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Abstract: 

We can use Artificial Neural Networks (ANNs) and graph Topological Indices (TIs) to seek structure-

property relationship. Balabans’ J index is one of the classic TIs for chemo-informatics studies. We used here 

Markov chains to generalize the J index and apply it to bioinformatics, systems biology, and social sciences. 

We seek new ANN models to show the discrimination power of the new indices at node level in three proof-

of-concept experiments. First, we calculated more than 1,000,000 values of the new Balaban-Markov 

centralities Jk(i) and other indices for all nodes in >100 complex networks. In the three experiments, we 

found new MIANN models with >80% of Specificity (Sp) and Sensitivity (Sn) in train and validation series 

for Metabolic Reactions of Networks (MRNs) for 42 organisms (bacteria, yeast, nematode and plants), 73 

Biological Interaction Webs or Networks (BINs), and 43 sub-networks of U.S. Supreme court citations in 

different decades from 1791 to 2005. This work may open a new route for the application of TIs to unravel 

hidden structure-property relationships in complex bio-molecular, ecological, and social networks.  
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1. INTRODUCTION  

Complex networks are present in almost all the levels of material world [1], as observed after 

an inspection of complex networks formed at multi scales: from networks of metabolic organic 

reactions inside living beings [2], passing through interactions between species in food webs and 

ecosystems [3], extending up to decisions in the U.S. Supreme Court [4, 5]. We make emphasis on 

the three previous examples because they will be subjected to closer inspection in this work. 

However, the number of examples is huge including also networks of Inorganic and Organic 

Reactions in the atmosphere [6]; Obesity, or Alcoholism spreading in social networks [7, 8]; 

Internet and the World Wide Web (WWW), Electric power distribution networks, etc. [9]. In any 

case, we can represent all these complex systems by a simple draw (graph) linking the parts of the 

system (no des) by means of edges that express the existence of ties, interactions, or some 

relationship between nodes.   
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2. REVIEW OF BALABANS' J INDEX  

Network analysis may capture static or dynamic information about complex systems [10]. It is 

straightforward to realise, from the previous section, that we can use numeric parameters that 

quantify the different connectivity patterns in a graph to unravel information about hidden 

structure-property relationships (static or dynamic) in complex systems. Many authors call these 

numeric parameters as Connectivity or Topological indices (TIs) [11, 12].  

 

TIs are numeric parameters used to describe the information about molecular structure of a 

molecule (molecular descriptor) or large systems (bio-molecular, social, technological, etc.) 

susceptible to be represented as a network or graph (G). For instance, we can define G ≡ (v, e) as a 

list of all pairs formed by the v
th

 vertices or nodes (e.g.; atoms, proteins, countries...) 

interconnected by a list of e
th

 edges, ties or relationships (chemical bonds, protein interactions, 

bilateral trade...). We can depict G in the plane (2D space) as a graphic representation of all these 

nodes (dots) interconnected by ties (edges). In any case, we can also construct graphs with vertices 

as points in a 3D space, and edges connecting these vertices. See for instance, the work of 

Komosinski and Kubiak [13] in complexity about 3D morphologies.  

 

Consequently, TIs are numerical parameters of a graph used to quantify information about the 

topology (in the sense of node connectivity) and are usually graph invariants (do not depend on 

node labels, rotation, translations, or geometric distortion of graph edges in general). In general, 

TIs are called to play an important role in the characterization of the complexity of real systems 

that can be represented as graphs or complex networks. For instance, Diudea et al. [14] published 

a paper in the journal complexity introducing a new super index based on Shell- matrices and 

polynomials.  

 

Dehmer and Mowshowitz [15] published in the same journal a generalization of entropy 

measures applying information measures to a graph. In Prof. Balaban's words, TIs are a convenient 

means of translating chemical constitution into numerical values [16]. Until now, multiple TIs 

have been defined and/or applied to some extend. Many of them are interrelated somehow and 

other TIs are more exotic. For instance, Basak and Balaban, et al. [17] calculated 202 molecular 

descriptors (TIs) for two chemical databases. The first contained 139 hydrocarbons and the second 

one a heterogeneous series of 1037 diverse compounds. They were able to group all these TIs into 

14-18 clusters using variable cluster analysis. Correspondences between the same TIs in the two 

sets revealed how and why the various classes of TIs are mutually related and provide insight into 

what aspects of chemical structure they are expressing [17].  

 

In any case, some of these TIs have become classic and/or TIs of reference with the passage of 

time. This is the case of Wiener [18-20], Hosoya [21, 22], Randic [23], Kier and Hall [24, 25], and 

other TIs. According to the authors [26] TIs, can belong to three generations or classes. The 

classes move from first-generation of TIs having the form of integer numbers with high 

degeneracy that limits their use to more elaborated TIs. In particular, the same professor 

mentioned in the first sentence introducing one TIs; which have become one of the classics and 

known as the Balaban's J index [16]. The J index is a function of q = number of edges in the 

molecular graph, µ = (q - n + 1) = the cyclomatic number of the molecular graph, n = number of 

atoms in the molecular graph. The J index also depends on Si = distance sums ca1culated as the 

sums over the rows or columns of the topological distance matrix D of the hydrogen-depleted 

graph G for the molecule. The formula of this classic TI is:  

 

 

𝐽(𝐺) =
𝑞

𝜇 + 1
· ∑ (𝑆𝑖 · 𝑆𝑗)

𝑞

𝑒𝑑𝑔𝑒𝑠

 −1/2 (1) 

 

  



3. APPLICATIONS OF MOLECULAR INFORMATICS  

Balaban's J index have been used in many chemo- informatics studies as input for many 

different Machine Learning (ML) algorithms; alone and/or combined with other TIs. Almost all 

applications of Balban's J index deal with drug discovery; in particular the prediction of drugs with 

higher biological activity and/or low toxicity. For instance, Sharma et al. [27]; synthesized new 

carboxylic acid ethyl esters and evaluated the in vitro antimicrobial and anticancer activity of these 

compounds. In a chemoinformatic study they demonstrated the importance of Balaban's J index 

and log P to describe the antimicrobial activity of these compounds.  

 

Thakur et al. [28]; carried out a QSAR study on benzenesulphonamide carbonic anhydrase 

inhibitors using Balaban's J index. The regression analysis has shown that even in mono-

parametric regression this index gave excellent results. Moreover, the combination of J with the 

first-order Randic connectivity index 
1
χ improved the results obtained. Krawczuk et al. [29]; used 

the J index and the electro- topological index for the prediction of retention data of polychlorinated 

biphenyls. J index has been used also as index of reference to test the performance of new TIs. In 

any case, a large number of applications of J index is in medicinal chemistry. Yadav, Kumar, and 

De Clercq [30] et al., synthesized and evaluated the in vitro antimicrobial activity of new 

sulphonic acids. They compared the results of one-target vs multi-target models for these 

compounds. The multi-target model based on Balaban index (J), a LUMO parameter, and second 

order valence connectivity index (
2
χv) was very useful to describe the antimicrobial activity of 

synthesized compounds. Naik, Dubey, and Kumar [31], developed new predictive models for 

epipodophyllotoxin derivatives. Epipodophyllotoxins are important anticancer drugs used in 

chemotherapy for various types of cancers. The model was obtained with descriptors such as 

solvent- accessible surface area, heat of formation, Balaban index, number of atom classes, and 

sum of E-state index of atoms. Fernandes [32] predicted the activity of forty-three pyrazinoates 

against M tuberculosis ATCC 27294, using Balaban index (1) and other parameters as inputs for a 

gene tic algorithm function and partial least squares regression (WOLF 5.5 program).  

 

Panaye, Doucet, and Devillers, et al. [33]; developed compared decision trees vs support vector 

machine (SVM) for classification of androgen receptor ligands. They predicted relative binding 

affinity (RBA) to a large set of about 200 chemicals with descriptors calculated from CODESSA 

software including hydrophobicity parameter (logP), Balaban index, and other descriptors. 

Zavrsnik, Muratovié, and Spirtovié [34]; reported the synthesis of 4- arylaminocoumarin 

derivatives with antimycotic effects and a QSAR study of this activity with, Balaban J index, 

Wiener W index, and other TIs and physicochemical properties.  

 

Ma, Chen, and Yang [35]; used the Balaban index and other molecular descriptors to model 

blood-brain barrier (BBB) penetration of different compounds. One aspect of special relevance for 

this work is the use of Balaban's J index as input for Artificial Neural Networks (ANNs). 

Dashtbozorgi and Golmohammadi [36], used Multiple Linear Regression (MLR) and ANNs to 

model water-to-wet butyl acetate partition coefficient of 76 organic solutes using Balaban index 

(1) together with the Kier and Hall index of order 2 (
2
χ), and other indices. Jalali-Heravi and 

Fatemi [37]; developed ANN model using Balaban index and other parameters to predict the 

thermal conductivity detection response factors of 110 organic compounds.  

 

In other line of thinking, some author have reported applications of Balban's J index in 

mathematical and/or physical-chemistry; including the generalization of this index to create other 

TIs (called Balaban type parameters). Dehmer et al. [38] compared the discriminative power for 

graphs of a new information index vs the J values for benchmark dataset of nearly 12 million 

exhaustively generated, non-isomorphic, and unweighted graphs. In this sense, Basak et al. [39]; 

reviewed the use of mathematical structural invariants in analyzing combinatorial libraries.  

 

Ratkiewicz and Truong [40]; reported a new method for automatic generation of mechanisms 

of reactions of complex systems using Balaban, Schulz, Connectivity and other TIs. Rastija and 

Medié-Sarié [41] studied antioxidant activity of wine polyphenols with Balaban index, Balaban-

type index and other descriptors. Randié and Pompe [42]; reported the variable Balaban J index 

and the "reversed" Balaban index 1/J as well as a novel index 1/JJ derived from J and 1/1.   



4. MIANN MODELS  

Dehmer et al. [43]; noted that many TIs of complex networks have been developed without 

giving a proper proof of their potential applications. They also talk about the high interest in the 

development of software packages to ca1culate TIs. We can use computer software like 

CENTIBIN [44], PAJEK [45], and QUACN [43, 46] which can be used to calculate TIs of 

complex networks.  

 

Specifically, different authors have reported, and/or used different types of TIs that may be 

considered variations or generalizations of the J index to some extent. For instance, Randić & 

Pompe [42]; introduced several variable molecular descriptors, derived from the distance matrix 

and the "reversed" distance matrix. This includes the variable Balaban J index and the "reversed" 

Balaban index 1/J as well as a novel index 1/JJ derived from J and 1/J. Balaban type indices: J, Jz, 

Jm, Jv, Jc, and Jp have been used to predict the supra-molecular complexing ability of a 

sulfonamides [47].  

 

González-Díaz el al. [48]; developed the software MARCH-INSIDE. The software MI uses 

Markov Chains theory to ca1culate TIs of order k (TIk) inside very different structures in many file 

formats such as SMILE .txt and .mol file of drugs, .pdb files of proteins, or .ct files for RNAs. In 

any case, MI cannot upload formats of Complex Networks (.mat, .net, .dat, etc.). Accordingly, a 

new software called MI-NODES (MARCH-INSIDE NOde DEScriptors) has been proposed. MI-

NODES can upload many formats of complex networks and calculate several TIk values for these 

networks. MI-NODES incorporates node-node transition Markov probabilities (pij) inside the 

formula of classical TIs. In so doing, we can ca1culate new versions of classic TI(G) of a full 

graph G based on Markov Chains TIk(G) and the respective node centralities TIk(i) [49-52].  

 

MI indices can be as inputs in Linear Discriminant Analysis (LDA) executed in STATISCA 

[53] or ML methods developed in WEKA program [54]. Especially, we can use Artificial Neural 

Networks (ANNs); which is very powerful bio- inspired Artificial Intelligence (Al) algorithms. 

This approach is called MIANN (MI & ANN models). We have reviewed the MIANN in a recent 

work. In this paper we focused on theoretical basis, development of web servers and, the uses in 

molecular sciences [55]. In any case, almost al MIANN models use the original MI software and 

focus on chemical or bio-molecular systems. Conversely, the use of MI-NODES to seek MIANN 

models is relatively a new direction.  

 

Taking into consideration all the aspects discussed in the introduction we decided to perform 

the following work. In this work we generalized the Balaban' s J index in a different direction, 

implement the ca1culation of these TIs in MI- NODES, and seek new MIANN models to show in 

proof-of- concept experiments to demonstrate the discrimination power of the new indices.  

4.1. Theory of MIANN Models  

In many complex networks we can found certain uncertainty on the assignation of links 

between nodes due to errors or existence of contradictory information obtained by different 

experimental ways. Let Li be the connectivity pattern (set of all walks of length k from the i
th

 node 

to the remnant n -1 nodes in the network) we can try to seek a model to discriminate the observed 

(correct) Li of all nodes in real networks vs no correct connectivity patterns. The output of this 

type of models may be a real value function Sj which scores the reliability of a sub-graph Li; Li = 

1 when the connections are correct others (real or correct Li) in the network or Li = 0 for nodes 

that we know a priori that present an incorrect connectivity pattern. We can use different TIs 

and/or no de centralities to describe numerically different connectivity patterns Li (correct or 

incorrect patterns in a give network). Next, we can use these TIs as inputs of ANN algorithms in 

order to search for non-linear and/or linear models able to predict the correct Lis. In LNN model 

we can write the general formula of this type of MIANN models as follows:  

  



𝑆𝑗 = ∑ 𝑎𝑘 · 𝑇𝐼𝑘(𝑗) + ∑ ∑ 𝑏𝑔𝑘 · [𝑇𝐼𝑘(𝑗) − 𝑇𝐼𝑘(𝑗)𝑔−𝑎𝑣𝑔] + 𝑐0

5

𝑘=0
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5
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 (2) 

= ∑ 𝑎𝑘
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𝑘=0

· 𝑇𝐼𝑘(𝑗) + ∑ ∑ 𝑏𝑔𝑘·∆𝑇𝐼𝑘(𝑗)𝑔 + 𝑐0

5
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𝑔=0

 

 

 

 

In these equations, TIk are node centralities based on topological indices ca1culated by 

software MI-NODES based on the MARCH-INSIDE algorithm. However, we can use any TI 

calculated with other software. The coefficients (ak) quantify the influence of the centralities of 

nodes used as input. The coefficients (
g
bk) quantify the effect of the deviation of the TIs of a given 

no de with respect to the average value of the TIs of a sub-set of nodes that obey a given condition 

in a network of reference correctly constructed. The deviation operators are ΔTIk (j)g = [TIk (j) - 

TIk (j)g.avg]; with TIk (j)g.avg equal to the expected value or average (avg) of TIk(j) for a sub-set 

or group (g) of nodes similar to Box- Jenkins' ARIMA models [56]. Specifically, we can write the 

linear equation of the MIANN model obtained by LNN analysis for MRNs is as follows:  

 

 

𝑆𝑖 = ∑ 𝑎𝑘 · 𝑇𝐼𝑘(𝑖)

5

𝑘=0

+ ∑ 𝑏𝑔𝑘 · [𝑇𝐼𝑘(𝑖) − 𝑇𝐼𝑘(𝑖)𝑂𝑟𝑔.𝑎𝑣𝑔] + 𝑐0

5

𝑘=0

 

 

 (3) 

= ∑ 𝑎𝑘 · 𝑇𝐼𝑘(𝑖) + ∑ ∑ 𝑏𝑔𝑘 · ∆𝑇𝐼𝑘(𝑖)𝑂𝑟𝑔 + 𝑐0
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The LNN model for the particular case of BINs of the IWDB has the following formula:  

 

 

𝑆𝑖 = ∑ 𝑎𝑘 · 𝑇𝐼𝑘(𝑖) + ∑ 𝑏𝑔𝑘 · [𝑇𝐼𝑘(𝑖) − 𝑇𝐼𝑘(𝑖)𝑊𝑒𝑏.𝑎𝑣𝑔] + 𝑐0
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 (4) 

= ∑ 𝑎𝑘 · 𝑇𝐼𝑘(𝑖) + ∑ 𝑏𝑔𝑘 · ∆𝑇𝐼𝑘(𝑖)𝑊𝑒𝑏 + 𝑐0
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Last, the LNN model for the particular case of USSCN has the following formula:  

 

 

𝑆𝑖 = ∑ 𝑎𝑘 · 𝑇𝐼𝑘(𝑖) + ∑  1𝑏𝑘 · [𝑇𝐼𝑘(𝑖) − 𝑇𝐼𝑘(𝑖)𝑌𝑒𝑎𝑟.𝑎𝑣𝑔]
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+ ∑  2𝑏𝑘 · [𝑇𝐼𝑘(𝑗) − 𝑇𝐼𝑘(𝑗)𝐶𝑖𝑡𝑖𝑛𝑔.𝑎𝑣𝑔] + 𝑐0
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 (5) 

= ∑ 𝑎𝑘 · 𝑇𝐼𝑘(𝑖) + ∑  1𝑏𝑘 · ∆𝑇𝐼𝑘(𝑖)𝑌𝑒𝑎𝑟
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+ ∑   2𝑏𝑔𝑘 · ∆𝑇𝐼𝑘(𝑖)𝐶𝑖𝑡𝑖𝑛𝑔 + 𝑐0
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where, the Jk(j) values are the Balaban-Markov centrality parameters of a given j-th judicial cases 

resolved by the U.S. Supreme Court. Whereas, the Jk(j)Year.avg and Jk(j)Citing.avg values are the 

average of these parameters for all the cases in this court in the given year (Year.avg) or for the 

cases citing j
th

 (Citing.avg). In addition, we can use statistical parameters of both train and external 

validation series to assess the goodness-of-fit of ANN models: n = number of cases, Specificity, 

and Sensitivity [57].  

5. NEW MIANN MODELS WITH JK INDlCES  

In the present work, we introduce for the first time a new type of Balaban type indices called 

Balaban-Markov. The global Balaban-Markov MG) indices are useful to study the full graph G of 

a molecular or complex network system in general. The respective no de centralities Jk(i) are 

expected to be useful in the study complex networks at node level. The calculation of the new 

indices is implemented in MI- NODES. Subsequently, we applied the MIANN strategy to study 

complex bio-molecular complex networks. In addition, we studied ecological and social-legal 

systems as well to illustrate the uses of the new parameter in higher scales. In closing, we 

developed three proof-of-concept experiments to i11ustrate the potentialities of the new 

parameters. In each experiment, we seek new MIANN models for the first time useful to 

discriminate correct from unreliable connectivity patterns in complex networks. In the first 

experiment, we found new MIANN-Balaban models for Metabolic Reactions of Networks 

(MRNs) for 43 organisms (bacteria, yeast, nematode and plants). In the second experiment, we 

developed MIANN-Balaban for 73 Biological Interaction Webs or Networks (BINs). The 

biological interactions or relationships present in these networks include: prey-hunter, parasite-

host, plant-seed disperser, anemone-clown fish species and others. In the third experiment, we 

found MIANN-Balaban models for >40 networks relevant for Legal sciences. Each one of these 

networks (5KCNs) represent one slot of 5000 (5K) cites to 1000-5000 cases of the U.S. Supreme 

court in different decades (1700-2006). Despite the differences between the different networks the 

workflow used in all the experiments is essentially the same (see Fig. 1). It is straightforward to 

realize from Fig. (1) that the given steps are essentially the same used in QSAR/QSPR analysis of 

molecular systems in chemoinformatics. The datasets used to develop the new MIANN models are 

the following.  

5.1. Data 1: Metabolic Reaction Networks (MRNs)  

These MRNs were downloaded in a zipped ASCII file directly from Barabasi's group web 

(http://www.nd.edu/~net works/resources.htm). The metabolic networks data was obtained from a 

previous work after Jeong et al. (see details there) [2]. In Table 1 we report the values of the Jk(G) 

indices for the MRN s of different organisms studied in this work. We also depict the values of 

classic parameters of these MRNs that have been reported by other authors. In the next sections we 

shall discuss the relationships between Jk(G) indices and these classic parameters.  

5.2. Data 2: Biological Interaction Networks (BINs)  

In a recent review we discussed many biological interaction webs or networks (BINs) 

including those contained in the IWDB [58]. In a previous work, we downloaded all matrices 

compiled in the IWDB and transformed them into BINs in .net format. This format lists all pairs 

(arcs or edges) of species (nodes) into a text file [59]. The IWDB 

(http://www.nceas.ucsb.edu/interactionweb/resources.html) currently collects datasets about food 

webs for different species and ecosystems. In Table 2 we can find a summary of all the available 

datasets; see a list of references to original sources in our previous work [59]. The full list of 

reference is too large to be cited here.  

  



 
 

 

Fig. (1). General workflow used in this work. 

 



Table 1. Average values Jk(i)org.avg vs classic parameters of MRNs of some organisms. 

MRN Jo J1 J2 J3 J4 J5 N Lin Lout R E gin gout D 

AA 3289.9 3233.4 1863.0 1117.6 774.8 677.8 419 1278 1249 401 285 2.10 2.20 3.30 

AB 2933.9 2869.2 1625.4 975.6 682.6 634.4 395 1202 1166 380 271 2.10 2.20 3.20 

AG 4234.2 4165.9 2432.1 1471.4 1028.9 910.0 496 1527 1484 486 299 2.20 2.20 3.50 

AP 1514.3 1474.5 806.4 458.4 315.1 328.9 204 588 575 178 135 2.20 2.20 3.20 

AT 2324.1 2284.3 1343.7 822.8 580.1 508.9 302 804 789 250 185 2.10 2.30 3.50 

BB 1085.8 1057.7 581.7 336.6 235.8 225.1 187 442 438 140 106 2.30 2.40 3.00 

BS 6513.1 6268.7 3314.5 1957.0 1331.8 1204.5 785 2794 2741 916 516 2.20 2.10 3.30 

CA 4018.9 3938.0 2220.9 1313.5 904.5 794.6 494 1624 1578 511 344 2.10 2.20 3.30 

CE 3707.9 3642.9 2067.0 1224.1 842.8 757.7 462 1446 1418 450 295 2.10 2.20 3.30 

Cl 2834.7 2774.5 1595.4 959.9 668.4 584.8 380 1142 1115 359 254 2.10 2.30 3.20 

CL 2821.7 2742.7 1479.3 839.2 561.1 556.9 389 1097 1062 333 231 2.10 2.20 3.30 

CQ 1238.6 1193.7 630.6 352.4 242.9 253.5 194 401 391 134 84 2.20 2.30 3.40 

CT 1491.2 1466.7 904.3 576.3 419.2 374.0 215 479 462 158 94 2.20 2.40 3.50 

CY 4234.7 4089.9 2101.2 1181.1 788.0 804.8 546 1782 1746 570 370 2.00 2.20 3.30 

DR 6805.0 6614.5 3609.3 2147.1 1480.5 1345.6 815 2870 2811 965 557 2.20 2.10 3.30 

EC 6596.4 6445.0 3629.6 2185.4 1509.8 1363.7 778 2904 2859 968 570 2.20 2.10 3.20 

EF 2987.0 2936.2 1699.0 1010.1 693.0 608.0 386 1244 1218 382 281 2.10 2.20 3.10 

EN 2870.5 2814.5 1585.1 937.1 645.8 576.2 383 1095 1081 339 254 2.10 2.20 3.30 

         ~      
HI 4161.9 4019.0 2098.8 1239.7 863.2 855.3 526 1773 1746 597 361 2.10 2.30 3.20 

HP 2833.8 2759.3 1486.2 867.4 594.0 547.4 375 1181 1144 375 246 2.00 2.30 3.30 

MB 3228.1 3166.7 1835.6 1112.3 779.1 683.3 429 1247 1221 391 282 2.20 2.20 3.20 

MG 1529.8 1498.1 926.5 607.2 457.3 413.8 209 535 525 196 85 2.40 2.20 3.50 

Ml 3587.0 3523.2 2049.2 1250.6 880.8 773.3 424 1317 1272 415 264 2.20 2.30 3.50 

ML 3254.8 3199.0 1881.4 1166.1 835.1 744.5 422 1271 1244 402 282 2.20 2.20 3.20 

MP 1287.6 1260.7 731.9 427.0 293.8 266.7 178 470 466 154 88 2.30 2.20 3.20 

MT 4564.6 4412.8 2317.0 1288.3 850.5 871.8 587 1862 1823 589 358 2.00 2.20 3.30 

NG 3168.0 3115.1 1824.2 1107.5 771.0 663.6 406 1298 1270 413 285 2.10 2.20 3.20 

NM 2905.4 2851.4 1612.5 958.2 662.7 577.5 381 1212 1181 380 271 2.20 2.20 3.20 

OS 2289.5 2252.1 1309.9 784.8 544.9 483.8 292 763 751 238 178 2.10 2.30 3.50 

PA 5751.4 5532.1 2915.7 1667.5 1105.3 1079.6 734 2453 2398 799 490 2.10 2.20 3.30 

PF 2453.1 2409.0 1414.0 846.6 580.0 498.9 316 901 867 283 191 2.00 2.30 3.40 

PG 3203.6 3146.9 1875.8 1154.1 813.9 711.5 424 1192 1156 374 254 2.20 2.20 3.30 

PH 2491.1 2448.1 1448.4 875.7 604.3 526.1 323 914 882 288 196 2.00 2.20 3.40 

PN 3211.2 3146.1 1784.3 1068.3 743.5 651.5 416 1331 1298 412 288 2.10 2.20 3.20 

RC 5344.0 5163.4 2697.5 1526.3 1016.9 1098.9 670 2174 2122 711 427 2.10 2.20 3.40 

RP 1466.1 1437.9 818.8 476.1 329.3 312.3 214 510 504 155 100 2.30 2.30 3.40 

SC 4591.4 4455.4 2294.2 1285.9 859.3 835.6 561 1934 1889 596 402 2.00 2.20 3.30 

ST 3071.1 2998.9 1650.3 984.3 683.9 636.4 403 1300 1277 404 280 2.10 2.20 3.10 

TH 3624.3 3554.8 2018.7 1203.8 834.9 742.0 430 1374 1331 428 280 2.20 2.20 3.40 

TM 2448.2 2396.7 1338.1 770.7 522.1 471.6 338 1004 976 302 223 2.10 2.20 3.20 

TP 1331.5 1300.7 715.5 414.4 285.7 274.8 207 562 555 175 124 2.20 2.30 3.10 

               

 



Table 2. Summary of some BINs included in the IWDB 

BIN Habitat Type Location #OAa #OBb BIN Habitat Type Location #OAa #OBb 

1 Coral reefs Pacific 10 26 21 Arctic community Canada 29 86 

2 Freshwater lake Canada 7 29 22 Heathland habitat Mauritius Is. 135 74 

3 Freshwater lake Canada 10 40 23 Beech forest Japan 93 679 

4 Freshwater lake Canada 31 144 24 High Arctic Canada 32 115 

5 River Canada 14 51 25 Montane forest Australia 42 91 

6 River Canada 17 53 26 Multiple communities Galapagos Is. 106 54 

7 Freshwater lake Canada 33 97 27 Xeric scrub Argentina 21 45 

8 Freshwater reservoir Canada 6 25 28 Medow UK 25 79 

9 rainforest Australia 51 41 29 Arctic community Canada II 18 

10 rainforest Peru 8 18 30 Deciduous forest USA 13 44 

11 tropical forest C. Rica 6 4 31 Coastal forest Mauritius Is. 14 13 

12 Amazon rainforest Brazil 16 25 32 Upland grassland S. Africa 9 56 

13 Arid grasslands USA 54 24 33 Palm swamp Venezuela 33 53 

14 Whole country Finland 5 64 34 Agricultural area USA 456 1429 

15 Andean scrub Chile 87 98 35 Caatinga Brazil 51 25 

16 Boreal forest Canada 12 102 36 Maple-oak woodland USA 7 32 

17 Caatinga Brazil 13 13 37 Peat bog Canada 13 34 

18 MI. forest and grassland USA 96 276 38 Montane forest Argentina 10 29 

19 High-altitude desert Canary Is. 11 38 39 Forest Papua 31 9 

20 Alpine subarctic comm. Sweden 23 118 40 Tropical forest Panama 13 11 

          

 

5.3. Data 3: V.S. Supreme Court Networks  

We used a complex network constructed by Fowler et al. [4]. The authors included 26,681 

majority opinions written by the U.S. Supreme Court. The dataset contains all cases that cite this 

U.S. Supreme Court decisions from 1791 to 2005. In this network each case is represented by a 

node. The links between two nodes ai and aj (arcs) express that the case j
th

 cites the i
th

 case 

previous to it (precedent). In order to carry out a study more focused on specific intervals of time 

and al so study the effect of accumulation of cites we split the data set of sub-sets (sub-networks). 

Each one of these sub- networks represent one slot of 5000 (5K) cases that cites 1000-5000 cases 

of the U.S. Supreme court in different decades. We call these networks as the 5K-Citations 

Network (5KCNs). It also makes the dataset more tractable for computation of Jk(i) values. We 

constructed in total 43 5KCNs involving approximately 5000.43 > 22,000 cases of the U.S. 

Supreme court. 



6. DlSCUSSION  

6.1. New Balaban-Markov Centralities for Nodes  

As we mentioned in the introduction, Dehmer et al. [43]; discussed this problem and suggested 

the classification of complex biological networks as a proof-of-concept experiment in this sense. 

They also concluded that there is a high necessity for freely available software packages to 

calculate and validate new TIs of complex networks. Different authors have reported, and/or used 

in QSAR studies, different types of TIs that may be considered variations or generalizations of the 

J index to some extent. For instance, Randić & Pompe [42]; introduced several variable molecular 

descriptors, derived from the distance matrix and the "reversed" distance matrix. This includes the 

variable Balaban J index and the "reversed" Balaban index 1/J as well as a novel index 1/JJ 

derived from 1 and 1/J. Balaban type indices: J, Jz, Jm, Jv, Jc, and Jp have been used to predict the 

supra-molecular complexing ability of a sulphonamides [47].  

 

In this work we generalized the Balaban's J index in a different direction, implement it in a new 

software (MI-NODES), and carry out proof-of-concept experiments to demonstrate the 

discrimination power of the new indices. The product of the parameters Si·Sj plays a central role in 

the definition of J (see eq. 1). In the introduction, Si and Sj are distance sums calculated as the 

sums over the rows or columns of the topological distance matrix D. As a consequence, the result 

of a unique given graph G obtained only one value of J. However, we can weight this product with 

the probabilities kpij with which both nodes are connected by walks of length k. In this case, we 

can generalize the J index to a series of higher order analogs Jk that quantify the probability of 

interconnection of all pairs of nodes at different orders. The values of kpij are the elements of the 

Markov matrix (1П) used in the MARCH-INSIDE algorithm (see details in previous works). Also 

other authors, like Estrada [60], have used the same type of matrix to generate indices of complex 

networks more recently. In this work, we report for the first time this new type of Jk index. We 

also give the definition of the node centralities Jk(i) for nodes of complex networks based on the 

same idea. In this case we can obtain a total of k values of new Balaban- Markov indices Jk(G) and 

centralities Jk(i) for each graph or each i
th

 node, using the following formula:  

 

 

𝐽𝑘(𝐺) =
𝑞

𝜇 + 1
· ∑ ( 𝑘𝑝𝑖𝑗 · 𝑆𝑖 · 𝑆𝑗) −

1
2

𝑞

𝑒𝑑𝑔𝑒𝑠

 (6) 

  

𝐽𝑘(𝑖) =
𝑞

𝜇 + 1
· ∑ ( 𝑘𝑝𝑖𝑗 · 𝑆𝑖 · 𝑆𝑗) −

1
2

𝑧𝑖

𝑖−𝑒𝑑𝑔𝑒𝑠

 (7) 

 

 

6.2. MIANN Models of MRNs  

With the development of systems biology the study of Metabolic Reaction Networks (MRN s) 

is gaining importance due to possible applications in Biotechnology [61, 62] and Biomedicine with 

the study of disease comorbidity [63] which has been approached with network topology methods. 

In Table 1 we can find a summary of the properties of the MRNs studied. In this work, we used the 

Jk(j) values and other parameters of MRNs presented in Table 1 to carry out a Two-Way Joining 

cluster analysis (TWJCA) of this dataset; see Fig. (2A).  

  



 
 

 
Fig. (2). Cluster analysis of Jk(j) values vs classic TIs and other parameters of: (A) MRNs of 43 

organisms, (8) BINs of 73 ecosystems, and (C) 73 US Supreme Court 5KCNs.  

  



We used a Number of variables: 26 and Number of cases = 43 and found a Number of blocks = 

193 with a Threshold computed from data = 0.4941518 (StDv/2), Total Sample Mean = -0.00, and 

Standard Deviation = 0.9883036. The results of this TWJCA are important to unravel hidden 

relationships between the new Jk(j) indices with classic TIs as well as other parameters of the 

MRNs for each one of the 43 organisms studied. TWJCA shows that Jk(j) indices form a "weak" 

cluster with some TIs for a group of networks but the TWJCA do not detect clear clusters. In 

general, TWJCA shows that Jk(j) values seems to codify useful structural information of MRNs 

that it is not trivially related to the information codified by other parameters because there are not 

strong clusters formed between them.  

 

Jeong et al. [2], noted that known MRNs models of different organisms present similar 

topological properties and not all metabolic pathways have been confirmed experimentally, and 

the experimental corroboration of a metabolome of one organism is a very hard task. 

Consequently, we need alignment-free techniques to evaluate the correct connectivity patterns Li 

for all nodes in MRNs. Here we developed different MIANN models based on Jk(i) values to 

predict correct connectivity patterns Li of nodes in MRNs of a large number of organisms (43 in 

total). The best MIANN model found was a non-linear three layers perceptron MLP 9:9-6-1:1. It 

has very good values of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp) > 81 % in both 

learning and external validation series. On the contrary, the best linear model did not show very 

good results with Ac, Sn, and Sp < 65% in all cases. This result indicates that Jk(i) values are very 

powerful descriptors. Note that with a non-linear but relatively simple MLP (only 9 input s and 6 

hidden neurons) we can predict in 43 organisms a very high number of 29117 metabolic reactions 

in learning and 9729 in validation. In Table 3 we depict the classification matrices and the 

topology of the MIANN models discussed. 

6.3. MIANN Models of BINs  

 

In analogy to the study of MRNs, we used the Jk(j) values of BINs for different ecosystems 

and/or food webs. In Table 2 (se e previous section), we showed the names, location, number of 

species, and reference for many of these networks in order to illustrate the high complexity of the 

dataset studied. Almost all networks studied are directed and also bipartite in some cases. It means 

that the biological interaction is found in almost all cases between species of a group (A) with a 

given biological function with species of a second group with another function in many cases 

complementary to A somehow. For instance, we can find anemones, plants, or predators in the 

first group and parasite, herbivore, pollinator, prey, or seed disperser species in the second group. 

However, there are many complex networks with more complicated situations typical of an 

imbricate food web where many species may interact with the first or the second function in 

different cases. For instance, prey specie 1 is predated by predator 2, which is in turn predated / 

hunted by specie 3. Similarly, it may appear as hyperparasitism relationships where the host specie 

1 is parasited by specie 2 which in tum is the host (is parasited by) of specie 3.  

 

Here, we also used TWJCA in order to unravel relationships between Jk(j) values (of BINs in 

this case) with other parameters of complex networks. In this second TWJCA experiment, we 

included classic TIs calculated with MI-NODES.  

 

Some of these indices are the Wiener index (W), Shannon entropy (Sh), Gutrnan topological 

index (1), Schultz index (S) as well as χ connectivity indices of Randic or Kier & Hall. We also 

calculated with MI-NODES some node centralities of BINs like total, in, and out node degrees (Z, 

Zin, Zout) as well as Current Flow Centrality (CFC), and Current Flow Betweeness (CFB). TWJCA 

also pointed to Jk(j) values as useful TIs that codify new structural information of BINs as they are 

not strongly clustered with other classic TIs. In Table 4 we depict the Jk(j) values of many BINs. 

We also give Zin and Zout values for comparative purposes. We also added Wiener W values 

(proportional to the sum of all topological distance between the specie and all other species in the 

web. In Fig. (2B) we illustrate the results of the TWJCA experiment.  

  



We also tested different MIANN models with linear and non-linear topology. Classification 

results in training and validation series for both MIANN models appear in Table 5. Linear MIANN 

models of BINs present slightly better results with respect to MRNs. The Ac, Sn, and Sp values 

here are close to 70% in all cases. However, once again the best model found is an MLP. The 

model MLP 12: 12-9-1: 1 present Ac, Sp, and Sn values higher than 81 %. The model is similar in 

goodness-of-fit and topology to the best MIANN model for MRNs.  

Table 3. Linear vs Non-linear MIANN models of MRNs of 43 organisms based on Jk centralities. 

MIANN Models Li Li=1 Li=0 % Pr. % Li=1 Li=0 

MLP 9:9-6-1:1 Li=1 29117 19490 81.8 Sn 81.9 9729 6426 

 
 

Li=0 6481 87304 81.7 Sp 81.9 2137 29172 

LNN 12:12-1:1 Li=1 22320 39543 62.70 Sn 63.22 7502 13302 

 
 

Li=0 13278 67251 63.0 Sp 62.63 4364 22296 

 
Pr. = Parameter, Sp = Specificity, Sn =Sensitivity. Columns: Observed classifications; Rows: Predicted classifications.  

  



Table 4. Average values Jk(i)org.avg vs so me classic parameters of selected BINs of ecosystems. 

BIN Name Jo J1 J2 J3 J4 J5 zin zout W 

IWBDOI Anemone-fish 2.820 3.809 3.890 3.898 3.899 3.899 2.222 2.222 2.722 

IWBD02 Aishihik lake 2.752 3.894 3.988 4.001 4.004 4.005 2.167 2.167 2.667 

IWBD03 Cold lake 2.566 3.306 3.486 3.557 3.593 3.615 1.820 1.820 2.320 

IWBD04 Lake of the woods 2.803 4.141 4.320 4.373 4.397 4.409 2.194 2.194 2.694 

IWBD05 Mcgregor river 2.506 3.255 3.464 3.548 3.589 3.612 1.754 1.754 2.254 

IWBD06 Parsnip river 2.918 3.747 3.925 3.986 4.013 4.027 2.257 2.257 2.757 

IWBD07 Bay lake huron 3.028 4.162 4.274 4.298 4.308 4.314 2.431 2.431 2.931 

IWBD08 Smallwood reservo ir 2.315 3.369 3.476 3.494 3.501 3.504 1.710 1.710 2.210 

IWBD09 Bluthgen 2004 3.679 4.385 4.424 4.426 4.426 4.426 3.098 3.098 3.598 

IWBDIO Davidson el al. 1989 2.180 2.443 2.527 2.553 2.562 2.565 0.792 0.792 1.292 

IWBDII Davidson & Fisher 2.169 2.087 2.063 2.056 2.054 2.054 1.300 1.300 1.800 

IWBDI2 Fonseca&ganade 2.066 2.287 2.353 2.377 2.388 2.395 l.l7l l.l71 1.671 

IWBDI3 Joern 1979 marathon 2.936 2.853 2.848 2.847 2.848 2.848 2.218 2.218 2.718 

IWBDl4 J oern 1979 altuda 3.151 3.048 3.053 3.055 3.056 3.057 2.486 2.486 2.986 

IWBDl5 Leather 1991 finland 2.031 5.848 6.313 6.391 6.411 6.419 1.377 1.377 1.877 

IWBDI6 Leather 1991 britain 1.760 6.016 6.097 6.099 6.100 6.100 1.234 1.234 1.734 

IWBDI7 Arroyo i 2.762 3.037 3.134 3.173 3.192 3.203 2.011 2.011 2.511 

IWBD18 Arroyo ii 2.570 2.976 3.046 3.063 3.068 3.070 1.895 1.895 2.395 

IWBD19 Arroyo iii 2.212 2.133 2.155 2.170 2.179 2.185 1.319 1.319 1.819 

IWBD20 Barret & Helenurrn 2.228 4.124 4.789 5.108 5.278 5.374 1.465 1.465 1.965 

IWBD21 Clements 1923 3.050 5.099 5.305 5.362 5.38a, 5.401 2.488 2.488 2.988 

IWBD22 Dupont el al. 2003 2.847 3.750 3.923 3.984 4.013 4.031 2.163 2.163 2.663 

IWBD23 Elberling & Olesen 2.352 3.422 3.693 3.815 3.879 3.917 1.688 1.688 2.188 

IWBD24 Hocking 1968 2.193 3.904 4.109 4.186 4.226 4.251 1.600 1.600 2.100 

IWBD25 Kato el al. 1990 2.336 5.292 6.113 6.415 6.550 6.621 1.566 1.566 2.066 

           

6.4. MIANN Models of U.S. Supreme Court  

There is a long tradition on the application of complex networks methods in social sciences; 

known as social network analysis (SNA) since 1930[64]. Using SNA we can unravel non-linear 

relationships between different laws and try to predict for instance the effect of these laws in 

society.  

 

A turning point in this direction is the network constructed by Fowler et al. [4]. It represents a 

wonderful source (possibly the more complete) for the study of dynamics (changes along time) in 

the U.S. Supreme Court. The authors have withdrawn all cases cited in the text of each majority 

opinions from 1754 to 2002. According to them, opinion writers may cite a case just to mention it 

as a reference or because they disagree. Legal rules are cited to provide legal justifications even if 

it is not a reliance on authority. Thus, they included all judicial citations in the dataset (including 

various types of citations) that could link cases together.  



Table 5. Linear vs non-linear MIANN models of BINs of 73 ecosystems. 

MIANN Models Li Li=1 Li=0 % Pr. % Li=1 Li=0 

MLP 12:12-9-1:1 Li=1 3992 2684 81.6 Sn 81.3 1326 898 

 
 

Li=0 902 11934 81.6 Sp 81.6 305 3975 

LNN 11:11-1:1 Li=1 3406 4435 69.6 Sn 69.3 1131 1470 

 

 

Li=0 1488 10183 69.7 Sp 69.8 500 3403 

 
Pr. = Parameter, Sp = Specificity, Sn =Sensitivity. Columns: Observed classifications; Rows: Predicted classifications 

 

SNA can be used to determine how important a case is to law at the Court and measure other 

legal concepts. However, the model is unable to predict the future evolution of these citations. In 

this type of situation, application of a model able to predict the future evolution of connectivity 

patterns Li (direct and indirect citation patterns) of different cases along time may become a useful 

tool. For instance, our group has reported similar models for Spanish financial law network [52]. 

In this sense, it is straightforward to realise that here we should use TIs to describe the complex 

network data. The same authors, have used different node centralities to study this network before 

detecting more relevant cases (higher authority) at different times [5]. In addition, we should use a 

time-series technique if we want to predict the future evolution of case citation patterns. Last, as 

the problem is probably no-linear we should consider the probability of using a powerful non-

linear algorithm to fit the data, as is the case of ANN s. All these features are present in MIANN 

models. Consequently, we decided to combine the new Jk(i) centralities with MIANN analysis to 

model this data. First, we ca1culated the Jk(i) values of all cases. Table 6 summarizes some of 

these values in two different time scales. In this table we give the average of Jk(i) values for USSC 

in 5Ks cites slots vs decades of the citing case. Here 5K cites slot means that we construct a new 

sub-network for each period of time from the starting data in which appear 5000 more cites to U.S. 

Supreme Court cases. It means that 5K scale is divided into irregular periods of time but all sub- 

networks have the same number of links m = 5000 and different number of nodes (cases). 

Conversely, natural time scale networks contain different numbers of nodes (cases) and links 

(cites) accumulated in regular periods of time (decades).  

 

Previously, to carry out the MIANN analysis we decided to explore the possible relationships 

between the Jk(i) values and other node centralities previously used to describe this network. We 

carried out a TWJCA of this dataset as well; see Fig. (2C). We used a Number of variables = 15 

and Number of cases = 25 decades. The other variables used, in addition to Jk(i) values, were the 

following: Zin = in degree, Zout = out degree, Hub = raw Hub score, Hubrank = rank of hub score, 

Auth = raw Authority score, Authrank = Rank of Authority score, Betweeness = 5KCN Node 

betweeness centrality for a give case, Eigenvector = eigenvector centrality measure.  

  



We found a Number of blocks = 112 with a Threshold computed from data = 0.4898979 

(StDv/2), Mean = -0.00, and Standard Deviation = 0.9797958. TWJCA shows that Jk(j) indices of 

the U.S. Supreme Court with degree k = 1 to 5 form their own cluster. The effect is stronger in the 

decades from 1840 to 1990. It is interesting that J0(G) does not form clusters with the other Jk(j) 

indices. In general Jk(j) indices do not form clusters with other TIs or no de centralities of the U.S. 

Supreme Court. The MIANN model here was also the MLP, now with slightly better goodness- 

of-fit with respect (Ac, Sn, and Sp approximately 82-83%) to MRNs and BINs (Ac, Sn, and Sp 

approximately 81%). Interestingly, the best linear model is notably better here with (Ac, Sn, and 

Sp approximately 79%), which is lower but similar to the MLP. Considering that both models 

MLP 18:18-10-1:1 and LNN 18:18-1:1 has very similar performance and the same number of 

inputs we should consider the simpler LNN (18 variables and O hidden neurons) model also as a 

very good model. The MLP needs 10 hidden neurons to increase performance only in 1-2%. The 

situation is curious, linear models were increasing in performance from bio-molecular process to 

ecological and social systems.  

CONCLUSION  

In this work, we report for the frist time a new class of Balaban type parameters called 

Balaban-Markov centralities. Contrary to tradition, the new indices were not defined for small 

molecules but for all classes of systems susceptible to be represented for graphs. We also report 

three proof-of- concept experiments, to test the power of the new Jk(i) indices to predict actual no 

de connectivity patterns in complex bio-molecular, ecological, and social networks.  
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