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Abstract. Interval prediction often provides more useful information compared
to a simple point forecast. For example, in renewable energy forecasting, while
the initial focus has been on deterministic predictions, the uncertainty observed
in energy generation raises an interest in producing probabilistic forecasts. One
aims to provide prediction intervals so that outcomes lie in the interval with a
given probability. Therefore, the problem of estimating the quantiles of a vari-
able arises. The contribution of our paper is two-fold. First, we propose to apply
the framework of prediction with expert advice for the prediction of quantiles.
Second, we propose a new competitive online algorithm Weak Aggregating Al-
gorithm for Quantile Regression (WAAQR) and prove a theoretical bound on
the cumulative loss of the proposed strategy. The theoretical bound ensures that
WAAQR is asymptotically as good as any quantile regression. In addition, we
provide an empirical survey where we apply both methods to the problem of
probability forecasting of wind and solar powers and show that they provide good
results compared to other predictive models.

Keywords: prediction with expert advice · online learning · sequential prediction
·Weak Aggregating Algorithm · quantile regression · probabilistic forecasting.

1 Introduction

Probabilistic forecasting attracts an increasing attention in sports, finance, weather and
energy fields. While an initial focus has been on deterministic forecasting, probabilistic
prediction provides a more useful information which is essential for optimal planning
and management in these fields. Probabilistic forecasts serve to quantify the uncertainty
in a prediction, and they are an essential ingredient of optimal decision making ([4]).
An overview of the state of the art methods and scoring rules in probabilistic forecasting
can be found in [4]. Quantile regression is one of the methods which models a quantile
of the response variable conditional on the explanatory variables ([6]).

Due to its ability to provide interval predictions, quantile regression found its niche
in the renewable energy forecasting area. Wind power is one of the fastest growing re-
newable energy sources ([3]). As there is no efficient way to store wind power, produc-
ing accurate wind power forecasts are essential for reliable operation of wind turbines.
Due to the uncertainty in wind power generation, there have been studies for improv-
ing the reliability of power forecasts to ensure the balance between supply and demand
at electricity market. Quantile regression has been extensively used to produce wind
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power quantile forecasts, using a variety of explanatory variables such as wind speed,
temperature and atmospheric pressure ([7]).

The Global Energy Forecasting Competition 2014 showed that combining predic-
tions of several regressors can produce better results compared to a single model. It is
shown in [9] that a voted ensemble of several quantile predictors could produce good
results in probabilistic solar and wind power forecasting. In [1] the analogue ensem-
ble technique is applied for prediction of solar power which slightly outperforms the
quantile regression model.

In this paper we apply a different approach to combine predictions of several models
based on the method of online prediction with expert advice. Contrary to batch mode,
where the algorithm is trained on training set and gives predictions on test set, in online
setting we learn as soon as new observations become available. One may wonder why
not to use predictions of only one best expert from the beginning and ignore predictions
of others. First, sometimes we cannot have enough data to identify the best expert from
the start. Second, good performance in the past does not necessary lead to a good per-
formance in the future. In addition, previous research shows that combining predictions
of multiple regressors often produce better results compared to a single model ([11]).

We consider the adversarial setting, where no stochastic assumptions are made
about the data generating process. Our approach is based on Weak Aggregating Algo-
rithm (WAA) which was first introduced in [5]. The WAA works as follows: we assign
initial weights to experts and at each step the weights of experts are updated accord-
ing to their performance. The approach is similar to the Bayesian method, where the
prediction is the average over all models based on the likelihood of the available data.
The WAA gives a guarantee ensuring that the learner’s loss is as small as best expert’s
loss up to an additive term of the form C

√
T , where T is the number of steps and C is

some constant. It is possible to apply WAA to combine predictions of an infinite pool
of experts. In [8] WAA was applied to the multi-period, distribution-free perishable
inventory problem, and it was shown that the asymptotic average performance of the
proposed method was as good as any time-dependent stocking rule up to an additive
term of the form C

√
T lnT .

The WAA was proposed as an alternative to the Aggregating Algorithm (AA),
which was first introduced in [12]. The AA gives a guarantee ensuring that the learner’s
loss is as small as best expert’s loss up to a constant in case of finitely many experts.
The AA provides better theoretical guarantees, however it works with mixable loss
functions, and it is not applicable in our task. An interesting application of the method
of prediction with expert advice for the Brier loss function in forecasting of football
outcomes can be found in [14]; it was shown that the proposed strategy that follows
AA is as good as any bookmaker. Aggregating Algorithm for Regression (AAR) which
competes with any expert from an infinite pool of linear regressions under the square
loss was proposed in [13].

The contribution of our paper is two-fold. First, as a proof of concept, we apply
WAA to a finite pool of experts to show that this method is applicable for this prob-
lem. As our experts we pick several models that provide quantile forecasts and then
combine their predictions using WAA. To the best of our knowledge prediction with
expert advice was not applied before for the prediction of quantiles. Second, we pro-
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pose a new competitive online algorithm Weak Aggregating Algorithm for Quantile
Regression (WAAQR), which is as good as any quantile regression up to an additive
term of the form C

√
T lnT . For this purpose, we apply WAA to an infinite pool of

quantile regressions. While the bound for the finite case can be straightforwardly ap-
plied to finite or countable sets of experts, every case of a continuous pool needs to
be dealt with separately. We listed above a few results for different specific pools of
experts, however there is no generic procedure for deriving a theoretical bound for the
cumulative loss of the algorithm. WAAQR can be implemented by using Markov chain
Monte Carlo (MCMC) method in a way which is similar to the algorithm introduced
in [15], where AAR was applied to generalised linear regression class of function for
making a prediction in a fixed interval. We derive a theoretical bound on the cumulative
loss of our algorithm which is approximate (in the number of MCMC steps). MCMC is
only a method for evaluating the integral and it can be replaced by a different numer-
ical method. Theoretical convergence of the Metropolis-Hastings method in this case
follows from Theorems 1 and 3 in [10]. Estimating the convergence speed is more dif-
ficult. With the experiments provided we show that by tuning parameters online, our
algorithm moves fast to the area of high values of the probability function and gives a
good approximation of the prediction.

We apply both methods to the problem of probabilistic forecasting of wind and solar
power. Experimental results show a good performance of both methods. WAA applied
to a finite set of models performs close or better than the retrospectively best model,
whereas WAAQR outperforms the best quantile regression model that was trained on
the historical data.

2 Framework

In the framework of prediction with expert advice we need to specify a game which
contains three components: a space of outcomes Ω, a decision space Γ , and a loss
function λ : Ω × Γ → R. We consider a game with the space of outcomes Ω = [A,B]
and decision space Γ = R, and as a loss function we take the pinball loss for q ∈ (0, 1)

λ(y, γ) =

{
q(y − γ), if y ≥ γ
(1− q)(γ − y), if y < γ

. (1)

This loss function is appropriate for quantile regression because on average it is
minimized by the q-th quantile. Namely, if Y is a real-valued random variable with a
cumulative distribution function FY (x) = Pr(Y ≤ x), then the expectation Eλ(Y, γ)
is minimized by γ = inf{x : FY (x) ≥ q} (see Section 1.3 in [6] for a discussion).

In many tasks predicted outcomes are bounded. For example, wind and solar power
cannot reach infinity. Therefore, it is possible to have a sensible estimate for the out-
come space Ω based on the historical information.

Learner works according to the following protocol:

Protocol 1

for t = 1, 2, . . .
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nature announces signal xt ⊆ Rn
learner outputs prediction γt ∈ Γ
nature announces outcome yt ∈ Ω
learner suffers loss λ(yt, γt)

end for

The cumulative loss of the learner at the step T is:

LT :=
∑

t=1,...,T :
yt<γt

(1− q)|yt − γt|+
∑

t=1,...,T :
yt>γt

q|yt − γt|. (2)

We want to find a strategy which is capable of competing in terms of cumulative
loss with all prediction strategies Eθ, θ ∈ Rn (called experts) from a given pool, which
output ξt(θ) at step t. In a finite case we denote experts Ei, i = 1, . . . , N .

Let us denote LθT the cumulative loss of expert Eθ at the step T :

LθT :=
∑

t=1,...,T :
yt<ξt(θ)

(1− q)|yt − ξt(θ)|+
∑

t=1,...,T :
yt>ξt(θ)

q|yt − ξt(θ)|. (3)

3 Weak Aggregating Algorithm

In the framework of prediction with expert advice we have access to experts’ predictions
at each time step and the learner has to make a prediction based on experts’ past per-
formance. We use an approach based on the WAA since a pinball loss function λ(y, γ)
is convex in γ. The WAA maintains experts’ weights Pt(dθ), t = 1, . . . , T . After each
step t the WAA updates the weights of the experts according to their losses:

Pt(dθ) = exp

(
−
cLθt−1√

t

)
P0(dθ), (4)

where P0(dθ) is the initial weights of experts and c is a positive parameter.
Experts that suffer large losses will have smaller weights and less influence on futher

predictions.
The prediction of WAA is a weighted average of the experts’ predictions:

γt =

∫
Θ

ξt(θ)P
∗
t−1(dθ), (5)

where P ∗t−1(dθ) are normalized weights:

P ∗t−1(dθ) =
Pt−1(dθ)

Pt−1(Θ)
,

where Θ is a parameter space, i.e. θ ∈ Θ.
In a finite case, an integral in (5) is replaced by a weighted sum of experts’ predic-

tions ξt(i), i = 1, . . . , N .
In particular, when there are finitely many experts Ei, i = 1, . . . , N for bounded

games the following lemma holds.
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Lemma 1. (Lemma 11 in [5]) For every L > 0, every game 〈Ω,Γ, λ〉 such that
|Ω| < +∞ with λ(y, γ) ≤ L for all y ∈ Ω and γ ∈ Γ and every N = 1, 2, . . .
for every merging strategy for N experts that follows the WAA with initial weights
p1, p2, . . . , pN ∈ [0, 1] such that

∑N
i=1 pi = 1 and c > 0 the bound

LT ≤ LiT +
√
T

(
1

c
ln

1

pi
+ cL2

)
,

is guaranteed for every T = 1, 2, . . . and every i = 1, 2, . . . , N.

After taking equal initial weights p1 = p2 = · · · = pN = 1/N in the WAA, the
additive term reduces to (cL2 + (lnN)/c)

√
T . When c =

√
lnN/L, this expression

reaches its minimum. The following corollary shows that the WAA allows us to obtain
additive terms of the form C

√
T .

Corollary 1. (Corollary 14 in [5]) Under the conditions of Lemma 1, there is a merg-
ing strategy such that the bound

LT ≤ LiT + 2L
√
T lnN

is guaranteed.

Applying Lemma 1 for an infinite number of experts and taking a positive constant
c = 1, we get the following Lemma.

Lemma 2. (Lemma 2 in [8]) Let λ(y, γ) ≤ L for all y ∈ Ω and γ ∈ Γ . The WAA
guarantees that, for all T

LT ≤
√
T

(
− ln

∫
Θ

exp

(
− L

θ
T√
T

)
P0(dθ) + L2

)
.

4 Theoretical bounds for WAAQR

In this section we formulate the theoretical bounds of our algorithm.
We want to find a strategy which is capable of competing in terms of cumulative

loss with all prediction strategies Eθ, θ ∈ Θ = Rn, which at step t output:

ξt(θ) = x′tθ, (6)

where xt is a signal at time t. The cumulative loss of expert Eθ is defined in (3).

Theorem 1 Let a > 0, y ∈ Ω = [A,B] and γ ∈ Γ . There exists a prediction strategy
for Learner such that for every positive integer T , every sequence of outcomes of length
T , and every θ ∈ Rn with initial distribution of parameters

P0(dθ) =
(a
2

)n
e−a‖θ‖1dθ, (7)

the cumulative loss LT of Learner satisfies

LT ≤ LθT +
√
Ta‖θ‖1 +

√
T

(
n ln

(
1 +

√
T

a
max

t=1,...,T
‖xt‖∞

)
+ (B −A)2

)
.
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The theorem states that the algorithm predicts as well as the best quantile regression,
defined in (6), up to an additive regret of the order

√
T lnT . The choice of the regu-

larisation parameter a is important as it affects the behaviour of the theoretical bound
of our algorithm. Large parameters of regularisation increase the bound by an additive
term

√
Ta‖θ‖1, however the regret term has a smaller growth rate as time increases.

As the maximum time T is usually not known in advance, the regularisation parameter
a cannot be optimised, and its choice depends on the particular task. We discuss the
choice of the parameter a in Section 6.2.

Proof. We consider that outcomes come from the interval [A,B], and it is known in
advance. Let us define the truncated expert Ẽθ which at step t outputs:

ξ̃t(θ) =


A, if x′tθ < A

x′tθ, if A ≤ x′tθ ≤ B
B, if x′tθ > B

. (8)

Let us denote L̃θT the cumulative loss of expert Ẽθ at the step T :

L̃θT :=

T∑
t=1

λ(yt, ξ̃t(θ)). (9)

We apply WAA for truncated experts Ẽθ. As experts Ẽθ output predictions inside the
interval [A,B], and predictions of WAA is a weighted average of experts’ predictions
(5), then each γt lies in the interval [A,B].

We can bound the maximum loss at each time step:

L := max
y∈[A,B], γ∈[A,B]

λ(y, γ) ≤ (B −A)max(q, 1− q) ≤ B −A. (10)

Applying Lemma 2 for initial distribution (7) and putting the bound on the loss in
(10) we obtain:

LT ≤
√
T

(
− ln

((a
2

)n ∫
Rn

e−J̃(θ)dθ

)
+ (B −A)2

)
, (11)

where

J̃(θ) :=
L̃θT√
T

+ a‖θ‖1. (12)

For all θ, θ0 ∈ Rn we have:∑
t=1,...,T :
yt<x

′
tθ

|x′tθ − yt| ≤
∑

t=1,...,T :
yt<x

′
tθ

|x′tθ0 − yt|+
∑

t=1,...,T :
yt<x

′
tθ

|x′tθ − x′tθ0|

≤
∑

t=1,...,T :
yt<x

′
tθ

|x′tθ0 − yt|+
∑

t=1,...,T :
yt<x

′
tθ

max
t=1,...,T

‖xt‖∞‖θ − θ0‖1

≤
∑

t=1,...,T :
yt<x

′
tθ

|x′tθ0 − yt|+ T max
t=1,...,T

‖xt‖∞‖θ − θ0‖1. (13)
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Analogously, we have:∑
t=1,...,T :
yt>x

′
tθ

|x′tθ − yt| ≤
∑

t=1,...,T :
yt>x

′
tθ

|x′tθ0 − yt|+ T max
t=1,...,T

‖xt‖∞‖θ − θ0‖1. (14)

By multiplying inequality (13) by (1− q), inequality (14) by q and summing them,
we have:

LθT ≤ L
θ0
T + T max

t=1,...,T
‖xt‖∞‖θ − θ0‖1. (15)

The cumulative loss of truncated expert Ẽθ cannot exceed the cumulative loss of
non-truncated expert Eθ for all θ ∈ Rn:

L̃θT ≤ LθT .

By dividing (15) by
√
T and adding a‖θ‖1 to both parts, we have:

J̃(θ) ≤ J(θ) ≤ J(θ0) +
√
T max
t=1,...,T

‖xt‖∞‖θ − θ0‖1 + a(‖θ‖1 − ‖θ0‖1)

≤ J(θ0) + (
√
T max
t=1,...,T

‖xt‖∞ + a)‖θ − θ0‖1,

where

J(θ) :=
LθT√
T

+ a‖θ‖1.

Let us denote bT =
√
T maxt=1,...,T ‖xt‖∞ + a. We evaluate the integral:∫

Rn

e−J̃(θ)dθ ≥
∫
Rn

e−(J(θ0)+bT ‖θ−θ0‖1)dθ

= e−J(θ0)
∫
R
. . .

∫
R
e−bT

∑n
i=1 |θi−θi,0|dθi

= e−J(θ0)
∫
R
. . .

∫
R

n∏
i=1

e−bT |θi−θi,0|dθi

= e−J(θ0)
n∏
i=1

∫
R
e−bT |θi−θi,0|dθi = e−J(θ0)

(
2

bT

)n
.

By putting this expression in (11) we obtain the theoretical bound.

Note that even though we apply WAA for truncated experts (8), we achieve the
theoretical bound for prediction strategy that competes with a class of experts (6).

5 Prediction Strategy

A prediction of WAA (5) can be re-written as follows:

γT =

∫
Θ

ξ̃T (θ)w
∗
T−1(θ)dθ, (16)
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where

w∗T (θ) = ZwT (θ) = Z exp
(
− 1√

T

( ∑
t=1,...,T :

yt<ξ̃t(θ)

(1− q)|yt − ξ̃t(θ)|

+
∑

t=1,...,T :

yt>ξ̃t(θ)

q|yt − ξ̃t(θ)|
)
− a‖θ‖1

)
. (17)

and Z is the normalising constant ensuring that
∫
Θ
w∗T (θ)dθ = 1.

Integral (16) is a Bayesian mixture, where function ξT (θ) needs to be integrated
with respect to the normalized distribution w∗T (θ). It is possible to avoid the calculation
of normalising constant Z as it is a computationally inefficient operation, and integrate
function ξT (θ) from the unnormalized distribution wT (θ). In order to calculate the in-
tegral (16), it is possible to use MCMC algorithms. A good introduction of MCMC for
Machine Learning is in [2].

We will use Metropolis-Hastings algorithm for sampling parameters θ from the
posterior distribution P . As a proposal distribution we choose Gaussian distribution
N (0, σ2) with some chosen parameter σ. We start with some initial parameter θ0 and
at each step m we update:

θm = θm−1 +N (0, σ2), m = 1, . . . ,M,

where M is a maximum number of iterations in MCMC method.
The update parameter θm at stepm is accepted with probability min

(
1, fP(θ

m)
fP(θm−1)

)
,

where fP(θ) is the density function for the distribution P at point θ. At each step by
accepting and rejecting the updates of parameters θ we move closer to the maximum of
the density function. At the beginning it is common to use a ‘burn-in’ stage when the
integral is not calculated till we will reach the area of high values of the density function
fP . Thus, we perform integration only from the area with high density of P . Some
values of θ are accepted even when the calculated probability is less than 1, it allows
the algorithm to move away from local minimum of the density function. Because we
are interested only in the ratio of density functions of generated parameters, we can
generate new parameters θ from the unnormalized posterior distribution wT (θ) and
avoid the weights normalization at each step which is more computationally efficient.

At time t = 0 the algorithm starts with the initial estimate of the parameters θ0 = 0.
At each iteration t > 0 we start with parameter θMt−1 calculated at the previous step
t− 1. It allows the algorithm to converge faster to the correct location of the main mass
of the distribution.

WAAQR

Parameters: number M > 0 of MCMC iterations,
standard deviation σ > 0,
regularization coefficient a > 0

initialize θM0 := 0 ∈ Rn
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define w0(θ) := exp(−a‖θ‖1)
for t = 1, 2, . . . do

γt := 0
define wt(θ) by (17)
read xt ∈ Rn
initialize θ0t = θMt−1
for m = 1, 2, . . . ,M do

θ∗ := θm−1t +N (0, σ2I)
flip a coin with success probability

min
(
1, wt−1(θ

∗)/wt−1(θ
m−1
t )

)
if success then

θmt := θ∗

else
θmt := θmt−1

end if
γt := γt + ξ̃t(θ

m
t )

end for
output predictions γt = γt/M

end for

6 Experiments

In this section we apply WAA and WAAQR for prediction of wind and solar power
and compare their performance with other predictive models. The data set is down-
loaded from Open Power System Data which provides free and open data platform for
power system modelling. The platform contains hourly measurements of geographi-
cally aggregated weather data across Europe and time-series of wind and solar power.
Our training data are measurements in Austria from January to December 2015, test set
contains data from January to July 2016. 3

6.1 WAA

We apply WAA for three models: Quantile Regression (QR), Quantile Random Forests
(QRF), Gradient Boosting Decision Trees (GBDT). These models were used in GEF-
Com 2014 energy forecasting competition on the final leaderboard ([9]). In this paper
the authors argue that using multiple regressors is often better than using only one,
and therefore combine multiple model outputs. They noted that voting was found to be
particularly useful for averaging the quantile forecasts of different models.

We propose an alternative approach to combine different models’ predictions by
using WAA. We work according to Protocol 1: at each step t before seeing outcome yt,
we output our prediction γt according to (5). After observing outcome yt, we update
experts’ weights according to (4).

3 The code written in R is available at https://github.com/RaisaDZ/Quantile-Regression.
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To build models for wind power forecasting we use wind speed and temperature
as explanatory variables. These variables have been extensively used to produce wind
power quantile forecasts ([7]). We train three models QR, QRF and GBDT on training
data set, and then apply WAA using forecasts of these models on test data set. We start
with equal inital weights of each model and then update their weights according to their
current performance. We estimate the constant of WAA c = 0.01 using information
about maximum losses on training set.

Figure 1 shows weights of each model for different quantiles depending on the cur-
rent time step. We can see from the graph that for most of quantiles GBDT obtains the
largest weights which indicates that it suffers smaller losses compared to other models.
However, it changes for q = 0.95, where the largest weights are acquired by QR. It
shows that sometimes we can not use the past information to evaluate the best model.
The retrospectively best model can perform worse in the future as an underlying na-
ture of data generating can change. In addition, different models can perform better on
different quantiles.

Table 1 illustrates total losses of QR, QRF, GBDT, WAA and Average methods,
where Average is a simple average of QR, QRF and GBDT. For the prediction of wind
power, for q = 0.25 and q = 0.50 the total loss of WAA is slightly higher than the total
loss of GBDT, whereas for q = 0.75 and q = 0.95 WAA has the smallest loss. In most
cases, WAA outperforms Average method.

We perform similar experiments for prediction of solar power. We choose measure-
ments of direct and diffuse radiations to be our explanatory variables. In a similar way,
QR, QRF and GBDT are trained on training set, and WAA is applied on test data. Figure
2 illustrates weights of models depending on the current step. Opposite to the previous
experiments, GBDT has smaller weights compared to other models for q = 0.25 and
q = 0.50. However, for q = 0.75 and q = 0.95 weights of experts become very close
to each other. Therefore, predictions of WAA should become close to Average method.
Table 1 shows total losses of the methods. For q = 0.25 and q = 0.5 both QR and QRF
have small losses compared to GBDT, and WAA follows their predictions. However,
for q = 0.75 and q = 0.95 it is not clear which model performs better, and predictions
of WAA almost coincide with Average method. It again illustrates that the retrospec-
tively best model could change with time, and one should be cautious about choosing
the single retrospectively best model for future forecasts.

Table 1. Total losses (×103)

wind
q QRF GBDT QR Average WAA

0.25 538.5 491.2 516.6 500.3 493.0
0.5 757.0 707.5 730.7 714.0 709.0
0.75 668.3 610.7 633.9 616.6 610.1
0.95 270.5 222.1 217.5 216.0 211.0

solar
q QRF GBDT QR Average WAA

0.25 48.6 98.3 53.1 63.8 50.1
0.5 70.5 110.7 68.8 79.1 69.2

0.75 63.5 67.6 59.3 58.7 58.0
0.95 29.2 26.1 23.2 21.0 20.8
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Fig. 1. Weights update for wind power

6.2 WAAQR

In this section we demonstrate the performance of our algorithm for prediction of wind
power and compare it with quantile regression model. We train QR on training data
set, and apply WAAQR on test set. First, we use training set to choose the parameters
of our algorithm. Table 2 illustrates the acceptance ratio of new sampling parameters
of our algorithm for q = 0.5. Increasing values of σ results in decreasing acceptance
ratios of new sampling parameters θ. With large values of σ we move faster to the area
of high values of density function while smaller values of σ can lead to more expen-
sive computations as our algorithm would require more iterations to find the optimal
parameters. Figure 3 illustrates logarithm of parameters likelihood w(θ) defined in (17)
for a = 0.1 and σ = 0.5 and 3.0. We can see from the graphs that for σ = 3.0 the
algorithm reaches maximum value of log-likelihood after around 800 iterations while
for σ = 0.5 it still tries to find maximum value after 1500 iterations. Table 2 shows the
total losses of WAAQR for different parameters a and σ. We can see that choosing the
right parameters is very important as it notably affects the performance of WAAQR. It
is important to keep track of acceptance ratio of the algorithm, as high acceptance ratio
means that we move too slowly and need more iterations and larger ‘burn-in’ period to
find the optimal parameters.

Now we compare performances of our algorithm and QR. We choose the parameters
of WAAQR to be the number of iterations M = 1500, ‘burn-in’ stage M0 = 300,
regularization parameter a = 0.1, and standard deviation σ = 3. Note that even though
we use the prior knowledge to choose the parameters of WAAQR, we start with initial
θ0 = 0 and train our algorithm only on the test set. Figure 4 illustrates a difference
between cumulative losses of QR and WAAQR. If the difference is greater than zero,
our algorithm shows better results compared to QR. For q = 0.25 WAAQR shows
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Fig. 2. Weights update for solar power

better performance at the beginning, but after around 1000 iterations its performance
becomes worse, and by the end of the period cumulative losses of QR and WAAQR are
almost the same. We observe a different picture for q = 0.5 and q = 0.75: most of the
time a difference between cumulative losses is positive, which indicates that WAAQR
performs better than QR.

Figure 5 shows predictions of WAAQR and QR with [25%, 75%] confidence interval
for the first and last 100 steps. We can see from the graph, that initially predictions of
WAAQR are very different from predictions of QR. However, by the end of period,
predictions of both methods become very close to each other.

One of the disadvantages of WAAQR is that it might perform much worse with
non-optimal input parameters of regularization a and standard deviation σ. If no prior
knowledge is available, one can start with some reasonable values of input parameters
and keep track of the acceptance ratio of new generated θ. If the acceptance ratio is too
high it might indicate that the algorithm moves too slowly to the area of high values
of the probability function of θ, and standard deviation σ should be increased. Another
option is to take very large number of steps and larger ‘burn-in’ period.

Table 2. Acceptance ratio (AR) and total losses of WAAQR on training set

AR
a \ σ 0.5 1.0 2.0 3.0

0.1 0.533 0.550 0.482 0.375
0.3 0.554 0.545 0.516 0.371
0.5 0.549 0.542 0.510 0.352
1.0 0.548 0.538 0.502 0.343

Loss
a \ σ 0.5 1.0 2.0 3.0

0.1 1821.8 823.5 216.3 28.8
0.3 1806.2 844.9 265.3 62.7
0.5 1815.7 878.5 272.7 92.1
1.0 1810.4 877.5 379.3 116.9
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Fig. 3. Log-likelihood of parameters for a = 0.1.
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Fig. 4. Cumulative loss difference between QR and WAAQR

7 Conclusions

We proposed two ways of applying the framework of prediction with expert advice to
the problem of probabilistic forecasting of renewable energy. The first approach is to
apply WAA with a finite number of models and combine their predictions by updating
weights of each model online based on their performance. Experimental results show
that WAA performs close or better than the best model in terms of cumulative pinball
loss function. It also outperforms the simple average of predictions of models. With this
approach we show that it is reasonable to apply WAA for the prediction of quantiles.

Second, we propose a new competitive online algorithm WAAQR which combines
predictions of an infinite pool of quantile regressions. We derive the theoretical bound
which guarantees that WAAQR asymptotically performs as well as any quantile re-
gression up to an additive term of the form C

√
T lnT . Experimental results show that

WAAQR can outperform the best quantile regression model that was trained on the
historical data.
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Fig. 5. Predictions with [25%, 75%] confidence interval for WAAQR and QR
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