263 research outputs found

    Kinematic Flexibility Analysis: Hydrogen Bonding Patterns Impart a Spatial Hierarchy of Protein Motion

    Full text link
    Elastic network models (ENM) and constraint-based, topological rigidity analysis are two distinct, coarse-grained approaches to study conformational flexibility of macromolecules. In the two decades since their introduction, both have contributed significantly to insights into protein molecular mechanisms and function. However, despite a shared purpose of these approaches, the topological nature of rigidity analysis, and thereby the absence of motion modes, has impeded a direct comparison. Here, we present an alternative, kinematic approach to rigidity analysis, which circumvents these drawbacks. We introduce a novel protein hydrogen bond network spectral decomposition, which provides an orthonormal basis for collective motions modulated by non-covalent interactions, analogous to the eigenspectrum of normal modes, and decomposes proteins into rigid clusters identical to those from topological rigidity. Our kinematic flexibility analysis bridges topological rigidity theory and ENM, and enables a detailed analysis of motion modes obtained from both approaches. Our analysis reveals that collectivity of protein motions, reported by the Shannon entropy, is significantly lower for rigidity theory versus normal mode approaches. Strikingly, kinematic flexibility analysis suggests that the hydrogen bonding network encodes a protein-fold specific, spatial hierarchy of motions, which goes nearly undetected in ENM. This hierarchy reveals distinct motion regimes that rationalize protein stiffness changes observed from experiment and molecular dynamics simulations. A formal expression for changes in free energy derived from the spectral decomposition indicates that motions across nearly 40% of modes obey enthalpy-entropy compensation. Taken together, our analysis suggests that hydrogen bond networks have evolved to modulate protein structure and dynamics

    On Implicit Bias in Overparameterized Bilevel Optimization

    Full text link
    Many problems in machine learning involve bilevel optimization (BLO), including hyperparameter optimization, meta-learning, and dataset distillation. Bilevel problems consist of two nested sub-problems, called the outer and inner problems, respectively. In practice, often at least one of these sub-problems is overparameterized. In this case, there are many ways to choose among optima that achieve equivalent objective values. Inspired by recent studies of the implicit bias induced by optimization algorithms in single-level optimization, we investigate the implicit bias of gradient-based algorithms for bilevel optimization. We delineate two standard BLO methods -- cold-start and warm-start -- and show that the converged solution or long-run behavior depends to a large degree on these and other algorithmic choices, such as the hypergradient approximation. We also show that the inner solutions obtained by warm-start BLO can encode a surprising amount of information about the outer objective, even when the outer parameters are low-dimensional. We believe that implicit bias deserves as central a role in the study of bilevel optimization as it has attained in the study of single-level neural net optimization.Comment: ICML 202

    Interpretability at Scale: Identifying Causal Mechanisms in Alpaca

    Full text link
    Obtaining human-interpretable explanations of large, general-purpose language models is an urgent goal for AI safety. However, it is just as important that our interpretability methods are faithful to the causal dynamics underlying model behavior and able to robustly generalize to unseen inputs. Distributed Alignment Search (DAS) is a powerful gradient descent method grounded in a theory of causal abstraction that has uncovered perfect alignments between interpretable symbolic algorithms and small deep learning models fine-tuned for specific tasks. In the present paper, we scale DAS significantly by replacing the remaining brute-force search steps with learned parameters -- an approach we call Boundless DAS. This enables us to efficiently search for interpretable causal structure in large language models while they follow instructions. We apply Boundless DAS to the Alpaca model (7B parameters), which, off the shelf, solves a simple numerical reasoning problem. With Boundless DAS, we discover that Alpaca does this by implementing a causal model with two interpretable boolean variables. Furthermore, we find that the alignment of neural representations with these variables is robust to changes in inputs and instructions. These findings mark a first step toward faithfully understanding the inner-workings of our ever-growing and most widely deployed language models. Our tool is extensible to larger LLMs and is released publicly at `https://github.com/stanfordnlp/pyvene`.Comment: NeurIPS 2023 with Author Correction

    Deep Nonparametric Convexified Filtering for Computational Photography, Image Synthesis and Adversarial Defense

    Full text link
    We aim to provide a general framework of for computational photography that recovers the real scene from imperfect images, via the Deep Nonparametric Convexified Filtering (DNCF). It is consists of a nonparametric deep network to resemble the physical equations behind the image formation, such as denoising, super-resolution, inpainting, and flash. DNCF has no parameterization dependent on training data, therefore has a strong generalization and robustness to adversarial image manipulation. During inference, we also encourage the network parameters to be nonnegative and create a bi-convex function on the input and parameters, and this adapts to second-order optimization algorithms with insufficient running time, having 10X acceleration over Deep Image Prior. With these tools, we empirically verify its capability to defend image classification deep networks against adversary attack algorithms in real-time

    Exploring Gender Bias in Semantic Representations for Occupational Classification in NLP: Techniques and Mitigation Strategies

    Get PDF
    Gender bias in Natural Language Processing (NLP) models is a non-trivial problem that can perpetuate and amplify existing societal biases. This thesis investigates gender bias in occupation classification and explores the effectiveness of different debiasing methods for language models to reduce the impact of bias in the model’s representations. The study employs a data-driven empirical methodology focusing heavily on experimentation and result investigation. The study uses five distinct semantic representations and models with varying levels of complexity to classify the occupation of individuals based on their biographies
    • …
    corecore