5 research outputs found

    Bio-AIMS collection of chemoinformatics web tools based on molecular graph information and artificial intelligence models

    Get PDF
    [Abstract] The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.Red Gallega de Investigación y Desarrollo de Medicamentos; R2014/025Instituto de Salud Carlos III; PI13/0028

    MIANN models of networks of biochemical reactions, ecosystems, and U.S. Supreme Court with Balaban-Markov indices

    Get PDF
    [Abstract] We can use Artificial Neural Networks (ANNs) and graph Topological Indices (TIs) to seek structure-property relationship. Balabans’ J index is one of the classic TIs for chemo-informatics studies. We used here Markov chains to generalize the J index and apply it to bioinformatics, systems biology, and social sciences. We seek new ANN models to show the discrimination power of the new indices at node level in three proof-of-concept experiments. First, we calculated more than 1,000,000 values of the new Balaban-Markov centralities Jk(i) and other indices for all nodes in >100 complex networks. In the three experiments, we found new MIANN models with >80% of Specificity (Sp) and Sensitivity (Sn) in train and validation series for Metabolic Reactions of Networks (MRNs) for 42 organisms (bacteria, yeast, nematode and plants), 73 Biological Interaction Webs or Networks (BINs), and 43 sub-networks of U.S. Supreme court citations in different decades from 1791 to 2005. This work may open a new route for the application of TIs to unravel hidden structure-property relationships in complex bio-molecular, ecological, and social networks

    MI-NODES multiscale models of metabolic reactions, brain connectome, ecological, epidemic, world trade, and legal-social networks

    Get PDF
    [Abstract] Complex systems and networks appear in almost all areas of reality. We find then from proteins residue networks to Protein Interaction Networks (PINs). Chemical reactions form Metabolic Reactions Networks (MRNs) in living beings or Atmospheric reaction networks in planets and moons. Network of neurons appear in the worm C. elegans, in Human brain connectome, or in Artificial Neural Networks (ANNs). Infection spreading networks exist for contagious outbreaks networks in humans and in malware epidemiology for infection with viral software in internet or wireless networks. Social-legal networks with different rules evolved from swarm intelligence, to hunter-gathered societies, or citation networks of U.S. Supreme Court. In all these cases, we can see the same question. Can we predict the links based on structural information? We propose to solve the problem using Quantitative Structure-Property Relationship (QSPR) techniques commonly used in chemo-informatics. In so doing, we need software able to transform all types of networks/graphs like drug structure, drug-target interactions, protein structure, protein interactions, metabolic reactions, brain connectome, or social networks into numerical parameters. Consequently, we need to process in alignment-free mode multitarget, multiscale, and multiplexing, information. Later, we have to seek the QSPR model with Machine Learning techniques. MI-NODES is this type of software. Here we review the evolution of the software from chemoinformatics to bioinformatics and systems biology. This is an effort to develop a universal tool to study structure-property relationships in complex systems

    Herramientas informáticas y de inteligencia artificial para el meta-análisis en la frontera entre la bioinformática y las ciencias jurídicas

    Get PDF
    [Resumen] Los modelos computacionales, conocidos por su acrónimo en idioma Inglés como QSPR (Quantitative Structure-Property Relationships) pueden usarse para predecir propiedades de sistemas complejos. Estas predicciones representan una aplicación importante de las Tecnologías de la Información y la Comunicación (TICs). La mayor relevancia es debido a la reducción de costes de medición experimental en términos de tiempo, recursos humanos, recursos materiales, y/o el uso de animales de laboratorio en ciencias biomoleculares, técnicas, sociales y/o jurídicas. Las Redes Neuronales Artificiales (ANNs) son una de las herramientas informáticas más poderosas para buscar modelos QSPR. Para ello, las ANNs pueden usar como variables de entrada (input) parámetros numéricos que cuantifiquen información sobre la estructura del sistema. Los parámetros conocidos como Índices Topológicos (TIs) se encuentran entre los más versátiles. Los TIs se calculan en Teoría de Grafos a partir de la representación de cualquier sistema como una red de nodos interconectados; desde moléculas a redes biológicas, tecnológicas, y sociales. Esta tesis tiene como primer objetivo realizar una revisión y/o introducir nuevos TIs y software de cálculo de TIs útiles como inputs de ANNs para el desarrollo de modelos QSPR de redes bio-moleculares, biológicas, tecnológico-económicas y socio-jurídicas. En ellas, por una parte, los nodos representan biomoléculas, organismos, poblaciones, leyes tributarias o concausas de delitos. Por otra parte, en la interacción TICs-Ciencias Biomoleculares- Derecho se hace necesario un marco de seguridad jurídica que permita el adecuado desarrollo de las TICs y sus aplicaciones en Ciencias Biomoleculares. Por eso, el segundo objetivo de esta tesis es revisar el marco jurídico-legal de protección de los modelos QSAR/QSPR de sistemas moleculares. El presente trabajo de investigación pretende demostrar la utilidad de estos modelos para predecir características y propiedades de estos sistemas complejos.[Resumo] Os modelos de ordenador coñecidos pola súas iniciais en inglés QSPR (Quantitative Structure-Property Relationships) poden prever as propiedades de sistemas complexos e reducir os custos experimentais en termos de tempo, recursos humanos, materiais e/ou o uso de animais de laboratorio nas ciencias biomoleculares, técnicas, e sociais. As Redes Neurais Artificiais (ANNs) son unha das ferramentas máis poderosas para buscar modelos QSPR. Para iso, as ANNs poden facer uso, coma variables de entrada (input), dos parámetros numéricos da estrutura do sistema chamados Índices Topolóxicos (TIs). Os TI calcúlanse na teoría dos grafos a partir da representación do sistema coma unha rede de nós conectados, incluíndo tanto moléculas coma redes sociais e tecnolóxicas. Esta tese ten como obxectivo principal revisar e/ou desenvolver novos TIs, programas de cálculo de TIs, e/ou modelos QSPR facendo uso de ANNs para predicir redes bio-moleculares, biolóxicas, económicas, e sociais ou xurídicas onde os nós representan moléculas biolóxicas, organismos, poboacións, ou as leis fiscais ou as concausas dun delito. Ademais, a interacción das TIC con as ciencias biolóxicas e xurídicas necesita dun marco de seguridade xurídica que permita o bo desenvolvemento das TIC e as súas aplicacións en Ciencias Biomoleculares. Polo tanto, o segundo obxectivo desta tese é analizar o marco xurídico e legal de protección dos modelos QSPR. O presente traballo de investigación pretende demostrar a utilidade destes modelos para predicir características e propiedades destes sistemas complexos.[Abstract] QSPR (Quantitative Structure-Property Relationships) computer models can predict properties of complex systems reducing experimental costs in terms of time, human resources, material resources, and/or the use of laboratory animals in bio-molecular, technical, and/or social sciences. Artificial Neural Networks (ANNs) are one of the most powerful tools to search QSPR models. For this, the ANNs may use as input variables numerical parameters of the system structure called Topological Indices (TIs). The TIs are calculated in Graph Theory from a representation of any system as a network of interconnected nodes, including molecules or social and technological networks. The first aim of this thesis is to review and/or develop new TIs, TIs calculation software, and QSPR models using ANNs to predict bio-molecular, biological, commercial, social, and legal networks where nodes represent bio-molecules, organisms, populations, products, tax laws, or criminal causes. Moreover, the interaction of ICTs with Biomolecular and law Sciences needs a legal security framework that allows the proper development of ICTs and their applications in Biomolecular Sciences. Therefore, the second objective of this thesis is to review the legal framework and legal protection of QSPR techniques. The present work of investigation tries to demonstrate the usefulness of these models to predict characteristics and properties of these complex systems
    corecore