certain sense this is indeed the case, in bad way: the set of minimizers will be a disconnected set.

For any ε > 0, define Gε as the class Gε := {f∗} ∪
{
f ∈ F : ‖f − f∗‖L1(P) ≥ ε

}
, where in case

there are multiple minimizers in F we arbitrarily select one of them as f∗. Since we assume that F
is compact and Gε \ {f∗} is equal to F minus an open set homeomorphic to the unit L1(P) ball,
Gε \ {f∗} is also compact.
Theorem 8 (Non-Unique Minimizers). Suppose there exists some ε > 0 such that Gε is not
stochastically mixable. Then there are minimizers f∗1 , f

∗
2 ∈ F of P `(·, f) over F such that it is

not the case that `
(
Y, f∗1 (X)

)
= `
(
Y, f∗2 (X)

)
a.s.

Proof. Select ε > 0 as in the theorem and some fixed η > 0. Since Gε is not η-stochastically
mixable, there exists fη ∈ Gε such that Λ−Zfη (η) > 0. Note that there exists η′ ∈ (0, η) with

Λ−Zfη (η′) = 0; if not, limη↓0
Λ−Zfη

(η)−Λ−Zfη (0)

η > 0⇒ Λ′−Zfη (0) > 0, so Λ′−Zfη (0) = E(−Zfη )

implies that EZfη < 0, a contradiction! From Lemma 2, EZfη ≤
cosh(η′)−1

sinh(η′) ; for η′ ≥ 0 the RHS

has upper bound η′

2 since the derivative of η
′

2 −
cosh(η′)−1

sinh(η′) is the nonnegative function 1
2 tanh2(η′/2)

and
(
η′

2 −
cosh(η′)−1

sinh(η′)

)
|η′=0 = 0. Thus, EZfη → 0 as η → 0. As Gε \{f∗} is compact, we can take

a positive decreasing sequence (ηj)j approaching 0, corresponding to a sequence (fηj )j ⊂ Gε\{f∗}
with limit point g∗ ∈ Gε \{f∗} for which EZg∗ = 0, and so there is a risk minimizer in Gε \{f∗}.

The implications of having non-unique risk minimizers. In the case of non-unique risk mini-
mizers, Mendelson [17] showed that for p-losses (y, ŷ) 7→ |y − ŷ|p with p ∈ [2,∞) there is an
n-indexed sequence of probability measures (P(n))n approaching the true probability measure as
n → ∞ such that, for each n, ERM learns at a slow rate under sample size n when the true distri-
bution is P(n). This behavior is a consequence of the statistical learning problem’s poor geometry:
there are multiple minimizers and the set of minimizers is not even connected. Furthermore, in this
case, the best known fast rate upper bounds (see [18] and [19]) have a multiplicative constant that
approaches ∞ as the target probability measure approaches a probability measure for which there
are non-unique minimizers. The reason for the poor upper bounds in this case is that the constant B
in the Bernstein condition explodes, and the upper bounds rely upon the Bernstein condition.

6 Weak stochastic mixability

For some κ ∈ [0, 1], we say (`,F ,P) is (κ, η0)-weakly stochastically mixable if, for every ε > 0, for
all f ∈ {f∗} ∪ F�ε, the inequality log E exp(−ηεZf ) ≤ 0 holds with ηε := η0ε

1−κ. This concept
was introduced by Van Erven et al. [21] without a name.
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Suppose that some fixed function has excess risk a = ε. Then, roughly, with high probability
ERM does not make a mistake provided that aηa = 1

n , i.e. when ε · η0ε
1−κ = 1

n and hence when
ε = (η0n)−1/(2−κ). Modifying the proof of the finite classes result (Theorem 5) to consider all
functions in the subclassF�γn for γn = (η0n)−1/(2−κ) yields the following corollary of Theorem 5.

Corollary 9. Let (`,F ,P) be (κ, η0)-weakly stochastically mixable for some κ ∈ [0, 1], where
|F| = N , ` is a nonnegative loss, and supf∈F `

(
Y, f(X)

)
≤ V a.s. for a constant V . Then for any

n ≥ 1
η0
V (1−κ)/(2−κ), with probability at least 1− δ

P `(·, f̂z) ≤ P `(·, f∗) +
6
(
log 1

δ + logN
)

(η0n)1/(2−κ)
.

It is simple to show a similar result for VC-type classes; the ε-net can still be taken at the resolution
1
n , but we need only apply the analysis to the subclass of F with excess risk at least (η0n)−1/(2−κ).

7 Discussion

We have shown that stochastic mixability implies fast rates for VC-type classes, using a direct argu-
ment based on the Cramér-Chernoff method and sufficient control of the optimal value of a certain
instance of the general moment problem. The approach is amenable to localization in that the analy-
sis separately controls the probability of large deviations for individual elements of F . An important
open problem is to extend the results presented here for VC-type classes to results for nonparametric
classes with polynomial metric entropy, and moreover, to achieve rates similar to those obtained for
these classes under the Bernstein condition.

There are still some unanswered questions with regards to the connection between the Bernstein
condition and stochastic mixability. Van Erven et al. [21] showed that for bounded losses the Bern-
stein condition implies stochastic mixability. Therefore, when starting from a Bernstein condition,
Theorem 5 offers a different path to fast rates. An open problem is to settle the question of whether
the Bernstein condition and stochastic mixability are equivalent. Previous results [21] suggest that
the stochastic mixability does imply a Bernstein condition, but the proof was non-constructive, and
it relied upon a bounded losses assumption. It is well known (and easy to see) that both stochastic
mixability and the Bernstein condition hold only if there is a unique minimizer. Theorem 8 shows in
a certain sense that if stochastic mixability does not hold, then there cannot be a unique minimizer.
Is the same true when the Bernstein condition fails to hold? Regardless of whether stochastic mixa-
bility is equivalent to the Bernstein condition, the direct argument presented here and the connection
to classical mixability, which does characterize constant regret in the simpler non-stochastic setting,
motivates further study of stochastic mixability.

Finally, it would be of great interest to discard the bounded losses assumption. Ignoring the depen-
dence of the metric entropy on the maximum possible loss, the upper bound on the loss V enters the
final bound through the difficulty of controlling the minimum value of uη(−1) when η is large (see
the proof of Theorem 3). From extensive experiments with a grid-approximation linear program,
we have observed that the worst (CGF-wise) random variables for fixed negative mean and fixed
optimal stochastic mixability constant are those which place very little probability mass at −V and
most of the probability mass at a small positive number that scales with the mean. These random
variables correspond to functions that with low probability beat f∗ by a large (loss) margin but with
high probability have slightly higher loss than f∗. It would be useful to understand if this exotic
behavior is a real concern and, if not, find a simple, mild condition on the moments that rules it out.

Acknowledgments

RCW thanks Tim van Erven for the initial discussions around the Cramér-Chernoff method during
his visit to Canberra in 2013 and for his gracious permission to proceed with the present paper
without him as an author, and both authors thank him for the further enormously helpful spotting
of a serious error in our original proof for fast rates for VC-type classes. This work was supported
by the Australian Research Council (NAM and RCW) and NICTA (RCW). NICTA is funded by the
Australian Government through the Department of Communications and the Australian Research
Council through the ICT Centre of Excellence program.

8



References

[1] Jacob Abernethy, Alekh Agarwal, Peter L. Bartlett, and Alexander Rakhlin. A stochastic view of optimal
regret through minimax duality. In Proceedings of the 22nd Annual Conference on Learning Theory
(COLT 2009), 2009.

[2] Jean-Yves Audibert. Fast learning rates in statistical inference through aggregation. The Annals of Statis-
tics, 37(4):1591–1646, 2009.

[3] Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local Rademacher complexities. The Annals
of Statistics, 33(4):1497–1537, 2005.

[4] Peter L. Bartlett and Shahar Mendelson. Empirical minimization. Probability Theory and Related Fields,
135(3):311–334, 2006.
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[12] Guillaume Lecué. Interplay between concentration, complexity and geometry in learning theory with
applications to high dimensional data analysis. Habilitation à diriger des recherches, Université Paris-
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