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Abstract

Example-based learning for Natural Language Understanding (NLU) tasks has been a
long-standing goal of Artificial Intelligence (AI) and has seen major success as machine
learning methods, architecture capacities and the scale of data processing capabilities
have improved in recent decades.

However, training large, opaque models on very high-level objectives such as Natural
Language Inference (NLI) raises fundamental questions about whether appropriate
reasoning strategies have been learnt by a given model. In fact, much work has
highlighted the emergence of spurious heuristics which aid NLI model performance
in unexpected ways, rather than following theoretically expected systematic reasoning
routes using appropriate properties.

Research on model interpretability has been providing rapidly maturing methodolo-
gies which may shed light on the linguistic features and abstract properties captured
within the representations of trained models, as well as their comparative effects on
model predictions.

This thesis isolates a structured subtask of NLI based on natural logic as a frame-
work for applying and developing interpretability methods with the end goal of better
assessing the reasoning capabilities of NLI models. In particular, we model entailment
examples which are single-step natural logic deductions relying on exactly two abstract
semantic features: hierarchical concept relations and the monotonicity of a natural
language context. Responding to behavioural observations of NLI model limitations,
we turn to both observational and interventional interpretability methods to analyze
competitive NLI models’ abilities to perform natural logic deductions and diagnose
failure patterns at a finer granularity.

Overall, the scientific contributions present in this thesis can be summarised as
follows:

1. A study of existing strategies for improvement of natural logic handling in
neural NLI, together with evaluations on previously established monotonicity
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reasoning evaluation sets. This is complemented with an introduction of a context
monotonicity prediction task for a transfer learning improvement strategy for
NLI models. The study reveals that there is not much additional performance
to gain from this strategy over existing improvement strategies. Overall, the
experimental results suggest that enough information may already be gleaned
from fine-tuning on the HELP dataset to support internal latent modelling of the
context monotonicity feature.

2. The construction of the NLI-XY Dataset, which is suitable for interpretability
methods and qualitative error analyses.

3. An extensive probing study to determine the representation of the two semantic
features relevant to natural logic, context monotonicity and concept inclusion
relations. Specifically, we draw comparisons between NLI models before and after
improvement strategies for natural logic handling, showing SOTA models fail to
capture the monotonicity feature, while slightly fine-tuned models demonstrate
strong emergence of this feature after some more balanced training.

4. Qualitative analyses in the form of visualised projections and informative error

breakdowns which further bolster the argument that it is poor context monotonicity

modelling that is a bottleneck for strong out-of-the-box NLI models’ capacity for
correctly identifying valid natural logic deductions.

5. An application of the amnesic probing methodology of Elazar, Ravfogel, Jacovi,
et al. [1] which follow on from our previous structural findings, as well as a
discussion of the limitations of this methodology in this context.

6. The introduction of an alternative interventional probing method which we call
mnestic probing, a variation of amnesic probing, which yields more informative
results in our problem setting.

7. A study of direct and indirect causal effects related to context monotonicity and
concept inclusion relations, following the framework of Stolfo, Jin, Shridhar, et

al. [2] in using these measurements as indicators of robustness and sensitivity.
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Chapter 1

Introduction

1.1 Motivation

Example-based learning for Natural Language Understanding (NLU) tasks such as
Question Answering (QA) and Natural Language Inference (NLI) has been a long-
standing goal of Artificial Intelligence (AI) and has seen major success as machine
learning methods and the scale of data processing capabilities have improved in recent
decades. In particular, so much success has come from the advent of transformer-based
models [3]–[5] that these have come to dominate the NLP landscape, topping the
leaderboards of NLU benchmark datasets such as GLUE [6].

However, training large, opaque models on high-level objectives such as NLI raises
questions about whether we can trust that appropriate reasoning strategies have been
learnt by a given model. In fact, much work has highlighted the emergence of spurious
heuristics which aid NLI model performance in unexpected ways [7]–[9], rather than
following theoretically expected systematic reasoning routes using relevant properties.

Research on model interpretability has provided rapidly maturing methodolo-
gies which may shed light on the linguistic features and abstract properties captured
within the representations of trained models, as well as their comparative effects
on model predictions. For example, works such as Tenney, Das, and Pavlick [10]
and Hewitt and Manning [11] use probing techniques to demonstrate that the repre-
sentations of transformer-based language models capture linguistic information which
is associated with the features used in traditional NLP pipelines (including syntactic

information such as part-of-speech tags and semantic information such as semantic role
labels). To increase our understanding and identify areas of potential improvement in
the reasoning strategies of pretrained NLI models, we would like to be able to identify
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1.1. MOTIVATION 13

when models use expected features in a principled and systematic way, and when they
are falling short.

This thesis isolates a structured subtask of NLI based on natural logic as a frame-
work for applying and developing interpretability methods with the end goal of better
assessing the reasoning capabilities of NLI models. In particular, we model entailment
examples which are single-step substitutions where the entailment label depends on
exactly two abstract semantic features: hierarchical concept relations and the mono-

tonicity property of a natural language context, as exemplified in figure 1.1 and fully
desribed in section 1.2.1.

I did not eat any  𝒙  for breakfast.

Shared Context:
Downward Monotone

Noun Phrase Pair:
Related By Concept Inclusion

fruitraspberries ⊑
I did not eat any  fruit  for breakfast.

I did not eat any  raspberries  for 
breakfast.

Premise

Hypothesis
substitution

Natural Logic Components Model-Ready NLI Example

Standard NLI Evaluation: 

Does the model correctly identify valid 
deductions?

Model Interpretability: 

Is the model capturing and using the 
intermediate features correctly?

Figure 1.1: An example of the type of NLI problem that will be considered in this work.
Whether such examples are to be labelled as entailment or non-entailment depends
on the relation between the substituted phrases and the monotonicity property of the
shared context: the presence or absence these features in NLI models’ encodings will
be examined in the interpretability experiments in later chapters.

Responding to behavioural observations of NLI model limitations, we turn to both
observational and interventional interpretability methods to analyze competitive NLI
models’ abilities to perform natural logic deductions and diagnose failure patterns at a
finer granularity.

Natural Logic This thesis focuses on the setting of natural logic as a framework for
advancing research in systematic inferential capabilities of NLI models. The motivation
for isolating natural logic phenomena within the greater areas of NLI and model
interpretability is two-fold:
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• There is a solid groundwork of behavioural evaluation in the natural logic set-
ting [12]–[15] which has identified insufficiencies even in well-performing NLI
models (with respect to popular benchmarks). However, application of structural
interpretability methods [16] has so far been lacking. In part, this is due to the
somewhat more complex theoretical formulations of natural logic, which we
present in a more abstracted way which is better suited to interpretability studies.
On the other hand, it is the recent improvement stratgies for NLI models’ natural
logic handling capabilities that have made it more likely that we may observe
structural emergence of natural logic features within models.

• Studies in model interpretability are overwhelmingly centered on task-agnostic
linguistic features whose influence on the model objective (e.g. masked language
modelling) is too obscure and diluted in order to draw up structured expectations.
In the absence of expectations, it is both difficult to validate new interpretability
methods, to extend interpretability results to arguments about reasoning capa-

bilites, and to transition from observational to interventional methods. We see
natural logic as a fruitful setting in this regard, as it has just enough structure to
create relatively simple causal expectations.

Transformer-Based NLI Models Shortly before the commencement of this project,
the release of the BERT model [17] signalled the advent of a new era of transformer-
based solutions to NLP tasks. Transformers differed from previous language model
architectures in their integration of an attention mechanism [3] which allowed for rich
contextual representations for all sequence tokens, as well as in their utilization of a new
masked language modelling training objective. After pre-training, transformer models
can be fine-tuned on a secondary task, such as NLI .

The introduction of these architectures was followed by an expansion in NLI models
which greatly surpassed the performance of previous models on well-known NLI task
benchmarks such as MNLI [18] and SNLI [19]. A particularly successful model was
built on RoBERTa [5] (a BERT variation which uses a uses a bytepair encoding scheme
and is trained for more epochs), which is one of the core models we include throughout
this work (namely, roberta-large-mnli). Furthermore, a trend in model interpretability

has increasingly shown the capabilities of transformers to model complex linguistic
features [11] which they are not explicitly trained to classify. Despite this success,
transformer-based NLI models were subjected to rigorous scrutiny which highlighted
the exploitation of spurious patterns that did not mimic the desired principled behaviours
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of inference models [7].

Our motivation for focusing on transformer-based NLI models follows on from
various observations of their limitations, especially with respect to natural logic phe-
nomena [12], [14], as well as interest in the burgeoning area of model interpretability,
which has been introducing new methodologies for slicing open and probing the rep-
resentations of these pragmatically performant but demonstrably flawed and opaque
models.

1.2 Background

1.2.1 Problem Definition

Natural Language Inference (NLI) is a classification task aimed at identifying entailment
relations between sentence pairs. Given a premise p and a hypothesis h (both natural
language sentences), the simplest form of the NLI task is to provide a true or false
classification as to whether p entails h (having read p, a human reader could conclude
that the truth of h can be inferred from the truth of p). A common three class variation
of the problem is to determine whether p entails h, p and h contradict each other, or
neither relationship holds (the neutral label).

The structure of positive entailment examples can vary broadly:

(1) “The lawyer knew that the judges shouted.” implies “The judges shouted.”. [7]

(2) “Mary used her workstation.” implies “Mary has a workstation.”. [20]

(3) “An Irishman won the Nobel prize for literature.” implies “An Irishman won a

Nobel prize.” [14]

A positive entailment label could, for example, be a result of claims in the hypothesis
h that are explicitly or implicitly contained as a subclaim in the premise p (such as in
example (1)), or it could be dependent on intra-sentential anaphora resolution (such
as in example (2)), or it may depend on the inclusion relation between concepts (as in
example (3), where the concept “the Nobel prize for literature” is semantically contained
in the concept “a Nobel prize”).

In the earlier linguistic tradition of building (or theorising about) symbolic natural
language reasoning systems, authors have described a systematic scoped subset of
natural language inference problems which is refered to as natural logic [21]–[23]:
this can be presented as a subtask of the modern the NLI task. Broadly speaking, it
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relates to how we may reason about concepts related by a semantic concept inclusion

relation (like in example (3)), while taking into account the logical effect of functional
words (such as negations and generalised quantifiers). For our purposes, we choose a
presentation of natural logic that may be seen as a form of substitutional reasoning.

Consider the following example of a single step natural logic inference, in which a
noun phrase is substituted for another, yielding a sentence which is entailed by the first:

(4) Premise: I did not eat any fruit for breakfast.
Hypothesis: I did not eat any raspberries for breakfast.
NLI Label: Entailment

Here, the word fruit is substituted with a more specific concept, raspberries. The
hyponym/hypernym pair (raspberries, fruit) exemplifies a more general relation which
we will refer to as the concept inclusion relation ⊑, (and dually, reverse concept

inclusion ⊒), which are analagous to set-theoretic inclusion relations (⊆,⊇). For clarity,
we may also use the symbol # to emphasize an unrelated pair. As we exemplify in
table 1.1, we consider the relation to apply to arbitrarily complex noun phrases such as
noun phrases modified with adjectives and prepositional phrases), which distinguishes
it from the lexical relations of hypernymy/hyponymy.

x y

⊑
raspberries fruit
brown sugar sugar
dogs with hats dogs

# computer potato

Table 1.1: Examples which demonstrate the concept inclusion relation ⊑.

We refer to the shared part of the sentence “I did not eat any for breakfast” as
the shared context. We will refer to it by a functional symbol f , treating it as a function
that takes a noun phrase argument. In this work, we consider only the subset of NLI
examples where the premise–hypothesis pairs have the structure (p = f (x),h = f (y)),
where f is a shared context and (x,y) is a pair of distinct noun phrases with a known
concept inclusion relation (⊑,⊒ or #), where x and y are each inserted into the context
f .

For examples structured in this way, the final entailment label depends on two
properties: the relation between the substituted concepts, and the nature of the linguistic
context surrounding the substituted phrase: in particular, a property of the context called
its monotonicity.
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Example 1 Example 2

Components

Context f I did not eat any
for breakfast

I ate some for
breakfast

Context Monotonicity down ↓ up ↑
Concept Pair (x,y) (fruit, raspberries) (raspberries, fruit)
Concept Relation ⊒ ⊑

NLI Example
Premise f (x) I did not eat any fruit

for breakfast
I ate some raspber-
ries for breakfast

Hypothesis f (y) I did not eat any rasp-
berries for breakfast

I ate some fruit for
breakfast

NLI Label Entailment Entailment

Table 1.2: Two examples following the structure of NLI problems we consider in this
work. Example 1 features a downward monotone context, while example 2 features an
upward monotone one.

Context Monotonicity We say that the context f is upward monotone (↑) if, given a
sentence f (x), we may substitute the noun phrase x for a noun phrase y which is more
general (in particular, where x ⊑ y) and the resulting sentence f (y) is entailed by the
sentence f (x). On the other hand, we say that f is downward monotone (↓) if, given a
sentence f (x), we may substitute the noun phrase x for a noun phrase y which is more
specific (in particular, where x ⊒ y) and the resulting sentence f (y) is entailed by the
sentence f (y). In table 1.2, we give two NLI examples with a positive entailment label:
one of which features an upward monotone context, one which features a downward
monotone one. This table also illustrates how our described components (a shared
context and a pair of noun phrases) combine into a premise and hypothesis pair, which
is the standard NLI model input.

Linguistically, the monotonicity of the context is usually influenced by words such as
negations (for example “not”, “no”) or generalised quantifiers (such as “every”). Much
of the linguistic work in natural logic has been the characterization of the monotonicity
of various linguistic operators. We include some examples of downward monotone
operators in table 1.3 from Yanaka, Mineshima, Bekki, et al. [13]: this demonstrates
the diversity of downward monotone operators, showing that they are not limited to
certain parts of speech.

The monotonicity of a noun phrase “slot” in a context is determined by the mono-
tonicity of all of the operators in whose scope it falls: an odd number of downward
monotone operators yields a downward monotone context, while an even number of
downward monotone operators results in an upward monotone context. For example, the
context “every barks” is downward monotone, while “not every barks” is upward
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Category Examples
determiners every, all, any, few, no
negation not, n’t, never
verbs deny, prohibit, avoid
nouns absence of, lack of, prohibition
adverbs scarcely, hardly, rarely, seldom
prepositions without, except, but
conditionals if, when, in case that, provided that, unless

Table 1.3: Examples of downward monotone operators.

Mon( f )
Rel(x,y) ⊑ ⊒ #

↑ Entailment Non-Entailment Non-Entailment
↓ Non-Entailment Entailment Non-Entailment

Table 1.4: The entailment gold labels as a function of two semantic features: the context
montonicity (Mon( f )) and the relation (Rel(x,y)) of the inserted word pair.

monotone. For an in-depth description of the monotonicty profiles of specific terms and
operators, see works such as Sanchez [21] or MacCartney and Manning [23].

For the set of NLI examples of the p = f (x), h = f (y) structure, the context mon-

tonicity and the concept inclusion relation jointly determine the final gold entailment
label, as illustrated in the diagram below and following the schema in table 1.4.

Context Mono-
tonicity

mon( f ) ∈ {↑,↓}

Concept Relation
rel(x,y) ∈ {⊑,⊒,#}

Entailment Label
for ( f (x), f (y))

Our central enquiry is whether existing trained NLI models can correctly detect the
entailment labels of such NLI examples, and whether they are doing so by determining,
storing and using information about the context monotonicity and the insertion pair
relation in order to reach a decision about the final entailment label. If it is not able
to do so, we would not expect an NLI model to be able to generalise well within this
class of problems. We will later turn to methods in model interpretability to answer this
quesion.

For an NLI model, there is a non-trivial amount of linguistic knowledge required
to determine either of these intermediate features. Correctly classifying the relation
between concepts requires not only a latent lexical hierarchy (hypernymy/hyponymy)
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but the capability to interpret the relations between composed noun phrases which
include modifiers and prepositional phrases (such as “dogs” and “dogs with hats”).
Context monotonicity is a complex feature, which can further be decomposed into the
monotonicity profiles of the linguistic operators which give rise to it. In this work, we
are only interested in whether NLI models reflect the coarsest decision mechanism of
how the final monotonicity label and the concept relation give rise to the entailment
label. This is because it is simple enough to hypothesise and test how this reasoning
strategy may be reflected in NLI models’ internal representations, and to define a simple
causal diagram which may be used to guide interventional experiments. In particular,
our coarse segmentation of the monotonicity feature makes the interpretability work in
chapters 5 and 6 possible.

As such, we do not focus on the decomposition of the monotonicity label in our
problem definition or our experiments, but point to works such as Hu and Moss [24],
Hu, Chen, Richardson, et al. [25] and MacCartney and Manning [23], which provide
different formalisms of the compositional monotonicity phenomenon to the end of
creating symbolic natural logic inference engines. We mention especially the ccg2mono

system from Hu and Moss [24] which assigns a “polarity” marking to every word in
a sentence, taking into account the monotonicity of relevant operators. This polarity
marking indicates when a word may be replaced with one with a more general or more
specific meaning, yielding an entailed sentence. This is equivalent to our notion of
the monotonicity of that word’s context, and it is owing to this system that we have
the context monotonicity labels used in our experimental work via the HELP [14] and
MED [13] datasets which have used it as part of their data creation process.

A Note on Notation When describing concept pairs (x,y) in ensuing chapters (es-
pecially when they represent existing publications), we may at times refer to them
as insertion pairs or word/term pairs either to reflect the practicalities of the dataset
construction, or for simplicity (but we note that the concepts are not necessarily single
words). The concept inclusion relation ⊑ is thus sometimes refered to as the insertion

pair relation, the word pair relation or the lexical relation.

Across the literature, the term natural logic is also described as monotonicity logic

or monotonicity reasoning. In Richardson, Hu, Moss, et al. [12], it is described as
a fragment of the NLI task, while in this work we more commonly refer to it as a
subtask. As we are only dealing with a single noun-phrase substitution at a time, our
formalized examples may themselves be seen as a subtask of a more general idea of
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natural logic inferences, as in MacCartney and Manning [23] and Hu and Moss [24].
However, since we are often dealing with compound noun phrases, these can technically
still be seen as multi-step natural logic deductions, so they are not dramatically less
complex. Throughout the ensuing chapters, we use the terms natural logic, monotonicity

reasoning and natural logic subtask interchangeably to describe our fragment of NLI
examples, but note that this may not coincide exactly with these terms descriptions in
related works.

1.2.2 Problem Statement

In this section, we describe a set of challenges and limitations at the intersection of
neural NLI and model interpretability which directly motivate the research questions
and subsequent work presented in this thesis.

1.2.2.1 Behavioural Limitations of NLI Models

The advent of transformer-based [3] language models such as BERT [4] and RoBERTa
[5] has resulted in impressively high-performing NLI systems with respect to popular
benchmark datasets such as SNLI [19] and MNLI [18].

However, these models are opaque in their reasoning and are primed to exploit
spurious correlations and artifacts in the training data [7], [9]. For both transformer-
based NLI models and earlier neural architectures, there is a rich research landscape of
investigations into their behaviour and treatment of targeted phenomena [7]–[9], [12],
[13], [26]–[30].

Some works have identified particular heuristics adopted by NLI models, such
as a hypothesis-only bias [9], [28], over-reliance on lexical overlaps [7], [26] and
subsequences [31], or the presence of specific words: for example, negation words are
strongly correlated with a “contradiction” label [9], [31].

Especially in light of the observed issues with negation handling, variations of
the natural logic task have received targeted evaluation treatment in several works,
namely Richardson, Hu, Moss, et al. [12], Yanaka, Mineshima, Bekki, et al. [13], [14],
and Geiger, Richardson, and Potts [15]. In particular, Yanaka, Mineshima, Bekki, et al.

[13] and [15] have introduced monotonicity reasoning evaluation datasets (MED and
MoNLI) which revealed a tendency of top-performing out-of-the-box-NLI models to
consistently underperform on a subset of examples which require downward monotone
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reasoning. This hints towards a lack of implicit monotonicity modelling in state-of-
the-art NLI models, which would complement previous observations about negation
handling.

There are, however, existing improvement strategies: both Richardson, Hu, Moss,
et al. [12] and [14] demonstrate that with additional fine-tuning on the NLI objective
with a balanced set of montonicity reasoning examples, performance on the targeted
evaluation sets can be made to improve.

In summary, we note the following observations:

1. NLI models are seen to handle negations poorly.

2. NLI models often fail to classify entailment relations when faced with a downward
monotone context, suggesting that the concept of monotonicity may be absent
from the information captured and represented by models.

3. Their performance on natural logic challenge tasks can be improved by fine-tuning
on an additional set of NLI examples with balanced monotonicity representation.

1.2.2.2 Lack of Structural Interpretability

Behavioural studies give rise to hypotheses about the features which are being taken
into account by models, but structural interpretability studies are needed to make
direct observations of model internals to determine if and where certain information is
captured.

As such, the observations made about natural logic handling in NLI models allows
for the hypothesis that state-of-the-art models fail to model monotonicity while “innocu-
lated” versions of the same models might be doing so, but work still needs to be done in
order to quantify how well the respective intermediate features are captured structurally
in the models. Some steps have indeed been made in this direction: for example, Geiger,
Richardson, and Potts [15] provide their own natural logic formalism (limited to the
“not” downward monotone operator) which allows for some interpretability, and they
perform a probing study which demonstrates the presence of lexical hierarchical rela-

tions in the representations of NLI models. They do not, however, run experiments on
detectability of context monotonicity

This problem space can also be seen as a useful addition to the field of NLP
interpretability in general: we outline in section 2.2.1 that there has not been much work
on interpretability for task-specific features of models fine-tuned for specific natural
language understanding tasks (as opposed to foundational pretrained language models).
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In summary, we highlight these general limitations:

1. The majority of interpretability work in NLP focuses on task-agnostic linguistic
features, limiting the capacity for hypothesising about model reasoning patterns.

2. Behavioural studies are suggesting that state-of-the-art models fail to capture
proper monotonicity reasoning strategies, but there is no structural evidence that
this is due to a lack of the context monotonicity feature in model representations.

3. Previous structural interpretability work shows that NLI models show a strong
ability to capture lexical relations (a specific case of our concept inclusion rela-
tions) in their intermediate representations, but context monotonicity has not yet
been structurally observed in the context of NLI models.

1.2.2.3 Interventions and Causal Influence

Our observations in chapter 4 demonstrate that certain models are indeed capturing
context monotonicity and concept relations, but strong arguments have been made that
high probing performance only allows us to deduce a correlational connection between
model behaviour and the model internals [32]. In fact, Ravichander, Belinkov, and
Hovy [33] find that even task-irrelevant features can be learnt to be predicted with a high
accuracy by external probes. As such, we cannot yet make the leap that the NLI models
which are seen to encode monotonicity in their representations are actually using this
feature in the way they should. Researchers advocate for the use of interventional

studies to support the stronger claim of feature use.

Elazar, Ravfogel, Jacovi, et al. [1] present an interventional method that is tightly
linked with probing methodology: amnesic probing. This strategy relies on projecting

away the representation subspace most linked with high probing performance for a
given task, resulting in a representation from which the target feature has effectively
been “removed”. The modified representations are fed once again into the final task
classifier, and a drop in performance is taken to suggest that the target feature was a
necessary component for correct classification. This approach is our first port of call in
chapter 5, but we discover some curious limitations: amnesic probing of the gold label

of the final task fails to result in a performance drop, and similarly for our features of
interest. As well-suited as the amnesic probing paradigm is for our setting, its inefficacy
leaves a gap for a more informative probing-based interpretability method. We also
note that the previous tasks to which amnesic probing has been applied do not come
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with clear-cut expectations for how the features should impact model behaviour, while
the natural logic setting does - this is an advantage that our work brings to the greater
interventional interpretability landscape.

Lastly, an argument that a given feature is being used by a model should draw on
causal modelling and present causal effect measures, which our applied interventional
probing methods do not do. However, there is the potential to apply input-level inter-
ventional methods (such as Stolfo, Jin, Shridhar, et al. [2]) which are used to estimate
causal influence. While causal effect estimations have been applied to problems such as
examining the influence of gender features in text [34] and syntax [35], there does not
yet appear to be such work applied to NLI.

In summary, we highlight the following gaps:

1. Our early interpretability studies follow methods that can only bring about corre-

lational observations: for stronger evidence of causal impact, we need to turn to
interventional studies.

2. Despite strong probing results, our application of amnesic probing results in some
contradictory results, indicating that the method is insufficient for interventions
in our setting.

3. The strongest form of causal argument relies on the measurement of causal effects,
which has not yet been employed in an NLI setting.

1.3 Research Questions and Objectives

Our overarching concern is the reasoning behaviour of NLI models. The natural logic
setting offers sufficient structure and simplicity to apply and develop interpretability
methods that can shed light on whether models are capturing and using well-understood
task-specific features. This thesis aims to answer the question:

RQ 0: How well do existing NLI models perform natural logic deductions, and

to what extent are they implicitly modelling context monotonicity and concept

inclusion relations to do so in a systematic way?

1.3.1 Building on Behavioural Observations

The first publication presented in this thesis (chapter 3) follows up on the observations in
section 1.2.2.1. As a first step, we consider the hypothesis that poor context monotonicity
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modelling is a bottleneck for natural logic performance, and ask:

RQ 1: How much does fine-tuning on the HELP dataset improve NLI models’

performance on existing natural logic evaluation datasets? Would a secondary

transfer-learning task based on the prediction of context monotonicity result in

an improvement in overall evaluation scores?

The results of our experiments showed that such a secondary training objective did not
significantly improve upon the natural logic performance gains observed in [14]. We
hypothesise that existing fine-tuning strategies may have already resulted in context
monotonicity as an emergent latent feature within the model. To investigate this idea, we
turn to the field of model interpretability to dig deeper and make comparisons between
existing models and training regimes.

In chapter 2 we outline the relevant background in model interpretability which we
have considered, with the end of answering the question:

RQ 2: Which interpretability methods are best-suited for our interest in de-

tecting emergent intermediate features?

With our interpretability goals in mind, we ask:

RQ 3: How can we construct a natural logic dataset that is suitable for both

targeted evaluation and interpretability?

We address RQ 3 by introducing a compositional dataset (NLI-XY ) in chapter 4.

1.3.2 Observational Interpretability Study

Formalising the NLI-XY dataset has allowed for structural interpretability work that
aims to disentangle the representation of context monotonicity and concept inclusion
relations. As an initial step, we observed that visualisations (available in chapter 4) of
the improved NLI models’ projected vector representations show a strong clustering
behaviour which distinguishes between downward and upward monotone contexts,
which is notably absent in the baseline state-of-the-art models. This supported the
suggestion that a notion of concept monotonicity was emergent after fine-tuning on the
HELP dataset introduced in Yanaka, Mineshima, Bekki, et al. [14], but the goal of the
work in chapter 4 is to further support this with a systematic and quantitative structural
interpretability study. Hence, in that work, we ask:

RQ 4: Are the intermediate features of context monotonicity and concept

inclusion relations emergent in the internal representations of NLI models
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which perform better at natural logic tasks? Can we provide comparative

quantitative evidence?

We address this by carrying out an extensive probing study, with the choice of
methodology supported in chapter 2. Furthermore, the compositonal structure of our
dataset allows for informative qualitative error breakdowns (presented as heatmaps in
chapter 4), which, in combination with the probing and visualisation work, help us to
answer the question:

RQ 5: Which features are responsible for errors in poorer-performing models?

1.3.3 Interventional Interpretability Study

In section 1.2.2.3, we discussed how our probing work is limited in the conclusions we
are able to draw. We build on the existing observations by asking:

RQ 6: What can structural interventional methods tell us about the usefulness

of the identified representations for the NLI task?

Our first attempt at addressing RQ 6 focuses on the existing amnesic probing

methodology, which we apply and present in chapter 5. As we will discuss in more
detail, the application of amnesic probing yields unexpected (and even contradictory)
results. This led us to consider:

RQ 7: How can we devise an alternative interventional interpretability method

that is still informative in the high-dimensional situations where amnesic

probing fails?

We introduce the alternative methodology of mnestic probing in chapter 5 to address
RQ 7.

Despite the interventional nature of these techniques, it is still our aim to incorporate
causal measures into our study, as the strongest level of interventional argument for the
influence of our features of influence. In our final chapter, we ask:

RQ 8: What can causal effect measures from interventional experiments tell us

about NLI models’ robustness and sensitivity to different types of intermediate

feature changes?

We address RQ 8 by following the structure of Stolfo, Jin, Shridhar, et al. [2] to
design a re-arrangement of our dataset into intervention sets which allow us to calculate
certain causal effect measures. As well as providing a proxy measure of robustness
and sensitivity, this adds a final causal layer to our argument about the emergence and
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use (or lack thereof) of context monotonicty and concept inclusion relation features in
neural NLI models.

1.4 Contributions

The contributions introduced in the works comprising this thesis may be summarised as
follows:

C 1. A study of existing strategies for improvement of natural logic handling in neu-
ral NLI, together with evaluations on previously established monotonicity reasoning
evaluation sets. This is complemented with an introduction of a context monotonicity
prediction task for a transfer learning improvement strategy for NLI models. The study
reveals that there is not much additional performance to gain from this strategy over
existing improvement strategies. Overall, the experimental results suggest that enough
information may already be gleaned from fine-tuning on the HELP dataset to support
internal latent modelling of the context monotonicity feature.

C 2. The construction of the NLI-XY Dataset, which is suitable for interpretability
methods and qualitative error analyses.

C 3. An extensive probing study to determine the representation of the two semantic
features relevant to natural logic, context monotonicity and concept inclusion relations.
Specifically, we draw comparisons between NLI models before and after improvement
strategies for natural logic handling, showing SOTA models fail to capture the mono-
tonicity feature, while slightly fine-tuned models demonstrate strong emergence of this
feature after some more balanced training.

C 4. Qualitative analyses in the form of visualised projections and informative error

breakdowns which further bolster the argument that it is poor context monotonicity

modelling that is a bottleneck for strong out-of-the-box NLI models’ capacity for
correctly identifying valid natural logic deductions.

C 5. An application of the amnesic probing methodology of Elazar, Ravfogel, Jacovi,
et al. [1] which follow on from our previous structural findings, as well as a discussion
of the limitations of this methodology in this context.

C 6. The introduction of an alternative interventional probing method which we call
mnestic probing, a variation of amnesic probing, which yields more informative results
in our problem setting.
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Figure 1.2: Overall structure of the thesis and dependencies between the chapters, as
well as connections to the numbered research questions.

C 7. A study of direct and indirect causal effects related to context monotonicity and
concept inclusion relations, following the framework of Stolfo, Jin, Shridhar, et al. [2]
in using these measurements as indicators of robustness and sensitivity.

1.5 Thesis Outline

The thesis is organised as follows:

Chapter 2 summarises existing work on model interpretability and weighs up the
usefulness of previous approaches to our problem setting. The aim of this chaper is to
provide an overview of the greater interpretability discussion within which we operate,
and motivate the decisions we have made in choosing the experiments carried out
throughout this work.

Chapter 3 contextualises many of our ensuing experiments with a summary of
existing work specific to the behavioural evaluation of natural logic phenomena in NLI,
highlighting observations that context monotonicty is poorly handled by contemporary
models. In this chapter, we also present an intermediate context monotonicity detection
task which is posited as a potential strategy for supporting better modelling of context
monotonicity.

Chapter 4 introduces the NLI-XY dataset, following on from the described structure
of the natural logic problems of interest. This dataset serves as the basis for a suite
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of structural interpretability experiments and qualitative analyses, with a focus on
comparing state-of-the-art NLI models to versions which are improved in their natural
logic handling capabilities.

Chapter 5 builds on the contributions in chapter 4 by extending the probing studies
to interventional probing studies, applying an existing method and introducing a new
variation better suited to our setting, in light of new observed limitations of the existing
approaches.

Chapter 6 takes an alternative approach to the interventional probing methods in
chapter 5 and instead views the problem through a causal lens. Specifically, the chapter
includes the presentation of a causal diagram which lets us apply frameworks that
interpret certain causal effect measures as indicators of robustness and sensitivity to our
intermediate semantic features.

Lastly, Chapter 7 ties together our findings and discusses key limitations which
suggest avenues of future work.

1.6 Publications

• Chapter 3: Supporting Context Monotonicity Abstraction in Neural NLI
Models.
Julia Rozanova, Doborah Ferreira, Mokanarangan Thayaparan, Marco Valentino,
André Freitas. NaLOMa workshop at IWCS 2022

• Chapter 4: Decomposing Natural Logic Inferences in Neural NLI.
Julia Rozanova, Doborah Ferreira, Mokanarangan Thayaparan, Marco Valentino,
André Freitas. BlackBoxNLP at EMNLP 2022

• Chapter 5: Interventional Probing in High Dimensions: An NLI Case Study.
Julia Rozanova, Marco Valentino, Lucas Cordeiro, André Freitas. Findings of

EACL 2023

• Chapter 6: Estimating the Causal Effects of Natural Logic Features in Neural
NLI Models.
Julia Rozanova, Marco Valentino, André Freitas.



Chapter 2

Structural Interpretability for NLP

This chapter addresses RQ 2 (Which interpretability methods are best-suited for our

interest in detecting emergent intermediate features?) by presenting a synthesis of previ-
ous structural interpretability studies of linguistic features in NLP models (specifically
focusing on probing), as well as a summary of recent methodological discussions on
how best to perform probing studies in a way that decouples the contribution of the
probing task and probe itself from the already emergent information in the studied
models’ representations. Lastly, it includes an overview of how interpretability methods
have been extended to interventional approaches.

2.1 Introduction

The aim of post-hoc model interpretability work centers around the following form of
questions:

Given a neural model trained for an NLP task,

• Which aspects of the end task is the model more or less capable of performing?

• What information has the model learned to extract from its inputs?

• How and where does this information become apparent in the model?

• How does the learned information (such as distinguishable properties and features)
inform the model predictions?

We distinguish between behavioural and structural approaches to answering the
above questions. Behavioural studies aim to draw conclusions from looking only at

29
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characteristics of the textual inputs compared to various output measures related to the
given end task. Normally, this takes the form of targeted evaluation sets: specifically,
task “fragments” that aim either to expose hypothesized heuristic exploits [7], [31] or to
isolate a testable aspect of idealized behaviour [12], [13], [36].

On the other hand, structural interpretability emphasizes the study of the interme-
diate functions and representations within the model. Improved capabilities of NLP
models have resulted in increased interest in more in-depth analyses as to the interme-
diate features and reasoning patterns learned by models. Some such strategies have
been quite structure-specific, such as visualisation of neuron activations [37]–[39],
examining attention patterns [40], and gradient-based approaches such as saliency
analysis [41]. More recently, much focus has been placed on directly examining the
intermediate representations of a given set of inputs, which is a more architecture-
agnostic approach (given that intermediate hidden vector states is a shared structure
between many architectural setups). This is done either through projection and visu-
alisation or (more quantitatively) through probing [32]. None of the above have been
without critical scrutiny, with various works questioning their usefulness, faithfulness
and manipulability [32], [42]–[46].

In particular, we have found great utility and promise in the recently burgeoning area
of probing language model representations. Given early representation visualisation
observations in our problem space, probing has been a natural fit and a point of entry
into an active discussion on interpretability methodology.

As such, the ensuing in-depth overview in section 2.2 focuses almost entirely on the
goals, applications and methodological trends in probing that have informed large parts
of the work in this thesis. For a broader overview of interpretability methods in NLP, we
recommend Belinkov and Glass [16], Madsen, Reddy, and Chandar [47] or Belinkov,
Gehrmann, and Pavlick [48].

Finally, we make one more distinction which captures an overarching trend in
both this work and the greater interpretability landscape: the shift from observational

to interventional interpretability studies. We refer to interpretability methods which
focus on the post-hoc examination of static values (representations, attention weights,
etc) as observational studies (also referred to as “inspection-based” studies in Tenney,
Das, and Pavlick [10]). These allow for identifying correlational patterns and making
interpretability hypotheses, but as many works have pointed out, they are limited in
their capacity to support any causal claims; there is no guarantee that observed presence
of features are in fact used by the model for a given end-task, and in fact the opposite
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has been observed [49]. This shortcoming ushers in the later wave of interventional

interpretability methods, which we will turn to in section 2.3. In contrast to observational
studies, interventional studies introduce a modification to either the raw model input,
the encoded input representation or the model’s strucuture (e.g. weight values) in order
to observe the effects of certain changes on model predictions.

2.2 Observational Methods: Representation Probing

At its core, the probing methodology can be described as “associat[ing] internal rep-
resentations with external properties, by training a classifier on said representations
that predicts a given property” [32]. It is a strategy that allows us some insights into
the abstractions internally encoded by neural models, and in so doing to demonstrate
“qualitative properties of the learned representations” [50].

The word “probing” has at times been used in a wider sense than we apply here:
it has been used to refer both to behavioural strategies like diagnostic test sets and to
smaller-scale secondary reasoning task which do not feature any additional training,
such as in Richardson, Hu, Moss, et al. [12] or Talmor, Elazar, Goldberg, et al. [51].
Throughout this work, we use “probing” to mean the training of external machine
learning models which take intermediate representations or sets of model weights as
their inputs, in order to investigate their structure.

The choice of representations probed depends on the model task and its architecture;
earlier studies probe sentence-level representations (as in [52]), while the advent of
contextualised word vectors from sequence-based models such as BiLSTMs [53] and
Transformers [3] has ushered in a greater interest in probing word-level (usually, pooled
token-level) representations (as in [54], [55]).

A more exhaustive and general survey of the application and criticisms of probing
classifiers can be found in Belinkov [32], and while we cover a similar group of work,
we aim to isolate trends and discussion points which help us answer two questions
relevant to our research objectives:

• Is the natural logic setting bringing any novelty or advantages to the landscape of
structural interpretability studies in NLP?

• Which methodological approaches and perspectives are best suited to design a
probing study for our natural logic setting?
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We proceed in two directions. Firstly, in section 2.2.1 we glance at the nature
of probing tasks that have been of interest in probing studies from the time period
leading up to the start of the research presented in this thesis, and position our area of
interest with respect to these. In particular, we highlight a predisposition for probing
task-agnostic linguistic features, while we are interested in NLI task-specific features.

Secondly, in section 2.2.2 we discuss the ways in which probing methodologies
have varied, and address the widely-discussed nuances in the goals of probing studies
that have informed the practices we choose to adapt in our own work.

2.2.1 Probing Tasks

In this section, we sketch the trends in the types of model objectives examined vs the
intermediate feature identification tasks being probed for.

We call the final task for which the model in question has been trained on the model

objective, although we acknowedge that (in line with the general state-of-the-art for
NLP tasks) most models have multiple training objectives in their lifespan; for example,
roberta-large-mnli is really pretrained on a language modelling objective before being
further fine-tuned on the NLI objective, but we refer to the final fine-tuning task as the
model objective.

By probing task we refer to an auxiliary task which aims to detect intermediate
lower-level features which may (directly or indirectly) be useful for the model objective,
or at least arising from one of the model’s previous training objectives. The structure of
probing tasks varies as much as that of legacy NLP tasks. Much of the later methodolog-
ical discourse centers classification tasks for probing, but many traditional NLP tasks
(along with their associated metrics, and even custom prediction architectures [55])
have been reformulated as probing tasks; as such, probing tasks can extend beyond
classification to (for example) tree-structured prediction tasks [11].

We distinguish between superficial tasks ( ), basic syntactic tasks ( ), composition-
ally/hierarchically structured syntactic tasks ( ) and semantic tasks ( ). As mentioned
in [52], we observe that these separations are somewhat arbitrary, but attempt to be as
consistent as possible with the task categorisations in the source material 1.

At the most superficial level, models have been probed for features such as sentence
length ( 1), word order ( 2) and lexical identity ( 3) [52], [57]. A large majority of

1Some categorisations have contradicted each other: in Conneau, Kruszewski, Lample, et al. [52],
number prediction (classifying as singular/plural) is considered a semantic task, while Linzen, Dupoux,
and Goldberg [56] treat it as a syntactic one.
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Probed Feature Reference
Symbol

Probed Feature Reference
Symbol

Superficial Comp/Hierarch

Sentence Length 1 Span Constituent Labels 1
Word Order 2 CCG Supertagging 2
Lexical Identity 3 Syntactic Ancestor 3

Tree Depth 4
Constituency Parse Tree 5
Arithmetic Intermediate
Values

6

Syntactic Semantic

Part of Speech 1 Coreference 1
Syntactic Chunking 2 Semantic Roles / Se-

mantic Proto-Roles
2

Grammaticality 3 Named Entities 3
Conjunct Identification 4 Dependencies 4
Bigram Shift 5 Similarity/Analogy 5
Number 6 Semantic Odd-Man-Out 6
Tense 7 Coordinate Inverstion 7

Concept Relations 8
World Knowledge 9

Table 2.1: Reference table for shorthand symbols to identify the linguistic features
probed in various probing studies summarised in table 2.2.

probing studies include syntactic tasks: POS tagging ( 1) is strongly represented in
probing studies ([10], [11], [52], [54], [58] and many more), while others include
tasks such as syntactic chunking ( 2), grammatical error detection ( 3) and conjunct
identification ( 4) [58].

There have also been some syntactic tasks that touch on elements of hierarchical/-
compositional syntactic structure without quite reaching the shape of a full parsing
task: this includes identifying span/high level constituent labels ( 1) [10], [50], [52],
[54], CCG supertagging ( 2) [58], syntactic ancestor prediction ( 3) [58], and tree
depth ( 4) [11], [52]. The question of whether full constituency parse trees can be
recovered from contextual representations ( 5) has been explored, but requires some
additional sophistication in probe structure [11], [50]. In Hewitt and Manning [11],
the authors train linear probes (emphasizing low-rank linear transformations) with a
training objective that expects distances between word representations to be predictive
of parse tree edge numbers.

A greater interest in semantic properties came a bit later; this was in part due
to a shift from sentence representations to word-level representations allowing for
for “edge”-style probing tasks [54], where pairs of word-level representations were
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Probed Features Model Objective

Superficial Syntactic Comp/Hierarch Semantic MT Autoencoder LM/MLM Seq2Tree NER SRL Arithmetic NLI
[56]Linzen et al, 2016 3, 6 x
[59]Shi et al, 2016 7 1 x
[57]Adi et al, 2017 1, 2, 3 x
[60]Belinkov et al, 2018 1 3 x
[61]Giulianelli et al, 2018 6 x
[52]Conneau et al, 2018 1, 3 1, 5, 6, 7 1, 4 6 x x x x
[50]Peters et al, 2018 1 5 1 x x x x x
[62] Zhang et al, 2018 1 2 x x
[54]Tenney et al, 2019 (a) 1, 1 1, 2, 3, 4, 8 x
[10]Tenney et al, 2019 (b) 1, 1 1, 2, 3, 4, 8 x
[58]Liu et al, 2019 1, 2, 3, 4 2, 3 1, 2, 3, 4 x
[11]Hewitt et al 2019 (a) 1 x
[63]Jawahar et al 2019 1, 3 1, 5, 6, 7 1, 4 6 x
[64]Hewitt et al 2019 (b) 5 x

Table 2.2: An overview of linguistic features probed for in early probing studies and
the model objectives of the examined models.

probed for information about pairwise relations, such as coreference ( 1) [50], [54],
dependencies ( 4) [54], semantic roles and similar semantic tags ( 2) [54], [58], lexical
relations [55] and higher-level entity relations, such as “cause-effect” relations [54] (we
group these and other similar tasks under “concept relations” 8). Non arc-structured
semantic word-level/span-level properties probed in a similar vein included named
entites ( 3) and word similarity ( 5).

Task-Specific vs Task-Agnostic Features Earlier probing and interpretability work
(loosely speaking, pre-BERT) which focused on sentence representations studied a di-
verse variety of base model objectives, including models with NLI, machine translation
and autoencoder objectives. Ensuing works focus more on models trained on the masked

language modelling objective (in the case of BERT models, this is is alongside a next
sentence prediction objective). This is a deviation from the more colourful pre-BERT
landscape, and we are eager to advocate a return to greater diversity in studied model
objectives.

In particular, this is because one of the greater aims of interpretability work is to
feed into arguments about model reasoning strategies: however, the early emphasis
on probing task-agnostic features leaves little room for speculation about how these
features are used to inform the model predictions. As language modelling is such a
complex and multi-faceted task, it is especially limited in this sense.

In general, it would be useful to choose model objective/probing task pairs which
have a clearer (expected) relationship: if we can investigate task-specific features in task-
specific models, with prescribed ideas of how the features should be impacting model
outputs, the road is clear for more testable interpretability and reasoning hypotheses.
We find natural logic to be a suitable setting for such a study, especially because it
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finds a balance between naturalistic NLI examples which rely on a significant amount
of linguistic complexity (via context monotonicity and noun phrase modification) and
world knowledge (via lexical relations), while still boiling down to a reasoning paradigm
which can be represented with a simple causal diagram.

Despite the plethora of linguistic feature probing works, not many of these follow
this kind of structure. A few examples that are the closest in spirit include Giulianelli,
Harding, Mohnert, et al. [61], which probes intermediate calculation values of an
LSTM-based arithmetic model. In particular, they test hypotheses about the order

in which intermediate values are calculated. We mention two more, which have also
noticed the useful structure of natural logic tasks:

Existing/Contemporary Work On NLI and Natural Logic In strongly aligned
contemporary work in Geiger, Richardson, and Potts [15], the authors also apply in-
terpretability approaches to their own natural logic subtask. However, their structural
probing applies only to a lexical relation label (also not accounting for phrase-level
concept relations), and not the monotonicity profile. While their dataset does include a
distinction between upward and downward monotone settings for their lexical substi-
tutions, the only downward monotone operator present is the negation operator “not”,
while we incorporate a greater variety of downward monotone operators. More re-
cently, Jumelet, Denic, Szymanik, et al. [65] did some probing experiments on detecting
polarity of monotonicity environments. However, they do not study entailment/NLI
models, focusing rather on a language modelling objective, and are interested in the
impact of monotonicity on negative polarity item licensing.

2.2.2 Methodological Trends and Developments

Early work on probing was naturally much influenced by the pre-2019 NLP paradigm,
where independently trained word representations (e.g. word2vec [66], GloVe [67],
ELMO [68]) were used as inputs to machine learning models for downstream NLP tasks.
Embedding “quality” was tied to how well the representations allowed for potential
secondary model performance maximisation on a downstream task. The structure is
in many ways identical to probing: static representations (trained using a different
objectives and architectures) are used to train a new model for a different NLP task.
It is expected that similar experimental setups were initially used for probing, such
as the comparison to human performance upper bounds [52] and even using the same
architectures for probes as for the original downstream NLP tasks they were designed
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for [55].

The greater theme of this section is to demonstrate how the field identified the subtly
different goals of probing, and moved away from older experimental setups to new
constraints and best practices. The key question that has begun to dominate probing
studies is to what extent intermediate features are emergent and thus easily extractable

in learned representations, rather than how much capacity the representations have to
be predictive of a secondary feature given an arbitrary amount of additional training.

Throughout this growth process, experimental setup for probing studies has been
broadly scattered, with design choices reflecting slight differences in goals and perspec-
tives. The streamlining of methodological standards for probing has been an ongoing
topic of discussion and reasearch throughout the years spanning this thesis project. We
describe the variations, insights and suggestions that have influenced our work.

We consider four dimensions of variation: baselines and control tasks, layer-wise
dynamics, probe complexity and training dynamics. We present a timeline of the
mentioned works in table 2.3.

1. Baselines and Controls

Efforts to contextualise probing results by comparing their capabilities to rea-
sonable baselines have been present throughout most probing works, but the
choice of baselines has not been in any way homogenous across studies. Baseline
choices have included either lower-bound representational baselines which are
known to capture specific aspects of relevant information (such as a TF-IDF-
based representations [52]) or randomised representations [52], [54], [62]. Upper
bounds are less prevalent in probing, but two examples include the use of a human
task performance upper bound [52] or a higher-complexity probe constructed in
a similar way to a prior state-of-the-art model for a specific task [58]. Choice
of baselines is also narrative-dependent: for example, studies wishing to isolate
contextual influence (e.g. [54], [55], and [58]) included representational baselines
fron non-contextual word encoders such as GloVe ([67]).

Closely linked to the practise of a representational baseline (known to capture
a minimal amount of information that allows for a simplistic approach to the
task) is the use of control tasks. Hewitt and Liang [64] design a control task for
POS tag probing by randomly re-labelling the POS dataset in a structured way
that demonstrates the “most frequent tag” (MFT) strategy: namely, assigning
the same tags to all shared surface word forms across the train and test set. In a
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similar spirit, Pimentel, Valvoda, Hall Maudslay, et al. [69] advocate designing
a control function, but theoretical work in Zhu and Rudzicz [70] argues that this
is information theoretically equivalent to the control tasks in Hewitt and Liang
[64].

Many proposed probing metrics incorporate the ideas of baselines or controls
by subtracting the accuracy of a control task (“selectivity”, [64]), subtracting
the accuracy of a baseline representation in the form of a previous layer, or a
concatenation of the previous layer with the target layer ([71], [72]). We discuss
the use of previous layers as baselines more in the context of layer-wise dynamics
in the next section.

2. Layer-Wise Dynamics

Beyond static auxiliary tasks applied to a fixed choice of representation, there is
interest in where certain types of information emerges across layers ([10], [60],
[71], [72]), and whether this is in line with more traditional NLP pipelines or
other expectations for order in linguistic information types [10], [72].

At its simplest, this can be an inclusion of a probing score at each layer [11],
[55], [60], In more mature strategies, these lines of investigation can include
their own adapted metrics and probe architectures: for example, Tenney, Das,
and Pavlick [10] use scalar mixing weights, which allow them to simultaneously
probe multiple layers with tunable layer weights. These in turn serve as a metric
for layer relevance for a given probing task. Layer weights are summarised with
a “center of gravity” metric, serving as an expected value for the most impactful
layer. They also provide a cumulative version of their score, where the scalar
mixing strategy is applied to all layers up to a given layer n.

Other works turn to earlier model layers as a baseline for demonstrating informa-
tion gain across layers: Hewitt, Ethayarajh, Liang, et al. [71] substract probing
scores for a given layer from the zero-th layer, while Kunz and Kuhlmann [72]
adapt these metrics to condition on the previous layer.

A recurring observation in these order-focused studies is that lower-level, syntactic
information is more present in earlier layers, and can even be “forgotten” in later
layers. Meanwhile, higher-level semantic information is more prevalent in later
layers [10], [63].
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Liu, Gardner, Belinkov, et al. [58] introduce a notion of comparative transfer-

ability of layer representations; in their description, layers which achieve greater
probing scores across a large variety of tasks are deemed to be “more transfer-
able”. They posit that recurrent architectures have early layers demonstrating the
most transferability, while transformer models differ more widely, with a greater
spread of task competence between layers.

3. Probe Complexity

The size, complexity and architectural shape of probes differ wildly across studies.
From low-rank linear classifiers, MLPs + ReLU to full custom neural architectures
designed for a specific task [55], it becomes exceedingly difficult to view probing
scores in isolation, or to compare them across works.

In one of the earlier works to include multiple probe architectures/complexities,
Liu, Gardner, Belinkov, et al. [58] noticed that poor probe performance on
certain tasks such as NER was strongly boosted by using a MLP model with
ReLU activations, as opposed to a simpler linear model with fewer parameters.
Even more strikingly, Zhang and Bowman [62] showed that their randomly
initialized representations supported comparably high probing accuracies to their
interpretability target (with sufficient probe training). In their influential work,
Hewitt and Liang [64] verbalize the ambiguity between the extent to which one
may attribute probing accuracy to the input representation or to the contribution
to the trained probe itself.

This kicked off a discussion in favour of formally defining the more subtle
goals of probing: in particular, disentangling the presence of already emergent

linguistic information in model representations and the capacity of the union of
representation, probe and probing task data to achieve a high probing accuracy
score. Suggestions have included the introduction of new metrics, reporting
results for a variety of probe complexities, using the simplest possible probes, or
even using the most complex available probes [69].

Theoretical discussions regarding the role of information-theoretic measures have
dominated this discourse as a framework for supporting advances in probing
methodologies. In Voita and Titov [73], the authors choose to operationalize
the notion of ease of extractability as their quantity of interest, introducing an
information-theoretic minimum description length measure. A common theme
has been to use the mutual information between the representations and probing
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task labels as a standard quantity to estimate, guiding works such as Pimentel,
Valvoda, Hall Maudslay, et al. [69] and Pimentel, Saphra, Williams, et al. [74] and
Zhu and Rudzicz [70]. However, this has not gone unquestioned, and alternatives
such as Bayesian mutual information have been proposed [75].

4. Probe Training Dynamics A practical way to adress the concerns of probe
complexity has been to examine various aspects of probe training dynamics. A
common suggestion has been to use much smaller proportions of the probing
task data for training than for testing, as in Kunz and Kuhlmann [76]. An even
more rigid variation on this theme is to log accuracy at intermediate epochs [52]
of the training process and compare the speed of learning evident in the curves
(again connecting to the notion of “ease of extractability”.) Indeed, one of the
minimum description length metrics in Voita and Titov [73] requires gradually
incrementing the size of the training set.

Emergence vs Capacity In summary, rather than merely measuring the joint capacity
of representations and probing models to perform well at a linguistic task, probing
studies should aim to build arguments for the already complete emergence of linguistic
information in model representations from the original model training objective. There
is still no particular consensus on best practices or universal adoption of metrics, but
many of the varied suggestions have added to a shared toolbox for building a convincing
interpretability argument. However, most works agree that claims should be constrained
to comparative assessments across applications of the same probing methodologies.

2.3 Interventional Methods

Even when strong arguments are built for the presence of certain types of linguistic
information within model representations, this does not necessarily constitute evidence
that the identified information is in fact used by the model in its latent decision-making
process. In fact, observations in Ravichander, Belinkov, and Hovy [33] note the
opposite, identifying the presence of features that serve no use for a given end-task.

In summary, the above observational methods are correlational in nature [16], while
claims of feature use for model predictions are strictly causal claims. In line with ideas
of causal modelling [77], it is only through interventional studies that we can build
arguments for causal effects. In particular, we are especially concerned with abstract
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Date
(MM/YY)

Baselines and Controls Layer-Wise Dynamics Probe Complexity Probe Training Dynamics

2018

09/18 Conneau, Kruszewski,
Lample, et al. [52]

Conneau, Kruszewski,
Lample, et al. [52]

11/18 Zhang and Bowman
[62]

2019

05/19 Tenney, Xia, Chen, et al.
[54]

Tenney, Das, and
Pavlick [10]

06/19 Liu, Gardner, Belinkov,
et al. [58]

Liu, Gardner, Belinkov,
et al. [58], Hewitt and
Manning [11]

Liu, Gardner, Belinkov,
et al. [58], Hewitt and
Manning [11]

07/19 Jawahar, Sagot, and
Seddah [63]

09/19 Hewitt and Liang [64] Hewitt and Liang [64]

2020

07/20 Pimentel, Valvoda, Hall
Maudslay, et al. [69]

Pimentel, Valvoda, Hall
Maudslay, et al. [69]

08/20 Vulić, Ponti, Litschko,
et al. [55]

Vulić, Ponti, Litschko,
et al. [55]

11/20

2021

01/21 Voita and Titov [73],
Pimentel, Saphra,
Williams, et al. [74],
Zhu and Rudzicz [70]

Voita and Titov [73]

11/21 Hewitt, Ethayarajh,
Liang, et al. [71]

Hewitt, Ethayarajh,
Liang, et al. [71]

Pimentel and Cotterell
[75]

Kunz and Kuhlmann [76]

Table 2.3: A timeline-structured schematic listing the works mentioned along each
dimension of probing methodology variations. As far as possible, we use the date
associated with the corresponding ACL anthology entry.

semantic and linguistic features: if we have already shown (using structural interpretabil-
ity methods) that certain concepts are captured by the model, what interventions can we
perform to demonstrate feature influence? The structure of studies which aim to answer
this question follow a general setup of intervention and outcome measurement, where
the intervention may take place at either the input or representation level.

An early use of an interventional strategy in model interpretability is Giulianelli,
Harding, Mohnert, et al. [61], where the probing results of subject-verb agreement are
compared before and after gradient-driven representation modifications.
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A key work following up on probing methodology is the interventional probing

approach of Elazar, Ravfogel, Jacovi, et al. [1], which followed the methodology of
Ravfogel, Elazar, Gonen, et al. [78] to eliminate detected feature information by the
process of iterative nullspace projection. The measured outcome is the final model
task performance. However, various critical studies have pointed out limitations in this
work, such as Kumar, Tan, and Sharma [79] and our own work in chapter 5, which
introduces a related interventional variation which we call mnestic probing. A relevant
work which also focuses on NLI is Geiger, Richardson, and Potts [15], which falls
somewhere between a structural and a textual input-level intervention: they propose
interchange interventions, where they replace tokens in the representation sequence
with the values they would have taken under a different input.

Not all interventional interpretability methods deal directly with causal measures
and causal diagrams, but there has been a strong trend in this direction: strong arguments
for model use of gendered features are supported by a rigid causal mediation analysis

in Vig, Gehrmann, Belinkov, et al. [34] and Finlayson, Mueller, Gehrmann, et al. [35],
where causal effect measures are used to estimate the extent to which given features are
mediated through specific architectural components.

While the calculation of the causal treatment effect measures of interest is not always
feasible, there have been informative studies on the causal effects that can be calculated:
for example, Amini, Pimentel, Meister, et al. [80] use naturalistic input interventions to
measure the effects on the representations themselves, while Stolfo, Jin, Shridhar, et al.

[2] investigate unwanted direct effects as proxy measures for robustness and sensitivity.

Beyond merely testing whether identified embedded concepts have a causal influence
on the model, works such as Geiger, Lu, Icard, et al. [81] draw on causal abstraction

theory and search for an alignment between model weights/representations and easier-
to-understand, conceptual causal models which are as faithful as possible to the model’s
actual behaviour (see also Jacovi and Goldberg [46] and Geiger, Wu, Lu, et al. [82])

2.4 Conclusion and Influence on Our Work

The observations in this section address RQ 2 (Which interpretability methods are

best-suited for our interest in detecting emergent intermediate features?), and motivates
the choice of general research directions and specific interpretability strategies we
follow and build on throughout this work.

Firstly, The lack of granular investigations into semantic features specific to the
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NLI task has encouraged us to dig deeper into emergence of natural logic features
in transformer-based NLI models. In constructing our probing study, as we wish
to emphasise the clear emergence of context monotonicity features after the HELP
fine-tuning strategy and demonstrate that this feature becomes comparatively easy to
extract, we have most taken to heart the practise of varying probe complexity (adopting
the nuclear norm approach in Pimentel, Saphra, Williams, et al. [74]) and comparing
probing accuracy curves across models. We also adopt the selectivity metric in Hewitt
and Liang [64].

Secondly, we follow the call for a greater emphasis on interventional methods in
order to support stronger claims about model reasoning strategies. In particular, our
two papers on interventional methods are most influenced by Elazar, Ravfogel, Jacovi,
et al. [1] and Stolfo, Jin, Shridhar, et al. [2] respectively.

2.5 Scoping and Limitations

The scope of section 2.2.1 is limited to the state of affairs in the first year of this PhD
project (2019) and the most relevant previous work related to neural NLP models and
their structural interpretability. This reflects the initial assessment as to whether a
larger body of structural interpretability work in the NLI space would fill a relevant
gap, although we add a note on some contemporary works that have arisen in the same
space. Sections 2.2.2 and 2.3 cover works roughly throughout the duration of this
project (2019—2022), reflecting the evolving views and methodologies in structural
interpretability that we have dialogued with in our work. It must be noted that many
interpretability methods have their roots in work on computer vision, but we limit our
collected works here to works in NLP.



Chapter 3

Supporting Context Monotonicity
Abstraction

In this chapter, we address our first empirical research question, RQ 1: How much

does fine-tuning on the HELP dataset improve NLI models’ performance on existing

natural logic evaluation datasets? Would a secondary transfer-learning task based on

the prediction of context monotonicity result in an improvement in overall evaluation

scores?.

We begin with a summary of existing behavioural evaluation of natural logic phe-
nomena in NLI, highlighting observations that examples requiring context monotonicity
judgments are poorly handled by contemporary models, suggesting that it is an absent
feature until improvement strategies (such as fine-tuning on the HELP [14] dataset)
are introduced. Next, we introduce introduce a potential complementary improvement
strategy: a context monotonicity predicition task as a secondary training objective in
the style of transfer learning.

We perform a set of experiments which allows for the comparison of these im-
provement strategies, examining performance on existing evaluation sets. We find that
introducing a transfer learning step with our context monotonicity prediction task does
not significantly boost performance further than the improvements already introduced
by fine-tuning on the HELP dataset.

3.1 Introduction

NLI has seen much success in terms of performance on large benchmark datasets,
but there are still expected systematic reasoning patterns that we fail to observe in

43
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the state-of-the-art NLI models. We focus in particular on the class of NLI problems
defined in section 1.2.1, which can be described as a form of substitutional reasoning
which displays logical regularities with respect to substitution of related concepts.
This reasoning pattern (referred to as monotonicity reasoning in relevant works such
as Yanaka, Mineshima, Bekki, et al. [13]) is systematic, and thus is a much-tested
behaviour in enquiries into the systematicity and generalisation capability of neural
NLI models [12]–[14], [83], [84].

Monotonicity reasoning has a history of causing problems for neural NLI models:
it has been observed [14], [84] that current state-of-the-art transformer-based NLI
models tend to routinely fail in downward monotone contexts, such as those arising
in the presence of negation or generalised quantifiers. This suggests that models are
failing to capture the effect of context monotonicity on the entailment label. Recent
strategies [12] to address the shortcomings of NLI models in downward-monotone
contexts have followed the inoculation method [85]: additional NLI training data
which provides examples of the target phenomenon (in this case, downward-monotone
reasoning) is used to fine-tune existing models. This is done with some success in
Richardson, Hu, Moss, et al. [12] and Yanaka, Mineshima, Bekki, et al. [14] and [84].

In contrast, we wish to investigate a transfer learning strategy that directly tar-
gets monotonicity classification as an additional training task (see the schamatic in
figure 3.1) to see if this can further improve the monotonicity reasoning performance of
popular transformer-based NLI models (when the model is fine-tuned again for the NLI
objective).

Our contributions are as follows:

• Extending our description of contexts as abstract units in section 1.2.1 to an
experimental setting, we introduce an improvement in neural NLI model per-
formance on monotonicity reasoning challenge datasets by employing a context
monotonicity classification task in the training pipieline of NLI models. To the
best of our knowledge, this is the first use of neural models for this specific task.

• For this purpose, we adapt the HELP dataset [14] into a HELP-Contexts dataset,
isolating contexts and their monotonicity labels.

• For the class of NLI problems described as monotonicity reasoning, we demon-
strate the impact of the proposed transfer strategy: we show that there can be a
slight improvement on downward monotone contexts (on top of existing improve-
ment strategies), previously known to be a bottleneck for neural NLI models. As
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such, this shows the possible benefit of directly targeting intermediate abstractions
(in this case, monotonicity) on which the final label depends.

3.2 Related Work

The study of monotonicity in natural language has a strongly developed linguistic and
mathematical theoretical groundwork, dating back to the monotonicity calculus of
Sanchez [21] and in semantic studies such as Van Benthem et al. [86]. The inferential
mechanism based on monotonicity properties of quantifiers, determiners and contexts
in general is referred to either as natural logic or monotonicity reasoning.

There are varying formal and informal presentations and some variation in terminol-
ogy, but the format most relevent to our work is the presentation of the output out of the
ccg2mono system by Hu and Moss [24] (the monotonicity tagging system on which the
HELP dataset has relied on for its construction). In their presentation, the concept of
monotonicity is represented in terms of polarity tags assigned to words in a sentence,
as per their example:

(5) Every dog↓ scares↑ at least two↓ cats↑.

Any word labelled with an ↑ tag can be replaced with a more general word (likewise,
with a more specific word when labelled with a ↓ tag), yielding a sentence which is
entailed by the starting sentence. Note that the polarity of a word is equivalent to our
definition of the monotonicity of its context in section 1.2.1: we see this as a more
useful perspective, as the polarity tag is determined by the words in the context rather
than being a property of the word itself. In practice, their system takes a CCG parse tree
of a sentence as its input and assigns polarity tags to words in the sentence by taking
into account annotations given to linguistic operators into whose scope the word falls.
We refer to Hu and Moss [24] for the full formal and technical details of their polarity
tagging system. In our experimental work and the construction of our dataset, we take
for granted on the existence of polarity tags which have already been assigned, without
needing to delve further into the thread of information that determines the tag.

We now provide some background on approaches which use the ideas of natural
logic to either create symbolic inference systems based on formal descriptions of
monotonicity phenomena, or to test the handling of natural logic reasoning by trained
NLI models.
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Symbolic Implementations There are two flavours of implementations that result in
the deductions allowed by monotonicity reasoning. Firstly, works such as Hu, Chen,
Richardson, et al. [87] and Abzianidze [88] rely on linguistically-informed polarity
markings on the nodes of CCG parse trees. They require accurate parses and expertly
hand-crafted linguistic rules to mark the nodes with polarity tags, as in Hu and Moss
[24]. In Hu, Chen, Richardson, et al. [87], a premise is tagged for monotonicity and a
knowledge base of hypotheses created by a substitution known to be truth-preserving
is generated. Candidate hypotheses are compared with this set, checking for exact
matches. On the other hand, [88] uses the CCG parses to further translate sentences to a
lambda logical form for use in a deduction method inspired by tableau calculus. These
approaches differ from strategies such as in MacCartney and Manning [89], which
require an edit sequence which transforms the premise into the hypothesis. Atomic
edits are tagged with generalised entailment relations which are combined with a join
operator based on relational composition to determine whether the transformation is
overall truth-preserving, hence yielding a hypothesis entailed by the premise. Later,
Angeli and Manning [90] treated these atomic edits as edges in a graph and phrased
entailment detection as a graph search problem. Concepts from symbolic approaches
to NLI have also been applied in symbolic question answering systems (such as in
Bobrow, Cheslow, Condoravdi, et al. [91]), and hybridized with neural systems (such
as in Kalouli, Crouch, and Paiva [92]).

Neural NLI Models and Monotonicity State-of-the-art NLI models have previously
been shown [14], [84] to perform poorly on examples where the context f is downward

monotone, as occurs in the presence of negation and various generalised quantifiers
such as “every” and “neither” (with more examples of downward monotone operators in
table 1.3). Benchmark datasets such as MNLI are somewhat starved of such examples,
as observed by Yanaka, Mineshima, Bekki, et al. [14]. As a consequence, the models
trained on such benchmark datasets as MNLI not only fail in downward monotone
contexts, but systematically fail: they tend to treat all examples as if the contexts are
upward monotone, predicting the opposite entailment label with high accuracy [14],
[84]. A few datasets have been introduced to test the performance of both neural and
symbolic systems on sets of natural logic examples: we tabulate their use across the
abovementioned works in table 3.1.

Data augmentation techniques and additional fine-tuning with an inoculation [85]
strategy have been attempted in Richardson, Hu, Moss, et al. [12], Yanaka, Mineshima,
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Bekki, et al. [14], and Geiger, Richardson, and Potts [84]. In the latter case, perfor-
mance on a challenge test set improved without much performance loss on the original
benchmark evaluation set (SNLI), but in Yanaka, Mineshima, Bekki, et al. [14] there
was a significant decrease in performance on the MNLI evaluation set. These studies
form the basis on which we aim to build, and their choice of evaluation datasets and
models inspires our own choices.

Previous Work

Evaluation Datasets Geiger 2020
(Neural)

Yanaka 2020
(Neural)

Moss 2019
(Neural)

Hu 2020
(Symbolic)

Large,
Broad Coverage MNLI Test x

MNLI Dev
(Mismatched) x

SNLI Test x x

Small,
Targeted
Phenomena

MED x

SICK x∗ x
FraCaS x∗ x
MoNLI Test x
Monotonicity
Fragments x x

Table 3.1: Evaluation datasets used in previous work investigating monotonicity reason-
ing. Positions marked ∗ indicate that the dataset is included in another used evaluation
dataset.

Neural Transformer-based language models have been shown to implicitly model
syntactic structure [93]. There is also evidence to suggest that these NLI models are at
least representing the concept relations quite well and using this information to predict
the entailment label, as corroborated by a study based on interchange interventions in
[84].

We hypothesise that such models have the capacity for learning monotonicity
features. The extent to which the representations capture monotonicity information in
the contextual representations of tokens in the sequence is not yet well understood, and
this is an investigation we wish to initiate and encourage with this work.

3.3 Experiments

Building on the observations in the above-mentioned previous papers, we ask the
following questions:
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• Can a context monotonicity classification task in the model training pipeline
further improve performance on targeted evaluation sets which test monotonicity
reasoning?

• Does this mitigate the decrease in performance on benchmark NLI datasets?

Our investigation proceeds in three parts: Firstly, we attempt to fine-tune a SOTA
NLI model for a context monotonicity classification task.

Secondly, we retrain the above model for NLI and evaluate the performance on
several evaluation datasets which specifically target examples of both upward and
downward monotonicity reasoning. We examine whether there is any improvement
over a previously suggested approach on fine-tuning on a large, automatically generated
dataset (HELP) from Yanaka, Mineshima, Bekki, et al. [14].

Models We start with existing NLI models pretrained on benchmark NLI datasets.
In particular (and for best comparison with related studies) we use RoBERTa [5]
pretrained on MNLI [18] and BERT [17] pretrained on SNLI [19]. These are two
benchmark NLI datasets which contain examples derived from naturally occurring text
and crowd-sourced labels, aiming for scale and broad coverage. We do not deviate from
the architecture, as we are only investigating the effect of training on different tasks
(monotonicity classification and NLI) and datasets.

3.3.1 Retraining NLI Models to Classify Context Monotonicity

Symbolic approaches such as Hu and Moss [24] treat monotonicity classification as
the task of labeling words in a sentence with either an upward or downward polarity
marking, in the manner of a sequence tagging task. Our emphasis of monotonicity
as a property of a context allows for a different framing of this problem: we consider
monotonicity classification as a binary classification task which takes a context as its
input, with an explicit indication (with a variable) of the “slot” in the sentence for which
we wish to know the polarity. Different positions of the variable in a partial sentence
may yield a context with a different monotonicity label; a typical example of this is
sentences featuring generalised quantifiers such as “every”, which may be monotone
up in one argument but monotone down in another. For the class of NLI problems we
consider, it is only the monotonicity of the shared context that matters to the entailment
label, so we target only the classification of that monotonicity value.
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3.3.1.1 Input Representation

The NLI models which we wish to start with are transformer-based models, in line
with the current state-of-the-art approaches to NLI. Transformer models represent a
sentence as a sequence of tokens: we take a naive approach to representing a context by
indicating the variable with an uninformative ‘x’ token. We refrain from using the mask
token to indicate the variable, as the underlying pretrained transformer language models
are trained to embed the mask token in such a way as to correspond with high-likelihood
insertions in that position, which we would prefer to avoid.

3.3.1.2 Dataset

In order to ensure our monotonicity classification task does not add any unseen data
(when compared to only fine-tuning on the HELP dataset) we adapt the HELP dataset
for this task. The HELP dataset is originally constructed by tagging sentences from
the Parallel Meaning Bank [94] using the ccg2mono [24] polarity tagging system and
introduce concept substitutions based on WordNet [95] relation annotations.

The original composition of the HELP dataset can be seen in Table 3.2, originally
from Yanaka, Mineshima, Bekki, et al. [14].

Section Size Example

Up 7784
Tom bought some Mexican sunflowers for Mary
⇒Tom bought some flowers for Mary*

Down 21192
If there’s no water, there’s no whisky*
⇒If there’s no facility, there’s no whisky

Non 1105
Shakespeare wrote both tragedy and comedy*
⇏Shakespeare wrote both tragedy and drama

Conj 6076
Tom removed his glasses
⇏Tom removed his glasses and rubbed his eyes*

Disj 438
The trees are barren
⇒The trees are barren or bear only small fruit*

Table 3.2: Dataset details of the HELP dataset, which we draw on for the HELP-
Contexts dataset. The relevant portions are the “Up” and “Down” monotonicity reason-
ing examples.

We manually select a random sample of 2000 examples evenly split across up-
ward monotone and downward monotone categories, and extracted context examples
according to the following criteria:
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1. Identify premise, hypothesis pairs which are ( f (x), f (y)) pairs as per our con-
struction, differing exactly by one noun phrase. Any sampled examples which
are not structured in this way are discarded.

2. Extract the shared context f , replacing the noun phrase with a ‘x’ symbol.

3. Assign a gold label of context monotonicity according to whether the monotonicity
reasoning pattern was labelled as “up” or “down”.

As such, we extract only the contexts f and the monotonicity label into dataset
which we will call “HELP-Contexts”, which we split into a train and test set in a 70:30
ratio (featuring a final training set of 686 examples). Examples of this dataset are
presented on Table 3.3. 1

Context Context Monotonicity

There were no x today. downward monotone
There is no time for x. downward monotone
Every x laughed. downward monotone
There is little if any hope for his x . downward monotone
Some x are allergic to wheat. upward monotone
Tom is buying some flowers for x. upward monotone
You can see some wild rabbits in the x. upward monotone

Table 3.3: Examples from the HELP-Contexts dataset, with respective labels.

3.3.1.3 Results

As presented in Table 3.4, the task of predicting the monotonicity of the contexts in
the HELP-Contexts dataset can be solved using fine-tuned transformer models. This
suggests a potential path for inducing a bias for context classification in downstream
tasks such as NLI, which could benefit from better encoding of context monotonicity.

3.3.2 Improving NLI Performance on Monotonicity Reasoning

3.3.2.1 Training Data

We use the following datasets for training and evaluation respectively: we begin by
once again using the HELP dataset [14], which was designed specifically as a balanced

1The original HELP dataset also contains a few non-monotone examples: in the current state of this
work, these are omitted in favor of a focus on the specific confusion in existing models where downwards
monotone contexts are often treated as upwards monotone ones.
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Model Evaluation Data
HELP-Contexts

Dev
HELP-Contexts

Test
Precision Recall F1-Score Precision Recall F1-Score

bert-base 98.74 99.08 98.91 98.00 95.24 96.54
bert-large 98.23 98.88 98.55 97.51 95.70 96.57
roberta-large-mnli 99.62 98.92 99.26 98.73 96.64 97.64
roberta-large 99.81 99.46 99.27 98.99 96.41 97.62
roberta-base 99.81 99.46 99.63 98.10 95.56 96.76
bert-base-uncased-snli 98.88 98.19 98.53 98.92 97.29 98.07

Table 3.4: Performance of state-of-the-art models for the context prediction task. Each
model was trained on HELP contexts (training set).

additional training set for the improvement of NLI models with respect to monotonicity
reasoning. We create a split of this dataset which is based on the HELP-Contexts dataset
by assigning each example either to the train or test set depending on which split its
associated context f is in the HELP-Contexts dataset. This is to ensure there is no
overlap between the examples’ contexts across the three data partitions. Our approach
combined this strategy with an additional step based on the context monotonicity task
described in section 3.3.1.

3.3.2.2 Training Procedure

We rely on the architecture implementations and pretrained models available with the
transformers library [96]. As indicated in the schematic in figure 3.1, we start with the
NLI models pretrained on benchmark NLI datasets (which we shall henceforth tag as
“bert-base-uncased-snli” and “roberta-large-mnli”). We first fine-tune these models for
the context monotonicity classification task using the training partition of the HELP-
Contexts dataset. We re-use the classification head of the pretrained models for this
purpose, but only use two output states for the classification. Lastly, we fine-tune on
the HELP dataset, so that the final model is once again an NLI model and thus may be
compared to other NLI models, including those fine-tuned only on the HELP dataset
(after benchmark NLI pretraining).

3.3.2.3 Evaluation Data

Evaluation datasets are typically small, challenging and categorized by certain target
semantic phenomena. Following previous work in this area, we evaluate our approach
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Context 
Monotonicity 
Classification 

Objective

NLI Classification 
Objective

1. MNLI/
SNLI 

Dataset

2. HELP 
Dataset

NLI Classification 
Objective

1. MNLI/
SNLI 

Dataset

3. HELP 
Dataset

2. HELP-
Contexts
Dataset

HELP Training Scheme: Our Training Scheme:

Figure 3.1: Our training scheme introduces a transfer learning step by fine-tuning an
NLI model on a secondary context monotonicity classification task, before fine-tuning
on the HELP dataset so that we once again end up with an NLI classifier.

using the MED dataset introduced in [13], which is annotated with monotonicity
information and draws from various expert-curated diagnostic challenge sets in NLI
such as SICK, FraCaS and the SuperGlue Diagnostic set. It features a balanced split
between upward and downward monotone contexts, in contrast to the benchmark MNLI
dataset. Additionally, we include evaluation on the MoNLI dataset [84] which also
features a labelled balance of upward and downward monotone examples. However, the
latter dataset’s downward monotone examples are only exemplary of contexts featuring
the negation operator “not”, whereas MED [13] also includes more complex downward
monotone operators such as generalised quantifiers and determiners. We refer to these
respective papers [13], [84] for full breakdowns and analyses of these datasets.

3.3.2.4 Baselines

Although the main comparison to be made is the improvement introduced when includ-
ing the context-monotonicity-classification training on top of the current state-of-the-art
roberta-large-mnli model trained on HELP, we include additional baselines: roberta-
large-mnli fine-tuned on the monotonicity fragment from the semantic fragments [12]
dataset. The strategy in this work is the same as with the HELP dataset, but we include
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this in the evaluation on the chosen challenge sets for a more complete comparison.

3.3.2.5 Results

We present the results on the challenge sets MED and MoNLI in Table 3.5, with a
break-down by upward and downward monotone contexts. Furthermore, we have re-run
each model on the original benchmark evaluation datasets SNLI and MNLI, with the
results visible in Table 3.6. We guide through and discuss these results in section 3.4.

Model Additional
Training Data

Challenge Datasets
MoNLI Test MED

Upward
Mono

Downward
Mono

All Upward
Mono

Downward
Mono

All

bert-base-uncased-snli - 37.74 56.49 46.15 53.58 43.91 49.36
bert-base-uncased-snli HELP 30.89 85.02 55.19 43.4 72.43 60.18
bert-base-uncased-snli HELP +

HELP-
Contexts

21.6 97.67 55.19 32.56 87.13 66.22

roberta-large-mnli - 95.19 5.32 58.84 82.12 25.76 46.09
roberta-large-mnli Monotonicity

Fragments
(Easy)

92.68 79.62 86.81 74.54 65.68 70.05

roberta-large-mnli Monotonicity
Fragments
(All)

50.00 50.00 50.00 35.42 61.80 49.78

roberta-large-mnli HELP 94.72 98.67 96.48 64.47 86.25 77.4
roberta-large-mnli HELP +

HELP-
Contexts

98.78 97.17 98.06 65.24 85.12 76.44

Table 3.5: Performance of NLI models on challenge datasets designed to test perfor-
mance on monotonicity reasoning.

3.4 Discussion

Average Performance Firstly, we confirm previous observations that the starting
pretrained transformer model roberta-large-mnli (which is considered a high-performing
NLI model, achieving over 93% accuracy on the large MNLI development set) has
a dramatic performance imbalance with respect to context monotonicity. The fact
that performance on downward monotone contexts is as low as 5% suggests that this
model perhaps routinely assumes upward monotone contexts. It was noted in Yanaka,



54 CHAPTER 3. SUPPORTING CONTEXT MONOTONICITY ABSTRACTION

Benchmark DatasetsModel Additional
Training Data MNLI (m∗) Dev MNLI (mm∗) Dev SNLI Dev SNLI Test

Acc ∆ Acc ∆ Acc ∆ Acc ∆

bert-base-uncased-snli
-

44.96 - 45.52 - 41.54 - 40.78 -

bert-base-uncased-snli HELP 35.13 -9.83 34.37 -11.5 25.93 -15.61 25.92 -14.86
bert-base-uncased-snli HELP +

HELP-
Contexts

36.91 -8.05 37.36 -8.16 36.54 -5.00 37.20 -3.58

roberta-large-mnli - 94.11 - 93.88 - 93.33 - 93.14 -
roberta-large-mnli HELP 82.66 -11.45 83.38 -10.50 74.77 -18.56 74.39 -18.75
roberta-large-mnli HELP +

HELP-
Contexts

81.00 -13.11 82.01 -11.87 82.99 -10.34 82.31 -10.83

Table 3.6: Fine-tuning state-of-the-art NLI models with the aim of improving mono-
tonicity has tended to result in lower performance on the original benchmark NLI
datasets. We compare these performance losses in addition to tracking performance on
the the challenge datasets. ∗ MNLI (m) and (mm) refers to the matched and mismatched
dataset respectively. For MNLI, only the Dev set is publically available.

Mineshima, Bekki, et al. [14] that the MNLI benchmark dataset is strongly skewed in
favor of upward monotone examples, which may account for this.

We can see in Table 3.5 that our approach (fine-tuning on both HELP-Contexts and
HELP) slightly outperforms or matches the baseline models in three of the accuracy
scores in the “All” category (achieving 55.19%, 66.22% and 98.06% respectively), and
is competitive in the fourth (achieving 76.44%, slightly lower than the highest 77.4%
achieved by roberta-large-mnli fine-tuned only on HELP).

Furthermore, in Table 3.6 we observe less performance loss (in most cases) on the
benchmark NLI datasets than for the models fine-tuned only on HELP (except in the
case of roberta-large-mnli on the MNLI dataset). However, it seems that the majority
of gains are already due to the training on the HELP dataset, suggesting that perhaps
it is already enough to introduce a useful “understanding” of context monotonicity
behaviour.

Performance by Monotonicity Category As evident from Table 3.5, we observe a
substantial improvement for the bert-base-uncased NLI models for downward monotone
contexts. For the much larger roberta-large-mnli models, any gains over the model
trained on HELP only are quite small. A common observation is the notable trade-off
between accuracy on upward and downward monotone contexts; training that improves
one of these over a previous baseline generally seem to decrease performance of the
other. This is especially evident in the MED dataset, which is larger and representative
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of a more diverse set of downward monotone examples (the MoNLI dataset is limited to
the “No” operator). Sensibly, a decrease in performance in upward monotone contexts
also leads to a decrease in performance on the original SNLI and MNLI datasets 3.6
(which are skewed in favor of upward monotone examples). However, in most cases
(except for the roberta-large-mnli model on the MNLI benchmark) our method results
in a smaller performance loss.

3.5 Conclusion and Future Work

To address RQ 1 (How much does fine-tuning on the HELP dataset improve NLI models’

performance on existing natural logic evaluation datasets? Would a secondary transfer-

learning task based on the prediction of context monotonicity result in an improvement

in overall evaluation scores?), we have presented a study of existing strategies for
improvement of natural logic handling in neural NLI, together with an assembly of
evaluations on previously established monotonicity reasoning evaluation sets. This is
complemented with an introduction of a context monotonicity prediction task for a
transfer learning improvement strategy for NLI models, treating the a context as an
atomic unit whose monotonicity property informs the correct entailment label.

Introducing context monotonicity classification into the training pipeline of NLI
models provides some performance gains on challenge datasets designed to test mono-
tonicity reasoning. However, these are almost negligible in comparison to the per-
formance gains from existing fine-tuning strategies. Next, we aim next to perform
structural interpretability studies on models before and after the improvement strategies,
in order to qualitatively and quantitatively compare the latent modelling of the context
monotonicity feature.

More generally, we see contexts as crucial objects of study in future approaches
to natural language inference. The ability to detect their logical properties (such as
monotonicity) opens the door for hybrid neuro-symbolic NLI models and reasoning
systems, especially in so far as dealing with out of domain insertions that may confuse
out-of-the-box NLI models. The linguistic flexibility that transformer-based language
models bring is too good to lose; leveraging their power in situations where only part of
our sentence is in a model’s distribution would be helpful for domain-specific use cases
with many out-of-distribution nouns. Overall, we are interested in furthering both the
analysis and improvement of emergent modelling of abstract logical features in neural
natural language processing models.
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3.6 Scoping and Limitations

Some other natural logic formalisms model the effect of every operator on the final
entailment label (for example, the way MacCartney and Manning [23] construct large
word-by-word edit sequences and have a formalism for the way word edit relation labels
compose). However, we distinctly wish to move away from this level of granularity
to determine (in the ensuing chapters) if the highest level of reasoning abstraction is
captured, and that a “net effect” monotonicity feature is being encoded and considered.
Mostly, this is because we are building towards conducting interpretability studies that
can tell us more about the high-level reasoning capabilites of models. This line of
enquiry requires causal diagrams and hypotheses about how features are represented.
The more we decompose the reasoning chain to include all the constituent operators
which give rise to the monotonicity of a context, the more complex our causal diagram
would become, and it becomes harder to envision how this information may be encoded
and, even more so, how to perform structural interventions for interventional studies.
More generally, we see this thesis as a first step in a top-down approach to the broader
investigation of whether and how NLI models can encode monotonicity. If our work
finds that the high-level reasoning mechanism of context monotonicity and its interplay
with concept relations is captured, then it could justify follow-up work which studies
how further decompositions of the monotonicity property may be observed in NLI
models.



Chapter 4

Decomposing Natural Logic Inferences
in Neural NLI

This chapter presents the NLI-XY dataset in response to RQ 3 (Can we formulate

and construct a natural logic dataset that is suitable for both targeted evaluation

and interpretability?), and adresses research questions RQ 4 (Are the intermediate

features of context monotonicity and concept inclusion relations emergent in the internal

representations of NLI models which perform better at natural logic tasks? Can

we provide comparative quantitative evidence?) and RQ 5 (Can we identify which

features are responsible for errors in poorer- performing models?) by carrying out a
systematic probing study which investigates whether these models capture the crucial
semantic features central to natural logic: context monotonicity and concept inclusion
relations. Correctly identifying valid inferences in downward-monotone contexts is a
known stumbling block for NLI performance, subsuming linguistic phenomena such as
negation scope and generalised quantifiers. To understand this difficulty, we emphasize
monotonicity as a property of a context and examine the extent to which models capture
relevant monotonicity information in the vector representations which are intermediate
to their decision making process. Drawing on the recent advances in probing practices,
we compare the presence of monotonicity features across various models. We find that
monotonicity information is notably weak in the representations of popular NLI models
which achieve high scores on benchmarks, and observe that previous improvements
to these models based on fine-tuning strategies have introduced stronger monotonicity
features together with their improved performance on challenge sets.

57
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4.1 Introduction

Large, black box neural models which achieve high scores on benchmark datasets
designed for testing natural language understanding are the subject of much scrutiny
and investigation. It is often investigated whether models are able to capture specific
semantic phenomena which mimic human reasoning and/or logical formalism, as there
is evidence that they sometimes exploit simple heuristics and dataset artifacts instead
[7], [97].

As we have discussed in the chapter 3, behavioural studies based on targeted
evaluation sets (such as in Yanaka, Mineshima, Bekki, et al. [13] and Richardson, Hu,
Moss, et al. [12]) have shown that downward monotone contexts (featuring downward
monotone operators such as negation markers and generalised quantifiers) result in the
kinds of natural logic inferences which are often known to stump neural NLI models
that demonstrate high performance on large benchmark sets such as MNLI [18].

In this chapter, we present a structural study: instead of looking at performance
scores of the final model predictions on NLI examples (what we called behavioural

studies in chapter 2) we wish to identify the structural differences between the repre-
sentations of models that have poor performance accuracy on natural logic examples
and those that have higher performance scores. We investigate the extent to which the
features relevant for identifying natural logic inferences, especially context monotonicty
itself, are encoded in the model’s internal representations. To this end, we carry out a
systematic probing study.

Our contributions may be summarized as follows:

1. We perform a structural investigation as to whether the behaviour of natural logic

formalisms are mimicked within popular transformer-based NLI models.

2. For this purpose, we present a joint NLI and semantic probing dataset format
(and dataset) which we call NLI-XY : it is a unique probing dataset in that the
probed features relate to the NLI task output in a systematic way (following the
schema in table 1.4).

3. We employ thorough probing techniques to determine whether the abstract seman-
tic features of context monotonicity and concept inclusion relations are encoded
in the models’ internal representations.

4. We observe that some well-known NLI models demonstrate a systematic failure
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to model context monotonicity, a behaviour we observe to correspond to poor per-
formance on natural logic reasoning in downward-monotone contexts. However,
we show that the existing HELP dataset improves this behaviour.

5. We support the observations in the probing study with several qualitative analyses,
including decomposed error-breakdowns on the NLI-XY dataset, representation
visualisations, and evaluations on existing challenge sets.

4.2 Related Work

Natural logic dates back to the formalisms of Sanchez [21], but has been received more
recent treatments and reformulations inmaccartney-manning andccg2mono. Symbolic
and hybrid neuro-symbolic implementations of the natural logic paradigm have been
explored in Kalouli, Crouch, and Paiva [92], Chen, Gao, and Moss [98], and Abzianidze
[99] andmonalog.

The shortcomings of natural logic handling in various neural NLI models have been
shown with several behavioural studies, where NLI challenge sets exhibiting examples
of downward monotone reasoning are used to evaluate performance of models with
respect to these reasoning patterns [13], [14], [84], [100], [101].

In an attempt to better identify linguistic features that neural models manage or
fail to capture, researchers have employed probing strategies: namely, the diagnostic

classification [102] of auxiliary feature labels from internal model representations.
Most probing studies in natural language processing focus on the syntactic features
captured in transformer-based language models [11], but calls have been made for more
sophisticated probing tasks which rely more on contextual information [74].

In the realm of semantics, probing studies have focused more on lexical semantics
[55]: word pair relations are central to monotonicity reasoning, and thus form part of
our probing study as well, but the novelty of our work is the task of classifying context
monotonicity from intermediate contextual embeddings.

4.3 NLI-XY Dataset

In section 1.2.1, we have described a subset of NLI examples where the input premise–
hypothesis pair has the form p = f (x),h = f (y), and the NLI gold label relies only on
the context monotonicity of the shared context f and the concept inclusion relation of
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the noun phrase pair (x,y). We follow this structure as the basis for the NLI-XY dataset.
This is the first probing dataset in NLP where the auxiliary labels for intermediate
semantic features influence the final task label in a rigid and deterministic (yet simple)
way, with these features being themselves linguistically complex. As such, it is a
“decomposed” natural logic dataset, where the positive entailment labels are further
enriched with labels for the monotonicity and relational properties which gave rise to
them.

This allows for informative qualitative and structural analyses into natural logic
handling strategies in neural NLI models: given a set of premise–hypothes input pairs
(p,h), we can not only compare the model’s NLI prediction output to a gold label, but
we can investigate whether the intermediate feature labels (context monotonicity and
concept inclusion relation) are encoded in the model’s representations.

The NLI-XY dataset is comprised of the following (as exemplified in table 4.1):

1. A set of contexts f with a blank position (indicated with a lowercase ‘x’ or an
underscore), annotated with the context monotonicity label.

2. A set of insertion pairs (x,y), which are either nouns or noun phrases, annotated
with the concept inclusion word-pair relation.

3. A derived set of premise and hypothesis pairs ( f (x), f (y)) made up of permuta-
tions of (x,y) insertion pairs through contexts f , controlled for grammaticality as
far as possible.

Auxilliary Label

Context f I did not eat any
for breakfast.

↓ (downward
monotone)

Insertion Pair (x,y) (fruit, raspberries) ⊒ (reverse con-
cept inclusion)

NLI Label

Premise f (x) I did not eat any
fruit for breakfast.

Entailment

Hypothesis f (y) I did not eat any
raspberries for
breakfast.

Table 4.1: A typical NLI-XY example with labels for context monotonicity, lexical
relation and the final entailment label.
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We present examples of the component parts and their composition in table 4.1. The
premise/hypothesis pairs may thus be used as input to any NLI model, while the context
monotonicity and insertion relation information can be used as the targets of an auxiliary
probing task on top of the model’s representations.

We make the NLI-XY dataset and all the experimental code used in this work is
publically available 1. We constructed the NLI-XY dataset used here as follows:

Context Extraction We extract context examples from two NLI datasets which were
designed for the behavioural analysis of NLI model performance on monotonicity
reasoning. In particular, we use the manually curated evaluation set MED [13] and
the automatically generated HELP training set [14]. By design, as they are collections
of NLI examples exhibiting monotonicity reasoning, these datasets mostly follow our
required ( f (x), f (y)) structure, and are labelled as instances of upward or downward
monotonicity reasoning (although the contexts are not explicitly identified).

We extract the common context f from these examples after manually removing
a few which do not follow this structure (differing, for example, in pronoun number
agreement or prepositional phrases). We choose to treat determiners and quantifiers
as part of the context, as these are the kinds of closed-class linguistic operators whose
monotonicity profiles we are interested in. To ensure grammatically valid insertions,
we manually identify whether each context as suitable either for a singular noun, mass
noun or plural noun in the blank/“x” position.

Insertion Pairs Our (x,y) insertion phrase pairs come from two sources: Firstly, the
labelled word pairs from the MoNLI dataset [84], which features only single-word
noun phrases. Secondly, we include an additional hand-curated dataset which has
a small number of phrase-pair examples, which includes intersective modifiers (e.g.
(“brown sugar”, “sugar”)) and prepositional phrases (e.g. (“sentence”, “sentence about
oranges”)). Several of these examples were drawn from the MED dataset. Each word in
the pair is labelled as a singular, plural or mass noun, so that they may be substituted
only into those contexts which allow for a resulting sentence which is grammatically
valid.

Premise/Hypothesis Pairs Premise/Hypothesis pairs are constructed by substituting
the insertion pairs in all possible combinations through the set of contexts within

1We include our dataset and experimental code at https://github.com/juliarozanova/
nli_xy

https://github.com/juliarozanova/nli_xy
https://github.com/juliarozanova/nli_xy


62 CHAPTER 4. DECOMPOSING NATURAL LOGIC INFERENCES

the grammatical constraints. Such a substitution strategy may generate examples
which are not consistently meaningful, but we see the monotonicity reasoning pattern
as sufficiently rigid and syntactic that it is of interest to observe how models treat
less “meaningful” entailment examples that still hold with respect to the natural logic
formalism: for example, “I did not swim in a person” entails “I did not swim in an
Irishman” at a systematic level. This does raise a question of whether we do (or even
should) observe certain systematic behaviours on out-of-distribution examples: we
leave the further investigation of this matter for future work.

Lastly, we note that the data is split into train, dev and test partitions before this
permutation occurs, so that there are no shared contexts or insertion pairs between the
different data partitions, in an attempt to avoid overlap issues such as those discussed in
[103]. The full dataset statistics are reported in table 4.2.

Context Monotonicity
Partition (x,y) Relation Up ↑ Down ↓ Total

train ⊑ 671 543 1214
⊒ 671 543 1214
None 244 222 466
Total 1586 1308 2894

dev ⊑ 598 389 987
⊒ 598 389 987
None 220 242 462
Total 1416 1020 2436

test ⊑ 1103 1066 2169
⊒ 1103 1066 2169
None 502 516 1018
Total 2708 2648 5356

Table 4.2: Dataset statistics for the NLI-XY dataset. We employ an aggressive 30,20,50
train-dev-test split for a more impactful probing result, as probing is meant to demon-
strate the ease of extraction of features. In particular, higher test accuracy with a smaller
training set is a more convincing probing result than one with a large training set and
small test set.
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Figure 4.1: The NLI-XY dataset has two sets of labels: the gold labels for the NLI task
and the auxiliary feature labels for the context monotonicity and the concept inclusion
relation. This allows for both a standard NLI evaluation experiment and a structural
interpretability experiment, allowing for external probing models to be trained to detect
the intermediate features directly from a given model’s representations of the input
examples.

4.4 Experimental Setup

Our experiments are designed to investigate the following questions: Firstly, how do
NLI models compare in their learned encoding of context monotonicity and lexical
relational features? Secondly, if a model successfully captures these features, to what
extent do they correspond with the model’s predicted entailment label? We investigate
these questions with a detailed probing study and a supporting qualitative analysis,
using decomposed error break-downs and representation visualisation. We illustrate
in figure 4.1 how the labels of the NLI-XY dataset will be used in the probing tasks
(section 4.4.2) and in the standard NLI evaluation (section 4.4.3) of each model.

4.4.1 Model Choices

We consider a selection of neural NLI models based on BERT-like transformer language
models (such as BERT [4], RoBERTa [5] and BART [104]) which are fine-tuned on
one of two benchmark training sets: either SNLI [19] or MNLI [18]. Of particular
interest, however, is the case where these models are trained on an additional dataset
(the HELP dataset from [14]) which was designed for improving the overall balance
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Figure 4.2: Our compositional dataset format, NLI-XY : the x and y token spans are the
target representations we probe here.

of upward and downward monotone contexts in NLI training data. We use our own
random 50−30−20 train-dev-test split of the HELP dataset (ensuring unique contexts
in every split), so that there is no overlap of contexts between the fine-tuning data and
the few HELP-test examples we used as part of our NLI-XY dataset2.

4.4.2 Probing Tasks

The NLI-XY dataset is equipped with two auxiliary feature labels which are the targets
of the probing task: context monotonicity and the relation of the (x,y) word pair
(referred to as concept inclusion relation or lexical relation). We now describe the
details of the intermediate representations we choose as inputs to the probing tasks:

4.4.2.1 Target Representation

The standard practice for word-pair relation classification tasks is to concatenate the
contextual representation vectors for the (x,y) word pair (taking the mean vector for
multi-token words), as indicated in figure 4.2. We argue that this is a good representation
choice for probing context monotonicity as well: as we are considering transformer-
based bidirectional encoder architectures, the context (including the order) of each token

2We use the transformers library [96] and their available pretrained models for this work.
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in the input sequence informs the representation of each token in the final layer. As
such, we propose that since contextual information is implicitly encoded, it is feasible
to expect that a token’s vector representation may encode contextual features such
as context monotonicity. As both the x and the y word occur in the same respective
context, we are comfortable probing the concatenated (x,y) representation for contextual
features, and note that it allows for easy comparison with the word pair relation probing
results.

4.4.2.2 Probing Methodology

For each auxiliary classification task, we use simple linear models as probes. We train
20 probes of varying complexities using the probe-ably framework [105].

Probe Complexity Control The complexities are represented and controlled as fol-
lows: For a trained linear model ŷ=Wx+b, we follow Pimentel, Saphra, Williams, et al. [74]
in using the nuclear norm

||W||∗ =
min(|T |,d)

∑
i=1

σi(W).

of the matrix W as the approximate measure of complexity. Here, T is the number of
target classes in the probe’s output, d is the dimension of the representation vectors
which are inputs to the probe, and σi(W ) is the i-th singular value of the matrix
W . In cases where the auxiliary task has a relatively large number of classes, the
rank has been used as the proxy measure of model complexity [11]. As the nuclear
norm is a convex approximation of the rank of the transformation matrix, it is used
in Pimentel, Saphra, Williams, et al. [74]. This is of particular use in our case because
we have a low number of prediction classes (d): two for context monotonicity and three
for the concept inclusion relation. Hence, using only the rank would yield very few
values, while using the nuclear norm allows for a larger number of informative values.

Accuracy and Selectivity Naively, a strong accuracy on the probing test set may
be understood to indicate strong presence of the target features within the learned
representations, but there has been much discussion about whether this evidence is
compelling on its own. In fact, certain probing experiments have found the same
accuracy scores for random representations [106], indicating that high accuracy scores
are meaningless in isolation. Hewitt and Liang [64] describe this as a dichotomy
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between the representation’s encoding of the target features and the probe’s capacity for
memorization, and propose the use of the selectivity measure to always place the probe
accuracy in the context of a controlled probing task with shuffled labels on the same
vector representations. For each fully trained probe, we report both the test accuracy
and the selectivity measure: tracking the selectivity ensures that we are not using a
probe that is complex enough to be overly expressive to the point of having the capacity
to overfit the randomised control training set.

Control Task The selectivity score is calculated with respect to a control task. At
its core, this is just a balanced random relabelling of the auxiliary data, but [64]
advocate for more targeted control tasks with respect to the features in question and
a hypothesis about the model’s possible capacity for memorization. For example, in
their control task for POS tagging, they assign the same label to each instance of a
word’s surface form (“word type”) to account for possible lexical memorization. For
our context monotonicity classification control task, we assign a shared random label
for all identical insertion pairs, regardless of context. Thus, a probe which is expressive
enough to “memorize” context monotonicity labels associated with the examined word
pairs would attain high accuracy on this control task. By construction, our context
monotonicity classification task is much more context-dependent and balanced: a given
(x,y) insertion will occur about as often in upward and downward monotone contexts,
making it harder for a probe to exploit meaningless heuristics, such as associating a
given insertion pair with a context monotonicity label. As such, we expect the selectivity
scores to be low, but this is intentional and indicative of good dataset balancing. As we
have no overlap of word pairs or contexts across the training and test set, we follow
Pimentel, Saphra, Williams, et al. [74] in reporting selectivity using label shuffling on
the training set only.

4.4.3 NLI Challenge Set Evaluations

As well as the NLI-XY dataset (which can function as an ordinary NLI evaluation set),
for completeness we report NLI task evaluation scores on the full MED dataset [13],
which was designed as a thorough stress-test of monotonicity reasoning performance.
Furthermore, we report scores on the HELP-test set (from the dataset split in Rozanova,
Ferreira, Thayaparan, et al. [107]): this data partition was not used in the fine-tuning of
models on HELP, but we include the test scores here for insight.
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4.4.4 Decomposed Error Analysis

The compositional structure and auxiliary labels in the NLI-XY dataset allow for qualita-
tive analysis which may enrich the observations. To this end, we construct decomposed
error analysis heatmaps which indicate whether a given premise-hypothesis data point
( f (x), f (y)) is correctly classified by an entailment model. These are structured with
individual (x,y) insertion pairs on the vertical axis and contexts on the horizontal axis.
For brevity (and because this is representative of our observations), we include only
the error breakdowns for the two sublasses of the positive entailment label: where the
context monotonicity is upward and lexical relation is forward inclusion, and where the
context monotonicity is downward and the lexical relation is reverse inclusion.

Feature Probing NLI Monotonicity Challenge Sets

NLI Models Fine-Tuning
Data

Context
Monotonicity

(%*)

(x,y) Insertion
Relation

(%*)

HELP-Test
(%)

MED
(%)

NLI-XY
(%)

roberta-large-mnli - 59.00 84.00 36.69 46.10 59.01
roberta-large-mnli HELP 84.00 76.00 97.63 78.22 80.68

facebook/bart-large-mnli 70.00 64.00 43.61 46.54 60.59
facebook/bart-large-mnli HELP 73.00 70.00 88.99 77.16 79.34

bert-base-uncased-snli 73.00 51.00 63.55 49.38 49.09
bert-base-uncased-snli HELP 73.00 51.00 66.80 46.13 44.79

Table 4.3: Summary NLI challenge test set and probing results for all considered models.
∗Probing results are summarized with the accuracy at max selectivity.

4.5 Results and Discussion

4.5.1 Probing Results

The results for the linear probing experiments for both the context monotonicity classifi-

cation task and the lexical relation classification task may be found in figure 4.3, with
a summary score of accuracy at maximum selectivity visible in table 4.3. The results
of the control tasks are taken into account as part of the selectivity measure, which is
represented on the right hand plot for each experiment.

Models that have been finetuned on HELP demonstrate the strongest context mono-
tonicity probing scores, up to 84% for the roberta-large-mnli-help model. It is par-
ticularly notable that large models trained only on the MNLI dataset have inferior
performance on context monotonicity classification. This corresponds with the fur-
ther qualitative observations, suggesting that even in some of the most successful
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Figure 4.3: Linear probing results for all examined models.

transformer-based NLI models, there is a poor “understanding” of the logical regulari-

ties of contexts and how these are altered with downward monotone operators.

On the other hand, roberta-large-mnli demonstrates much higher probing scores for
insertion relation classification (at 84%, higher than the second best at 76% (roberta-
large-mnli-help).) Contrastingly, the version of the facebook-bart-large-mnli model
finetuned on the HELP dataset shows better probing scores (peaking at around 70%)
on the insertion relation prediction task than its counterpart trained only on MNLI
(reaching at most 64%).

For the probing curves, we interpret probing curves which reach higher scores at
lower probe complexities as better probing results in the sense that the task is in a sense
“easier” to learn from the given representations.
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4.5.2 Comparison to Challenge Set Performance

A summary of the probing results (presented as accuracy at maximum selectivity) can be
compared with challenge set performance in table 4.3. Evaluation on the challenge test
sets is relatively consistent with monotonicity probing performance, in the sense that
there is a correspondence between poor/successful modeling of monotonicity features
and poor/successful performance on a targeted natural logic test set. As these challenge
sets are focused on testing monotonicity reasoning, this is a result which strongly
bolsters the suggestion that explicit representation of the context monotonicity feature
is crucial, especially for examples involving negation and other downward monotone
operators. Furthermore, we generally confirm previous results that additional fine-
tuning on the HELP data set has been helpful for these specialized test sets, and add to
this that it similarly improves the explicit extractability of relevant context montonicity
features from the latent vector representations.

4.5.3 Qualitative Analyses

Error Break-Downs An error heat map according to decomposed context mono-
tonicity and word-pair insertion relation can be seen in figures 4.4 and 4.5. We are
less concerned with the accuracy score (on NLI challenge sets) of a given model as
with the behavioural systematicity visible in the errors, as we are not interested in
noisy errors which may be due to words or phrases from outside the training domain.
Consistent mis-classification for all examples derived from a fixed context or insertion
pair are actually also strongly suggestive of a regularity in reasoning. The decomposed
error analyses paint a striking picture: we generally see that models trained on MNLI
routinely fail to distinguish between the expected behaviour of upward and downward
monotone contexts, despite generally achieving high accuracies on large benchmark
sets.

This is in accordance with observations in Yanaka, Mineshima, Bekki, et al. [14]
and Yanaka, Mineshima, Bekki, et al. [13], where low accuracy on the downward-
monotone reasoning sections of challenge sets points to this possibility. Howver, they
show consistently show strong behavioural regularity with respect to concept inclusion.
Even when the contexts are downward monotone, they still treat them systematically as
if they were upward monotone, echoing the concept insertion pair relation only: they
completely fail to discriminate between upward/downward monotone contexts and their
opposite behaviours.
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Visualisation In figures 4.7 and 4.6, each data point corresponds to an embedded
example (contextual (x,y) word pair representation) in the NLI-XY dataset, with the left
and right columns colored with the gold auxiliary labels for context monotonicity and
concept inclusion relations respectively. These illustrate the probing observations: in
the well-known roberta-large-mnli model, concept inclusion relation features are distin-
guishable, whereas context monotonicity is very randomly scattered, with no emergent
clustering. However, the roberta-large-mnli-help model shows an improvement in this
behaviour, demonstrating a stronger context monotonicity distinction.

4.6 Conclusion

In the first part of chapter 4, we address RQ 3 (How can we construct a natural logic

dataset that is suitable for both targeted evaluation and interpretability?) by introducing
the NLI-XY dataset: a compositional NLI dataset with labels for the intermediate
features of context monotonicity and concept inclusion relations, which make it suitable
for structural interpretability studies. Furthermore, it supports qualitative error analyses
which allows for checking the consistency with which models treat certain components
while varying others. It is based on the formalism already presented in chapter 3.

In the second part of this chapter, we address RQ 4 (Are the intermediate features

of context monotonicity and concept inclusion relations emergent in the internal repre-

sentations of NLI models which perform better at natural logic tasks? Can we provide

comparative quantitative evidence?) by presenting an extensive probing study to deter-
mine the representation of the two semantic features relevant to natural logic, context
monotonicity and concept inclusion relations. Specifically, we draw comparisons be-
tween NLI models before and after improvement strategies for natural logic handling,
We have shown that state-of-the-art models seem to fail to capture the monotonicity
feature, while models fine-tuned on the HELP dataset demonstrate strong emergence
of this feature after some more balanced training. We confirm previous findings that
state-of-the-art models do, however, show strong probing performance for the concept
inclusion feature (which generalises previously studied lexical relations).

Lastly, we also contribute to the response to RQ 5 (Which features are responsible

for errors in poorer-performing models?) by presenting qualitative analyses in the
form of visualised projections and informative error breakdowns which further bolster
the argument that it is poor context monotonicity modelling that is a bottleneck for
strong out-of-the-box NLI models’ capacity for correctly identifying valid natural logic
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deductions. The consistent treatment afforded to concept pairs (but not as much for
contexts) by state-of-the-art models such as roberta-large-mnli complement the probing
findings: the observed error heat maps are especially suggestive that monotonicity is the
true bottleneck for strong natural logic reasoning here, even insofar as insertion pairs in
downward monotone contexts are routinely treated as if they occur in upward monotone
ones. On the other hand, the systematicity demonstrated by roberta-large-mnli-help is
extremely promising: we observe that errors which arise from the mistreatment of a
context or concept pair insertion are at least applied consistently and treated “correctly”
in composition with the other reasoning component, at least with respect to its incorrect
assessment. This gives hard evidence of a more principled reasoning strategy for HELP-
improved models. The visualisations support both the error mapping and probing
narratives, showing stronger clustering behaviour in both the key semantic features for
the roberta-large-mnli-help.

In summary, the NLI-XY dataset has enabled us to present evidence that explicit con-
text monotonicity feature clustering in neural model representations seems to correspond
to better performance on natural logic challenge sets which test downward-monotone
reasoning. In particular, the examined popular models trained on MNLI seem to lack
this behaviour, accounting for previous observations that they systematically fail in
downward-monotone contexts.

Furthermore, the probes’ labels also have some explanatory value: both entailment
and non-entailment labels can each further be broken down into sub-regions. This
qualifies the classification with the observations that the data point occurs in a cluster of
examples with a) upward (respectively, downward) contexts and b) a forward (respec-
tively, backward) inclusion relation between the substituted noun phrases. In this sense,
the analyses in this work can thus be interpreted as an explainable “decomposition” of
the treatment of natural logic examples in neural models.

4.7 Scoping and Limitations

As our probing studies here mainly utilize linear probes, we can only make conclusions
about linearly separable information. In particular, we cannot claim that low probing
scores indicate information “absence”, but merely that it is not linearly extractable.
However, as the classification head is itself linearly structured, any information unac-
counted for by probes cannot meaningfully be used by the task classifier anyway. Given
that our end goal is to hypothesise about model reasoning strategies, we do not consider
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this a critical limitation. We are more concerned with keeping our probes simple with
as few degrees of freedom as possible, in order to strengthen as much as possible the
claims that our indicated features are emergent and easily extractable.

The selectivity metric required a control task that is actually providing some redun-
dancy in our study, as we have controlled for the same effects in our dataset construction:
namely, ensuring there is no overlap between individual contexts or insertion pairs across
the training and test set, so that the contextual labels may not be “memorised”. However,
we see it as a useful methodology that forces the consideration of confounding factors
that an overly expressive probe could potentially exploit from the probing task data.

A crucial consideration that we do not address too deeply is defining our demands
for generalisation. As mentioned briefly in chapter 4, some permutations in our
compositional dataset may be less meaningful than others, with highly unexpected
concept pairs instantiations in a given context. These are highly likely to be considered
“out of domain” examples in the sense that language models may have seen no examples
of, say, a certain noun being the argument of a given verb. Nevertheless, for a reasoning
strategy based on a logical regularity such as monotonicity, we would expect an idealised
NLI system to correctly handle unexpected instantiations, breaking the reasoning
decision down to the high-level concepts of relation and monotonicity. It would be
informative to, in future, compare classification success to some OOD metrics.
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Figure 4.4: Decomposed error heat maps for roberta-large-mnli, for portions of the
NLI-XY dataset corresponding to the indicated context monotonicity and insertion
relations, expecting a postive entailment label. Individual contexts are populated along
the y axis, and substituted concept pairs are populated along the x axis. Dark grid units
indicate a model classification error (blank positions are present as only grammatically
valid insertions were included in the dataset).
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Figure 4.5: Decomposed error heat maps for roberta-large-mnli-help, for portions of
the NLI-XY dataset corresponding to the indicated context monotonicity and insertion
relations, expecting a postive entailment label. Individual contexts are populated along
the y axis, and substituted concept pairs are populated along the x axis. Dark grid units
indicate a model classification error (blank positions are present as only grammatically
valid insertions were included in the dataset).
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Figure 4.6: UMAP projections of concatenated (x,y) token pair representations for
the roberta-large-mnli model. There is visible clustring of the concept relation/lexical
relation features (in particular, a distinction between forward and reverse inclusion).
However, the upward and downward monotone contexts are highly entangled.
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Figure 4.7: UMAP projections of concatenated (x,y) token pair representations for
the roberta-large-mnli-help model, which shows greater distinction between context
monotonicity features.



Chapter 5

Interventional Probing in High
Dimensions

In this chapter, we adress research questions RQ 6 (What can structural interventional

methods tell us about the usefulness of the identified representations for the NLI task?)
and RQ 7 ( How can we devise an alternative interventional interpretability method

that is still informative in the high-dimensional situations where amnesic probing

fails?) by carrying out new and existing vector-level interventions to investigate the
effect of our semantic features of interest on NLI classification. We perform amnesic

probing (which removes features as directed by learned probes) and introduce the
mnestic probing variation (which forgets all dimensions except the probe-selected ones).
Furthermore, we delve into the limitations of these methods and outline pitfalls that
have been obscuring the effectivity of such studies.

5.1 Introduction

The probing paradigm has emerged as a useful interpretability methodology which has
been shown to have reasonable information-theoretic underpinnings [69], [70], [73],
indicating whether a given feature is captured in the intermediate vector representations
of neural models. It has been noted many times that this does not generally imply that
the models are using these learnt features, and they may represent vestigial information
from earlier training steps [1], [33].

Only through interventional analyses can we start to make claims about which
modelled features are used for a given downstream task: this is the aim of works such
as Elazar, Ravfogel, Jacovi, et al. [1] and Giulianelli, Harding, Mohnert, et al. [61]

77
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and Geiger, Lu, Icard, et al. [81]. We refer to the case where the interventions are
guided by trained probes as interventional probing.

It has been suggested in Elazar, Ravfogel, Jacovi, et al. [1] (as the guidance for
their amnesic probing methodology) that if features are strongly detected by probes,
one may use debiasing methods such as iterative nullspace projection (INLP) [78]
to intervene on the corresponding vector representations and effectively “remove” the
features before re-insertion into the given classifier. Investigating the effect of these
intervention operations on the classifier performance could allow for stronger causal
claims about the role of the probe-detected features.

In this work, we delve deeper into the amnesic probing methodology with an NLI
case study and identify two key limitations. Firstly, there is an issue of dimensionality:
when the number of dimensions is high and the number of auxiliary feature classes
is low, it seems that amnesic probing is not sufficiently informative. In particular, we
cannot rely on the same control baselines to reach the kind of conclusions discussed
in [1], as nulling out small numbers of random directions consistently has no impact on
the downstream performance. Secondly, in the linguistic settings explored in Elazar,
Ravfogel, Jacovi, et al. [1], we do not have expectations for exactly how or even if the
explored features should be affecting the downstream task. This makes it difficult to
explore the effectivity of the methodology itself.

To this end, use the natural logic subset of NLI defined in section 1.2.1. In this
setting, the intermediate linguistic feature labels for context montonicity and lexical

relations are already known to be extractable to a high degree of accuracy from certain
NLI models’ hidden layers with linear probes [108], allowing us a certain amount of
understanding and control of these features’ representations in the latent space. Using
the deterministic and well-understood nature of the problem space where we have
concrete expectations about the theoretical interaction between the intermediate features
and the downstream label, we may critically analyse the effectivity of interventional
probing.

Through the application of probe-based interventions in this setting, we show
that blindly applying the amnesic probing argument structure leads to unexpected
and contradictory conclusions: the two features which the final label is known to
depend on are shown to have no influence on the final classification (both jointly and
independently). This further calls into question the suitability of these methods for
situations where a small number of feature label classes and high dimensionality of
representations is concerned. Even more perplexingly, when we treat the NLI gold
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label itself as an intermediate feature which can be nulled out with INLP, we yet again
observe almost no change to the NLI performance. As such, the feature removal strategy
appears ineffective here: we attribute this to the disproportionate size of probe-selected
feature subspaces to the very high-dimensional representations.

In response, we introduce and study a variation which we call mnestic probing,
which we show to be more informative in the high-dimensional, low-class-count setting:
the core idea is to keep only the directions identified by the iteratively trained probes.
This allows us to analyse much lower dimension subspaces, while making better use of
the outputs of the INLP strategy used in amnesic probing.

We find that mnestic probing leads to more informative observations which are a) in
line with expected behaviour for natural logic, and b) yield results which seem to better
discriminate between model behaviours.

In summary, the contributions of the paper are as follows:

1. We propose the setting of natural logic to be ripe territory for exploration of
interventional probing strategies.

2. We note two limitations of the amnesic probing methodology, demonstrating
both dimensionality limitations for the control baselines 5.4.4 and contradictory
behaviour in the NLI setting 5.4.2 (namely that that the expected effects of
semantic features on the downstream NLI task are notably absent).

3. Building upon previous interventional methodologies, we introduce an additional
mnestic intervention operation which uses the outputs of the INLP process in the
opposite way.

4. We contrast the mnestic probing strategy with the amnesic probing results, and
demonstrate it presents more informative results which are aligned with the
constructed expectations in our high dimensional, low label class count setting.

5.2 Interventional Probing

We may summarise the general setup of interventional probing as follows: suppose
we start with a classification model that may be decomposed as f ◦g : X → Rn, where
g is an encoder module which yields a representation which serves as an input to the
classifier head f , and n is the number of output classes of the final classifier. We aim to



80 CHAPTER 5. INTERVENTIONAL PROBING IN HIGH DIMENSIONS

intervene on the output of g and observe the change in the performance of f (usually in
comparison with some kind of random control baseline intervention).

Linear probes (also known as diagnostic classifiers) are able to identify subspaces
in which a given intermediate feature set is found to be represented. These may be
used as a guide for vector-level interventions on the representation space; we are
specifically concerned with interventions which are vector projections. Otherwise,
the exact nature of this intervention is interchangeable. We consider two projection
strategies in particular: the amnesic intervention introduced in Elazar, Ravfogel, Jacovi,
et al. [1] (described further in section 5.2.2) and our mnestic variation which uses the
same INLP technique (section 5.2.3).

5.2.1 What Should it Tell Us?

The interventional probing steps are performed on exactly the representation that
would have been an input to the classifier head f . We may re-insert the intervened
representations and re-calculate the classifier accuracy (note that the iterative projections
in sections 5.2.2 and 5.2.3 maintain the original dimensionality of the vector set but
reduce the rank).

We are looking to see if the downstream performance of the classifier f drops. If
it does, the interventions have removed information that was necessary for successful
classification. However, as any projection would remove some information, these
results must be viewed in the context of a control intervention: if the INLP process
ends up removing n directions, a sample of n randomly chosen directions is selected
from the original representation. Elazar, Ravfogel, Jacovi, et al. [1] argue that if the
amnesic downstream performance drops significantly more than the random removal
control performance, we may conclude that the features were necessary for the final
downstream classification. On the other hand, if the performance does not drop at all,
the features were not useful for the classifier in the first place. In the ensuing sections
and results, we demonstrate that this is not necessarily a valid conclusion.

5.2.2 The Amnesic Intervention

We follow the procedure in Elazar, Ravfogel, Jacovi, et al. [1] (in turn based on iterative

nullspace projection in Ravfogel, Elazar, Gonen, et al. [78]): given a fixed set X of
encoded representations for the textual input (with dimensions embedding dimension

× num examples, where the latter is the number of input data points).
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We start an iterative process by training an initial linear SVM classifier to pre-
dict a set Y of auxiliary feature labels from the set of data representations X with as
high an accuracy as possible. Let W0 denote the trained weight matrix of this linear
classifier, where the vectors of W0 define directions onto which the probe projects the
representations for auxiliary label classification (i.e., these are the chosen directions
most aligned with auxiliary class separation). W0 has the dimensions num classes ×
embedding dimension, where num classes is the number of prediction output classes
for the trained linear classifier. We wish to create a projection matrix P0 which satisfies

W0(P0X) = 0,

(namely, projection onto the nullspace of W0) which would mean that the labels Y cannot
be distinguished from the projected representations P0X using the classifier given by W0.
To do this, let R0 donate the matrix which is the projection matrix onto the rowspace of
W0, namely

R0 :=W⊤
0 (W0W⊤

0 )−1W0.

The matrix
P0 := (I −R0)

is the projection matrix onto the nullspace of W0, the orthogonal complement of the
rowspace of W0, and this projection matrix gives us a new set of representations P0(X)

(the same size as X) from which the classifier W0 cannot predict the labels Y .

We continue the iterative nullspace projection process by training new linear classi-
fier weights Wi by learning to predict the auxiliary features labels Y from the projected
representations Pi−1X . Now, we wish to create a projection matrix Pi which satisfies

Wi(Pi(Pi−1(X))) = 0.

Once again, let Ri donate the matrix which is the projection matrix onto the rowspace
of Wi, namely

Ri :=W⊤
i (WiW⊤

i )−1Wi.

The matrix
Pi := (I −Ri)

is the projection matrix onto the nullspace of Wi, the orthogonal complement of the rows-
pace of Wi, and this projection matrix gives us a new set of representations Pi(Pi−1(X))
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from which the classifier Wi cannot predict the labels Y .

This process is repeated until new classifiers Wi are no longer able to achieve
a task accuracy higher than the random basline for the auxiliary feature prediction
task. Let Wn denote the final classifier trained in this way. The ultimate aim of
the INLP process is to create a projection matrix P which simultaneously satisfies
Wi(PX) = 0, for every i ∈ {0...n}. This is done by defining the matrix P to be the
projection onto the intersection of all of the nullspaces of each Wi, but in practice
we follow Ravfogel, Elazar, Gonen, et al. [78] in using the result of Ben-Israel [109],
which shows that we can equivalently define P as the orthogonal complement of the
projection matrix onto the union of the rowspaces: hence, the projection matrix P to the
intersection of the nullspaces is defined to be the matrix

P := (I − (R0 + ...+Rn)).

The matrix product PX is the projection of the data X which results in a matrix in
the original dimensions of X , but with its rank reduced by the number of iteration steps
(as each projection “flattens out” the representation in these directions). Projection to
the intersection of nullspaces is thus the removal of any information pertaining to the
auxiliary feature labels (or at least, the information which allows high performance for
a linear probe): the trained linear classifiers can no longer distinguish the feature labels
from these modified representations. The resulting representation PX is treated as an
altered representation where this feature is removed or forgotten.

5.2.3 A Variation: The Mnestic Intervention

Elazar, Ravfogel, Jacovi, et al. [1] perform a series of experiments on various linguistic
features which had previously been shown to be well-captured in language model
representations and use the amnesic probing methodology to distinguish between
features that are used by the model and those that are not by comparing post-intervention
downstream task performance to a baseline of randomly removed directions.

Rather than projecting the embedded representations to the intersection of nullspaces
of the trained probes (removing the target property), we project them to the union of the

rowspaces with the transformation:

(I −P)X = (I − (I − (R0 + . . .+Rn)))X

= (R0 + . . .+Rn)X
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This has the opposite effect: we use projection to null out everything except the
directions identified by the probes as indicative of the target feature. As such, we
“remember” only the part of the representation that is predictive of that feature rather
than forgetting it.

5.3 Experimental Setup

In this study, we use interventional methods 1 to study the internal behaviour of NLI
models. We compare amnesic and mnestic variations of the INLP strategy, evaluating
intermediate feature probing performance and downstream NLI performance after every
step of the intervention process. For each auxiliary feature label and and model, we
perform the interventional probing strategy as outlined in figure 5.1.

5.3.1 Dataset

Our setting for this study the subset of NLI examples defined in section 1.2.1, specifically
using the use the NLI-XY dataset from chapter 4.

By construction, the NLI-XY dataset consists of NLI examples which rely on exactly
these two abstract features: context monotonicity and the concept inclusion relation
(or lexical relation) of the substituted terms. We perform two flavours of probe-based
interventions (described fully in section 5.2) with four feature label sets (described
next).

Auxiliary Feature Labels We begin with the two relevant intermediate features
(respectively, context monotonicity and lexical relation) which are already known to
correlate with stronger performance on the downstream NLI-XY task [108]. We will
refer to this as single-feature interventional probing, as the probing and intervention
steps are only applied to one feature set at a time. Next, we combine the two features
in a cross product, creating a new feature label set with all possible combinations of
these intermediate features (in the dataset, they are completely independent variables by
construction [110]). We refer to this as the composite feature label.

Lastly, we also consider the entailment label itself (the downstream task label) as
an input to the interventional probing process. The latter is particularly useful as a
diagnostic sanity check, and aids the critical nature of our findings.

1We reuse much of the code included with [1], but we include our data and reproducible experimental
code at https://github.com/juliarozanova/mnestic_probing.

https://github.com/juliarozanova/mnestic_probing
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Figure 5.1: Workflow for interventional probing for NLP classification models: a basis
for both the amnesic and mnestic intervention strategies.
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5.3.2 NLI Models and Encoding

We compare a selection of BERT [4] and RoBERTa [5] models trained for NLI clas-
sification. Firstly, we include a pair of models trained respectively on the MNLI [18]
and SNLI [19] benchmark datasets. In [108] and [110], it is shown that when roberta-
large-mnli (a model which performs well on benchmarks but poorly on the targeted
NLI-XY challenge set) receives additional training on the adversarial HELP dataset [14]
it improves in NLI-XY performance and begins to show high probing performance for

the relevant intermediate features, context monotonicity and lexical relations: this is the
necessary precondition for doing interventional probing. We include two of their models
with this property: roberta-large-mnli-help and roberta-large-mnli-double-fine-tuning
(the model additionally trained on the HELP-Contexts dataset in chapter 3), with the
other models included for a contextual comparison.

We perform probing and intervention on the final representation that precedes the
NLI classification head: in the case of BERT and RoBERTa, this is the [CLS] token of
the final layer.

The initial input is a tokenized NLI example from the NLI-XY dataset. The findings
in [108] show that the intermediate feature labels (context monotonicity and lexical
relations) are detectable in the concatenated tokens of the substituted noun phrases:
however, for interventional purposes, we perform the probing and intervention steps on
the [CLS] token which serves as an input to the NLI classifier head: we have found that
the same features are detectable to a comparable standard, and this is the only position
at which we are able to make a sensible intervention that would allow conclusions about
the final classifier head only.

5.3.3 Evaluation

The significant metrics for these interventional probing paradims are the probing ac-

curacy before and after the iterative nullspace projection steps (a decline to random
performance indicates the feature is being “removed” from the representation in the
sense that it is no longer detectable by linear probes) and the downstream classification

accuracy on the NLI task the model’s were trained for (in our case, we report the
accuracy on the NLI-XY task).

For amnesic probing, we report the performance deltas for both the probing and
downstream tasks. However, for mnestic probing, a slightly more nuanced and qual-
itative view is helpful: it can be assumed that eventually mnestic probing will reach
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Probing Performance NLI-XY Performance
Model Feature Start Intervention ∆ Start Intervention ∆

roberta-large-mnli-help insertion relation 80.58 -40.35 79.79 0.06
context monotonicity 87.65 -46.22 79.79 -0.09
composite 64.48 -43.95 79.79 0.32
entailment label 78.05 -37.49 79.79 -1.57

roberta-large-mnli-double-fine-tuning insertion relation 62.7 -36.49 80.04 0.11
context monotonicity 89.79 -43.28 80.19 0
composite 57.64 -49.56 80.08 -1.67
entailment label 82.8 -24.94 80.19 -16.53

roberta-large-mnli insertion relation 80.39 -45.59 57.22 8.99
context monotonicity 75.44 -27.49 57.37 -0.43
composite 72.35 -53.51 57.24 -2.27
entailment label 73.6 -15.31 57.37 0.1

bert-base-uncased-snli-help insertion relation 59.53 -19.1 45.95 0.28
context monotonicity 82.72 -33.94 45.52 -2.35
composite 37.19 -17.08 45.76 13.68
entailment label 47.05 0.38 45.91 0

bert-base-uncased-snli insertion relation 60.26 -35.14 48.99 1.05
context monotonicity 81.09 -30.77 49.42 -6.25
composite 35.37 -17.83 50.73 7.45
entailment label 42.44 -0.24 49.42 0

Table 5.1: Amnesic probing performance deltas across models and target feature labels:
first listed is the performance on the probing task with respect to the indicated feature,
and then the accuracy on the downstream NLI-XY task. We note the results pre-
intervention and the ensuing change in accuracy.

comparable performance to the untouched vector representations, but we are interested
in the comparative rates at which this happens. As the interventions are iterative, we
may feed the intervened representations into the classifier head at each step of the
intervention process —we use this to provide a step-wise presentation of results in
linear plots in figure 5.4.

While the tabulated deltas in table 5.1 results are sufficient to present our obser-
vations on amnesic probing, for comparison we also include the stepwise graphical
presentations in section 5.9, based on the appendix of the original publication.

5.4 Results and Discussion

5.4.1 Single Feature Amnesic Probing

The results for the standard amnesic probing procedure are in table 5.1. In particular,
the single feature results are in the rows with features labelled insertion relation and
context monotonicity. The amnesic operation is successful – the respective probing
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accuracies approach and reach the majority class baseline.
We also include the step-wise plots of both probing performance and downstream

NLI task performance: we single out the case of the insertion relation label in figures
5.2 and 5.3, but include the full suite of expanded plots for each feature in figure 5.10.
The length of the iterative amnesic probing process is indicative of the number of
dimensions removed to reach this baseline: it can also be considered a proxy for the
strength of the feature presence in the representations, or rather, the dimension of the
semantic subspace corresponding to the target features.

Figure 5.2: Step-wise probing performance throughout the amnesic probing process:
a decrease towards the random baseline accuracy (roughly 0.3 for this 3-class task)
indicates the feature is less and less extractable from the remaining representations as
the iterative process continues.

The second phase of this process, i.e. the resubstitution of the modified represen-
tations as inputs to the NLI classifier head, can be seen in the right hand portion of
table 5.1, labelled NLI-XY Performance. The result is unexpected: for each of these
features, the downstream task performance appears to be unaffected after their removal.

This is surprising when the dataset is explicitly controlled to rely only on these two
features.

5.4.2 Multi Feature Amnesic Probing

The results for the amnesic probing procedure utilizing both auxiliary feature label sets
and the entailment gold label are in the rows of table 5.1 with the labels composite

and entailment label respectively. More detailed results providing accuracy scores for
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Figure 5.3: Downstream performance on NLI-XY after amnesic intervention (removing
lexical relation information). For such an important feature to the end-task, we would
expect to see a drop: but we don’t!

every step of the INLP process can be seen in figures 5.11 and 5.12. We observe
that once again, the downstream task performance is mostly unaffected. Unlike the
unexpected result in the previous section, it is difficult to argue away the fact that
this is somewhat contradictory: while single feature removal may be subject to some
confounding bias, the removal of both features exhausts the variables on which this
classification depends. This is highly unexpected, and suggests a point of failure for
the amnesic probing process. Naturally, we cannot be without doubt that despite all
our best efforts to work with a controlled dataset that relies only on these two known
(but still complex) features, a model may yet find unrelated heuristics to exploit that
may correlate so strongly with the downstream task label that it may perform well
without representing and using these intermediate features. However, we imagine it
to be a rather low probability scenario that the model learns such heuristics while
simultaneously learning representations that create strongly clustered regions in the
representational space for the known intermediate features without using them at all.
The models which we have observed to perform more or less well on NLI-XY (such
as roberta-large-mnli) are indeed estimated to be using sub-par heuristics, but this also
comes with poor probing results for the intermediate features – naturally, this in itself
does not imply anything conclusive, but certainly adds to our convictions.

On a seprate note, it is noted in Elazar, Ravfogel, Jacovi, et al. [1] that there is
no control for the number of dimensions removed, while there is a clear correlation
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between downstream task performance and the number of label classes (and thus
removed probe directions). Our feature sets have only 2 and 3 classes respectively. In
the most analagous result in [1] where the auxiliary features had very few classes and no
change on the downstream performance was observed, it was concluded that the features
must have no effect on the outcome. It is very likely that too little information is being
removed in this process to observe any impact on the downstream task performance.
This could potentially be pointing to high redundancy in the representations which the
amnesic intervention may struggle to remove appropriately.

5.4.3 Mnestic Probing

(a) Context Monotonicity Label (b) Lexical Relation Label

(c) Composite Label (d) Gold Label

Figure 5.4: Downstream NLI task performance after mnestic interventions, with the
input representations from the corresponding step of the INLP process.

Given the possible dimensionality problem, the alternative method of mnestic

probing seems promising: after the mnestic intervention, many dimensions are removed
and few remain, so it appears to be a ripe setting for observing and comparing effects on
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downstream NLI accuracy at a finer granularity. The results for NLI-XY task accuracy
after the mnestic probing procedure are presented as step-wise plots in figure 5.4.
There is a clear increase in NLI performance with subsequent addition of probe-chosen
directions to the representations, especially viewed in the context of section 5.4.4, where
we compare the performance to random choices of included directions. In the latter,
performance varies randomly rather than presenting a structured increase as seen here.

We observe that the composite label and the gold entailment label are reflected
in line with expectations in the mnestic probing experiments: the inclusion of the
probe-selected dimensions with respect to these labels introduces a sharp and immediate
increase in the NLI classifier performance. This is significantly steeper than the baseline
increase observed in random addition of representation directions. Similarly, the
increase is nearly as sharp for the lexical relation label. However, although an increase is
observed during the iterative mnestic probing intervention for context montonicity, this
increase is not at a dramatically higher rate than adding subsequently more directions
from the original representation. For monotonicity specifically, this is not enough to
conclude that the feature (or at least, the corresponding probe-selected dimensions)
are critical to the final classifier. Nevertheless, we have been able to make clearer
observations than were possible in the amnesic probing setting.

5.4.4 Control Comparison

Figure 5.5: Amnesic control experiment: downstream NLI accuracy upon the removal
of n random directions of the original representation.
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Figure 5.6: Mnestic control experiment: downstream NLI accuracy upon the selection
of n random directions of the original representation.

We contextualise all the preceding results with a set of control experiments both
for amnesic (figure 5.5) and mnestic (figure 5.6) probing. Note in particular that even
with very few random dimensions kept, downstream performance starts approaching
comparable levels to the full representations. As such, a single random baseline as
in Elazar, Ravfogel, Jacovi, et al. [1] can be misleading: there is enough variability
in the random direction results so as to allow for a false claim of feature irrelevance
by simply getting lucky; as few as 3 dimensions can perform at the original model’s
performance level or arbitrarily lower.

Lastly, we compare to the mnestic probing results in figure 5.4: with the probe-
selected mnestic dimension choices, the increase in downstream performance does seem
to happen faster and in a more consistent fashion, while the selection of n randomly
chosen directions introduces very haphazard performance spikes. This suggests the
probe-selected dimensions are consistently adding to the model’s access to the relevant
information, and this may be stronger evidence for the usefulness of the examined
features for the final classification.

5.5 Qualitative Visualisations

For our best-berforming NLI-XY model (roberta-large-mnli), we include some visuali-
sations of projected dataset representations which provide some interesting insights into
the structure of representations before and after the interventional steps. We project the
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computed representations of the [CLS] tokens for the NLI-XY test set using the UMAP
algorithm of McInnes, Healy, and Melville [111]. We project onto three dimensions
and present certain angles here which we found informative. Naturally, the nature of the
observations here are purely speculative and do not necessarily constitute hard evidence
of model behaviour, but they have certainly complemented the experimental findings.

5.5.1 Visualisations of Unmodified Representations

We first present visualisations of the unchanged representations, with each data point
coloured respectively according to the context monotonicity label, the concept inclusion
relation label and the final entailment label. All the reasoning components are visibly
clustered, and it is interesting to note that the two prominently emergent subregions of
the entailment region in figure 5.7 (c) correspond to regions which are jointly upward
monotone and exhibit the forward concept inclusion relation (labeled “leq”), or are
both downward monotone and in the region for the reverse concept inclusion relation
(labeled “geq”).

(a) Context Monotonicity Label (b) Insertion Relation Label (c) Entailment Label

Figure 5.7: Projected representations of the [CLS] tokens for the NLI-XY test set
(specifically for the roberta-large-mnli model), coloured according to listed feature
labels.

5.5.2 Visualisations of Interventions

Secondly, we present the same set of representations after the respective amnesic and
mnestic interventions. Recall that these are essentially projections onto or orthogonal to
probe decision boundaries with respect to the mentioned label. In figures 5.8 and 5.9,
we can assess to what extent amnesic probing and mnestic probing are respectively
attaining their stated goals. Recall that amnesic probing works towards erasing the
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distinguishability feature classes, while mnestic probing isolates the subspace which
best discriminates between classes of the given feature. In figures 5.8 (a) and 5.9 (a),
we see that there is a kind of twisting behaviour that may be interpreted as steps in
the direction of discouraging the linear separation of classes. Meanwhile, the mnestic
results in figures 5.8 (b) and 5.9 (b) present a subspace which is much more visibly
segregated between classes. Keep in mind, however, that these are both complementary
projections of the same representations in figure 5.7, so neither case is introducing fresh
information.

(a) Representations after amnesic interven-
tion with respect to the context monotonic-
ity feature

(b) Representations after the mnestic inter-
vention with respect to the context mono-
tonicity feature

Figure 5.8: Projected representations of the [CLS] token vectors after the a) amnesic
and b) mnestic interventions for the NLI-XY test set (specifically for the roberta-large-
mnli-help model), coloured according to monotonicity feature labels.

5.6 Related Work

The use of probing as an interpretability strategy dates back as far as works such as Alain
and Bengio [102] and [112], but a core set of work on the detailed development of
the methodology includes Belinkov and Glass [16], Hewitt and Liang [64], Pimentel,
Valvoda, Hall Maudslay, et al. [69], and Voita and Titov [73]. For a full survey,
see Belinkov [32].

The application of probing strategies to natural logic components has been explored
in Rozanova, Ferreira, Valentino, et al. [108] and Geiger, Richardson, and Potts [84].
In Rozanova, Ferreira, Valentino, et al. [108], probing experiments have proven effective
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(a) Representations after amnesic interven-
tion with respect to the insertion relation
feature

(b) Representations after the mnestic inter-
vention with respect to the insertion relation
feature

Figure 5.9: Projected representations of the [CLS] token vectors after the a) amnesic
and b) mnestic interventions for the NLI-XY test set (specifically for the roberta-large-
mnli-help model), coloured according to insertion relation feature labels.

in detecting the presence or absence of features such as context monotonicity and phrase-

pair relations in the internal representations of NLI models.

Regarding interventions as interpretability tools for machine learning classifiers,
there are two broad categories: those that modify the raw input (such as image or text)
in a controlled way, and those that modify the hidden/latent vector representations of the
data at various stages of the models’ input processing. While input-level interventions
are more common as they are usually easier to control and are strongly interpretable,
they don’t allow us to explore and conjecture about exact high-level representational
mechanisms in the latent space. We tabulate a few relevant interventional interpretability
methods in table 5.2. Note in particular the variation in the generation step for the
intervened input; some use generative modelling for counterfactual examples, while we
use cheaper linear probes.

The only other work in which interventional methods have been applied to natural
logic is Geiger, Lu, Icard, et al. [81]: a similar problem setting is considered, but at a
finer granularity. Our work focuses more on the summarised abstract notion of context
monotonicity as a single feature, rather than the intermediate tree nodes that determine
its final monotonicity profile. The interventions used in this work are vector interchange

interventions; partial representations from transformed inputs are used, as opposed to
direct manipulations of the encoded vectors.
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Intervention Tested Effect Feature
Characteri-
sation

Requires In-
termediate
Labels

Intervention
Linked to
Concept In-
terpretation

Domain

Amnesic Probing /
INLP [1]

Debiasing / Fea-
ture Removal

Downstream Clas-
sifier Accuracy

Linear Clas-
sifier

Yes No Language
Modelling

CausaLM: Causal
Model Explanation
Through Counterfactual
Language Models [113]

Re-Training
Model Copy For
Counterfactual
Representation

Text
representation-
based individual
treatment effect
(TReITE)

Retrained
Base Model

Yes Yes Sentiment
Analysis

Explaining Classifiers
with Causal Concept Ef-
fect [114]

Generative Mod-
eling

Average Causal
Effect Measure

VAE Yes Yes Vision

Concept Activation Vec-
tors (TCAV) [115]

Value Shift in Vec-
tor Direction

Custom Gradient
Sensitivity Mea-
sure

Linear Clas-
sifier

Yes Yes Vision

Latent Space Expla-
nation by Interven-
tion [116]

VAE Input Dis-
cretization and
Reconstruction

Reconstruction
Quality

VAE No Qualitative
Judgement
(Vision
Only)

Vision

Meaningfully Debug-
ging Model Mistakes
Using Conceptual
Counterfactuals [117]

Weighted Combi-
nation of Concept
Vectors

Difference Be-
tween Concept
Addition and
Removal Effect

Linear Clas-
sifier

Yes Yes Vision

Table 5.2: Related Work on Latent Concept Interventions

5.7 Conclusion and Future Work

In this chapter, we address RQ 6 (What can structural interventional methods tell us

about the usefulness of the identified representations for the NLI task?) and RQ 7
(How can we devise an alternative interventional interpretability method that is still

informative in the high-dimensional situations where amnesic probing fails?) by
carrying out new and existing vector-level interventions to investigate the effect of our
semantic features of interest on NLI classification. We perform amnesic probing (which
removes features as directed by learned probes) and introduce the mnestic probing
variation (which forgets all dimensions except the probe-selected ones). Furthermore,
we delve into the limitations of these methods and outline pitfalls that have been
obscuring the effectivity of such studies.

In the initial application amnesic probing we discover some curious limitations in
our high-dimensional settings where there are few label classes (and consequently fewer
dimension modified), even if these classes are initially able to be detected with high
accuracy by linear probes and amnesic probing shows a strong decrease in probing
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scores.

Our results point out that it is misguided to conclude that a given feature is not
used when post-amnesic-intervention downstream performance fails to drop, especially
in our example amnesic probing studies of a) the gold donwstream feature label and
b) the composite of two labels that jointly determine the entailment label. For the
gold label “feature” this is especially nonsensical. We hypothesise that due to the low
number of feature classes, the effective intervention is too low-rank to meaningfully
affect the representations, which may have a lot of redundancy to be exploited by the
final classifier. As well-suited as the amnesic probing paradigm is for our setting in
theory, its inefficacy leaves a gap for a more informative probing-based interpretability
method.

Our introduced mnestic variation of the interventional methodology yields much
cleaner insights, once again demonstrating the difference between model capabilities
before and after the HELP improvement strategy. We now back up previous observations
with an interventional observation which suggests that both monotonicity and relations
are useful for HELP-improved models, while previous state-of-the-art models show a
strong use of concept relations but not so much of the monotonicity feature.

It remains to be checked whether high performance in the random control directions
corresponds to strong alignment with these probe-selected directions: we propose
a potential future analysis of the dot products with the fixed set of probe-selected
dimensions, which indicates a shared directionality measure (0 for orthogonal vectors
and 1 for codirectional ones).

In summary: we have introduced a modification of the amnesic probing paradigm
which we call mnestic probing which uses the same INLP process but considers the op-
posite intervention: using the union of projection rowspaces to keep only the directions
the probes have identified to be modelling the target information. This strategy presents
results that are more aligned with theoretical expectations (in the NLI case), possibly
because we are now able to make comparisons in a lower rank setting.

5.8 Scoping and Limitations

A key limitation of the mnestic probing strategy is that as one reconstructs the original
representation one dimension at a time, information content is naturally due to increase:
as such, no mnestic probing result can be viewed in isolation, but should be used as a
comparative study. Preferably, various randomized selections of linear subspaces with
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the same number of dimensions should be included as baselines input representations.
Furthermore, we mention two some additional caveats: firstly, the probing strategies
used here to identify the informative semantic subspaces in question are always linear;
relevant information may be present non-linearly. However, as with amnesic probing,
we discount any non-linearly encoded information as the final model classifcation layer
is linear and thus cannot exploit this information. Lastly, probing for subspaces which
are informative of target auxiliary features may always include correlated features in the
resulting subspaces; this must always be taken into account when drawing conclusions
from mnestic/amnesic probing.

5.9 Expanded Amnesic Intervention Results



98 CHAPTER 5. INTERVENTIONAL PROBING IN HIGH DIMENSIONS

(a) Lexical relation probing performance dur-
ing iterative amnesic intervention process

(b) Downstream performance on NLI-XY after
amnesic intervention (removing lexical rela-
tion information)

(c) Context monotonicity probing perfor-
mance during iterative amnesic intervention
process

(d) Downstream performance on NLI-XY af-
ter amnesic intervention (removing context
monotonicity information)

Figure 5.10: Single feature label amnesic probing, presenting a) the probing score at
each INLP step, and b) the NLI task accuracy when using the representations create at
that INLP step.
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(a) Probing performance on NLI-XY after
composite label amnesic intervention

(b) Downstream performance on NLI-XY after
composite label amnesic intervention

Figure 5.11: Composite feature label amnesic probing, presenting a) the probing score
at each INLP step, and b) the NLI task accuracy when using the representations create
at that INLP step.

(a) Probing performance On NLI-XY after en-
tailment label amnesic intervention.

(b) Downstream performance on NLI-XY after
entailment label amnesic intervention.

Figure 5.12: Sanity check: entailment gold label amnesic probing, presenting a) the
probing score at each INLP step, and b) the NLI task accuracy when using the represen-
tations create at that INLP step.



Chapter 6

Causal Effects of Natural Logic
Features

This chapter investigates RQ 8: “What can causal effect measures from interventional

experiments tell us about NLI models’ robustness and sensitivity to different types of

intermediate feature changes?”. Drawing from the framework in Stolfo, Jin, Shridhar, et

al. [2] and adjusting it to our NLI setting, we produce a causal diagram which models the
possible influences of context monotonicity, word pair relations and irrelevant textual
surface form on NLI model predictions. We arrange examples from the NLI-XY dataset
into sets of interventions, changing or keeping constant the exact selection of variables
needed in order to calculate either total causal effects of changes which we would like
to see changing model predictions (desired total causal effects), or the direct causal

effects of interventions for which we would not expect or desire model predictions to be
affected (undesired direct causal effects). Following Stolfo, Jin, Shridhar, et al. [2], we
interpret these measures as indicators of robustness and sensitivity with respect to the
semantic variables of interest.

Our central conclusion is that high performance on NLI benchmarks does not
coincide with the strong robustness and sensitivity indicatggors. In particular, we
bring causal evidence to support previous observations that popular NLI models fail

to respond appropriately to context monotonicity, and over-rely on relations between

words across the premise and hypothesis. Furthermore, we bring a new observation that
strategies to improve model monotonicity handling (namely, fine-tuning on the HELP
dataset) also benefit the treatment of concept relations, even though this was not evident
in previous observational studies. Especially, we note that the causal effect indicators
in this chapter show that improved models also demonstrate improved robustness to

100
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irrelevant insertion pair changes and better sensitivity to relevant ones.

6.1 Introduction

There is an abundance of reported cases where high accuracies in NLP tasks can be
attributed to simple heuristics and dataset artifacts [7]. As such, when we expect a
language model to capture a specific reasoning strategy or correctly use certain semantic
features, it has become good practice to perform evaluations that provide a more granular
and qualitative view into model behaviour and efficacy. In particular, there is a trend
in recent work to incorporate causal measures and interventional experimental setups
in order to better understand the captured features and reasoning mechanisms of NLP
models [2], [34], [35], [81].

In general, it can be hard to pinpoint all the intermediate features and critical
representation elements which are guiding the inference behind an NLP task. However,
in many cases there are subtasks which have enough semantic/logical regularity to
perform stronger analyses and diagnose clear points of failure within larger tasks such
as NLI and QA (Question Answering). As soon as we are able to draw a causal diagram
which captures a portion of the model’s expected reasoning capabillities, we may be
guided in the design of interventional experiments which allow us to estimate causal
quantities of interest, giving insight into how different aspects of the inputs are used by
models.

In this chapter, we look at the structured subset of the NLI task described in section
1.2.1 to investigate the use of two semantic inference features by NLI models: concept
inclusion relations and context monotonicity. In the manner of Stolfo, Jin, Shridhar, et

al. [2], we use these intermediate semantic feature labels to construct intervention sets

out of NLI examples which allow us to measure certain causal effects. These measures
are used to get a sense of models’ sensitivity to relevant changes and robustness to
irrelevant changes in these features.

Our contributions may be summarised as follows:

• Following Stolfo, Jin, Shridhar, et al. [2], we focus on a structured subproblem
in NLP (in our case, a natural logic based subtask of NLI) and present a causal
diagram which captures both desired and undesired potential reasoning routes
which may describe model behaviour.
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• We adapt the NLI-XY dataset in chapter 4 to a meaningful collection of interven-

tion sets which enable the computation of certain causal effects.

• We calculate estimates for undesired direct causal effects and desired total causal
effects, which also serve as a quantification of model robustness and sensitivity
to our intermediate semantic features of interest.

• We compare a suite of popular NLI models, identifying behavioural weaknesses in
high-performing models and behavioural advantages in some worse-performing
ones.

We are the first to complement previous observations of NLI models’ brittleness
with respect to context monotonicity with the evidence of causal effect measures, as
well as presenting new insights that over-reliance on lexical relations is consequently
also tempered by the same improvement strategies.

6.2 Problem Formulation

6.2.1 A Structured NLI Subtask

As soon as we have a concrete description of how a reasoning problem should be
treated, we can begin to evaluate how well a model emulates the expected behaviour and
whether it is capturing the semantic abstractions at play. As our structured reasoning
problem, we once again use the NLI subtask presented in section 1.2.1. We will re-use
the NLI-XY dataset introduced in chapter 4, but for the convenience of this chapter
we change the notation somewhat. We represent an NLI-XY example n as a tuple
n = (c,m,w,r,g) in which c is the shared natural language context, m is its monotonicity
label, w is a pair (w1,w2) of nouns/noun phrases which will be inserted into the context
(we refer to these as the inserted word pair for brevity), r is the concept inclusion
relation label for w and g is the entailment gold label arising from m and r as per table
1.4. We denote by P(Y |C = c,W = w) the probabilistic output of a trained NLI model
with the example n as the NLI input (in particular, the input is the premise–hypothesis
pair (c(w1),c(w2))). The support of the variable Y is the set {0,1}: 0 is interpreted as
non-entailment and 1 is interpreted as entailment.

As we have chosen a coarse segmentation of the monotonicity reasoning problem,
we are able to present a simple causal diagram which illustrates our expectations for the
correct reasoning scheme for a fixed class of NLI problems. The diagram in figure 6.1
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Variable Description

G Gold Label
C Context
M Context Monotonicity
W Inserted Word Pair
R Word-Pair Relation

C M

W R

G

Figure 6.1: Causal diagram for the natural logic subtask.

shows the features on which the gold label is dependent on in the NLI-XY dataset: only
the context monotonicity M and the concept pair relation R, which are respectively
dependent on the content of the natural language context C and the concept pair / word
pair W which is substituted into it. The exact values of the gold label with respect to
these features may be referenced in table 1.4.

Naturally, it is always likely that models may fail to follow the described reasoning
scheme for these NLI problems. In the next section (6.2.2), we propose a causal diagram
which also captures the reasoning possibilities an NLI model may follow, accounting for
possible confounding heuristics which may manifest as unwanted direct causal effects.

6.2.2 The Causal Structure of Model Decision-Making

In an ideal situation, a strong NLI model would identify the word-pair relation and the
context monotonicity as the abstract variables relevant to the final entailment label. In
this case, these features would causally affect the model prediction in the same way they
affect the gold label. Realistically, as shown in illuminating studies such as McCoy,
Pavlick, and Linzen [7], models identify unexpected biases in the dataset and may
end up using accidental correlations output labels, such as the frequency of certain
words in a corpus. For example, McCoy and Linzen [31] demonstrate how models can
successfully exploit the presence of negation markers to anticipate non-entailment, even
when it is not semantically relevant to the output label.

To ensure that the semantic features themselves are taken account into the model’s
output and not other surface-level confounding variables, one would like to perform in-
terventional studies which alter the value of the target feature but not other confounding
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variables. This is, in many cases, not feasible (although attempts are sometimes made
to at least perform interventions that only make minimal changes to the textual surface
form, as in Kaushik, Hovy, and Lipton [118].)

Stolfo, Jin, Shridhar, et al. [2] argue that it is useful to quantify instead the direct
impact of irrelevant surface changes (controlling for values of semantic variables of
interest) and compare them to total causal effects of input-level changes: doing so, we
may posit deductions about the flow of information via the semantic variables (or lack
thereof). For analyses where there is an attempt to align intermediate variables with
explicit internals, see Vig, Gehrmann, Belinkov, et al. [34] and Finlayson, Mueller,
Gehrmann, et al. [35] for a mediation analysis approach, or Geiger, Lu, Icard, et al.

[81] for an alignment strategy based on causal abstraction theory.

Diagram Specification We follow Stolfo, Jin, Shridhar, et al. [2] in the strategy of
explicitly modeling the “irrelevant surface form” of the input text portions as variables
in the causal diagram. Their setting of math word problems is decomposed into two
compositional inputs: a question template and two integer arguments. Our setting
follows much the same structure: our natural language “context” plays the same role
as their “template”, but our arguments (an inserted word pair) have an additional layer
of complexity as we also model the relation between the arguments as an intermediate
reasoning variable rather than the values themselves (as such, the structure of their
template modeling in their causal diagram is more applicable than the direct way they
treat their numerical arguments.)

We present our own causal diagram in figure 6.2. We introduce the textual context
C as an input variable, which is further decomposed into more abstract variables: its
monotonicity M (which directly affects the gold truth G) and the textual surface form
S of the context . The other input variable is the word-pair insertion which we will
summarise as a single variable W . Once again, W has a potential effect on the model
decision through its textual surface form T and via the relation R between the words.
The gold truth G is dependent on W and R only. Finally, the outcome variable is the
model prediction Y . The paths for which we would like to observe the highest causal
effect are the paths to Y from the inputs via M,R and through the gold truth variable G.
However, each of S,T,M and R have direct links to the model output Y as well (indicated
in red): these are potential direct effects which are unwanted. For example, we would
not want a model to learn a prediction heuristic based directly on the variable M, such
as consistently predicting non-entailment any time a downward monotone context is
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Variable Description

Y Model Prediction
G Gold Label
C Context
M Context Monotonicity
S Context Textual Surface Form
W Inserted Word Pair
R Word-Pair Relation
T Word-Pair Textual Surface Form

C

S

M

W

T

R

G Y

Figure 6.2: Specification of the causal diagram for possible routes of model reasoning
for NLI-XY problems. Green edges indicate desired causal influence, while red edges
indicate undesired paths of causal influence via surface-level heuristics.

recognised. Similarly, a direct effect of S or T would look like a heuristic which predicts
the entailment label purely based on the presence of words which happened to co-occur
with that label in the training data. The key goal of this study is to compare the extent to
which models exhibit the high causal effects for the desired diagram routes and lower
causal effects for the undesired routes.

6.3 Estimating the Causal Effects

Given a fixed set N of NLI-XY examples, we define an intervention I on N as a set of
pairs (n,n′) of NLI-XY examples for (one for each n ∈ N), where n′ = (c′,m′,w′,r′,g′)

is a second NLI-XY example which represents a modified version of n (in practice, a
modification of either c or w). We denote by N′ the set of modified NLI-XY examples,
so that I ⊆ N ×N′.

For any pair (n,n′) ∈ I , we define the change-of-prediction indicator
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CP(n,n′) =

1 if y ̸= y′

0 if y = y′
,

where
y = arg max

i∈{0,1}
P(Y = i |C = c,W = w)

(namely, the model prediction which assigns the entailment label with the highest
predicted probability) and

y′ = arg max
i∈{0,1}

P(Y = i |C = c′,W = w′).

Stolfo, Jin, Shridhar, et al. [2] refer to the average change-of-prediction quantity
for a given intervention I as a causal effect. This causal effect quantity is named and
interpreted differently depending on the conditions of the intervention: in particular,
which variables are changed and which are kept constant throughout the intervention
set over which we will take the average.

6.3.1 Interventions for Calculating TCE and DCE

The quantities of interest in Stolfo, Jin, Shridhar, et al. [2] are the total causal effect

(TCE) of interventions on the variables which we would like to see having an effect on
the prediction (in our case, C and W ) and the direct causal effect (DCE) of interventions
on the variables which we do not wish to unnecessarily impact the model prediction (in
our case, T and S).

For a given source variable and target variable, whether we are measuring a DCE
or TCE differs only in the design of the intervention set, which in turn depends on the
structure of the causal diagram. For the design of the relevant intervention sets, we
follow the strategy in Stolfo, Jin, Shridhar, et al. [2], as the upper portion of their causal
diagram (concerning the natural language question template, its textual surface form
and the implicit math operation) is equivalent to both the upper and lower half of our
diagram in figure 6.2.

In this work, we provide four intervention sets: I0,I1,I2,I3, each corresponding to
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the quantities TCE (C on Y ),TCE (W on Y ),DCE (T → Y ) and DCE (S → Y ) respec-
tively 1. We stick to their nomenclature of total causal effect (TCE) and direct causal
effect (DCE), but define the quantities in the way that they are concretely calculated (in
both our experiments and in Stolfo, Jin, Shridhar, et al. [2]): as an estimate of the causal
effect quantity, which they present as an expected value of the change-of-prediction
indicator.

(Desired) Total Causal Effects

1. We estimate the total causal effect of the context C on the model prediction Y by
constructing an intervention set I0 as follows: starting with a randomly sampled
set N of NLI-XY examples, we intervene on each n ∈ N by sampling a different
context c′ from the NLI-XY dataset which should result in a changed prediction,
while keeping the inserted word pair w constant.

In summary, every (n,n′) ∈ I0 satisfies

(c ̸= c′,m ̸= m′,w = w′,r = r′,g ̸= g′).

We then calculate:

TCE(C on Y ) =
1
|I0| ∑

(n,n′)∈I0

CP(n,n′)

2. Secondly, we estimate the total causal effect of the inserted word pair W on the
model prediction Y by constructing an intervention set I1 as follows: starting with
a randomly sampled set N of NLI-XY examples, we intervene on each n ∈ N by
sampling a different inserted word pair w′ from the NLI-XY dataset which should
result in a changed prediction, while keeping the shared context c constant.

In summary, every (n,n′) ∈ I1 satisfies

(c = c′,m = m′,w ̸= w′,r ̸= r′,g ̸= g′).

1To be consistent with the notation in Stolfo, Jin, Shridhar, et al. [2], we will stylize these quantities
as (for example) TCE(C on Y ) and DCE(S →Y ), where the arrow emphasizes that the quantity is specific
to a direct path in the causal diagram (passing through no intermediate variables).
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We then calculate:

TCE(W on Y ) =
1
|I1| ∑

(n,n′)∈I1

CP(n,n′)

Following Stolfo, Jin, Shridhar, et al. [2], we interpret this quantity as a measure
of model sensitivity to relevant context (respectively, inserted word pair) changes. As it
quantifies how often the prediction changes when it should, we would like to see this
value being as close to 1 as possible.

(Undesired) Direct Causal Effects The total causal effect does not distinguish
whether this effect is mediated through the preferred causal route (for example, via
context’s monotonicity) or through a model heuristic based on the textual surface form:
it is taking into account all possible routes of influence. The key suggestion in Stolfo,
Jin, Shridhar, et al. [2] is that even though we have no feasible intervention strategies
which allow us to calculate the causal effect of the intermediate variables M and R on Y

as mediated through the gold label G (the effect of greatest interest to us), we may yield
some insight into their causal influence by comparing the relevant TCE to the unwanted
direct causal effect DCE (S → Y ) ( respectively, DCE (T → Y )).

1. To estimate the direct causal effect of the textual surface form S of the context C

which is irrelevant to the context monotonicity M, we construct an intervention
set I2 as follows: starting with a randomly sampled set N of NLI-XY examples,
we intervene on each n ∈ N by sampling a different context c′ from the NLI-XY

dataset while conditioning on the monotonicity (specifically, c′ is chosen so that
its monotonicity attribute m′ is the same as that of c). The word pair w′ (and
therefore its relation r′) are kept the same as in n, so the prediction is expected
not to change. In summary, every (n,n′) ∈ I2 satisfies

(c ̸= c′,m = m′,w = w′,r = r′,g = g′).

We then calculate:

DCE(S → Y ) =
1
|I2| ∑

(n,n′)∈I2

CP(n,n′)

2. To estimate the direct causal effect of the textual surface form T of the inserted
word pair W which is irrelevant to the word pair relation R, we construct an
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intervention set I3 as follows: starting with a randomly sampled set N of NLI-XY

examples, we intervene on each n ∈ N by sampling a different inserted word
pair w′ from the NLI-XY dataset while conditioning on the word pair relation
(specifically, w′ is chosen so that its relation attribute r′ is the same as that of w).
The context c′ (and therefore its monotonicity m′) are kept the same as in n, so
the prediction is expected not to change. In summary, every (n,n′) ∈ I3 satisfies

(c = c′,m = m′,w ̸= w′,r = r′,g = g′).

We then calculate:

DCE(T → Y ) =
1
|I3| ∑

(n,n′)∈I3

CP(n,n′)

Once again following Stolfo, Jin, Shridhar, et al. [2], we interpret this quantity as
a measure of model robustness to irrelevant context (respectively, inserted word pair)
changes. As it quantifies how often the prediction changes in cases when it shouldn’t,
we would like to see this value being as close to 0 as possible.

We present examples and dataset statistics for the intervention sets in the next
section, along with the summary of the intervention schema in table 6.1.

6.4 Experimental Setup

6.4.1 Data and Interventions

Intervention
Set

Target Measure C W M R G Interventions
in Dataset

I0 TCE (C → Y ) ̸= = ̸= = ̸= 14270
I1 TCE (W → Y ) = ̸= = ̸= ̸= 22640
I2 DCE (S → Y ) ̸= = = = = 20910
I3 DCE (T → Y ) = ̸= = = = 25960

Table 6.1: Intervention schema and dataset statistics: which variables are held constant
and which are changed in the construction of intervention sets for the calculation of the
indicated effects.

We use the NLI-XY evaluation dataset to construct intervention pairs (n,n′) by using
a sampling/filtering strategy as in [2] according to the intervention schema in table 6.1,
and as described in section 6.3. In particular, for constructing context interventions, we
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sample a seed set of 400 NLI-XY premise/hypothesis pairs. This is the pre-intervention

NLI example. For each, we fix the insertion pair and filter through the NLI-XY dataset
for all examples with the shared insertion pair but different context, conditioned as
necessary on the properties of the other variables as in the intervention schema. For
insertion pairs, we do the opposite. The number of interventions we produce in this way
for our experiments are reflected in the last column of table 6.1

In summary, the changes are context replacements and related word-pair replace-
ments; we provide text-level examples in tables 6.2 and 6.3 .

Intervention
Set

Target Quantity Intervention
Step

Premise Hypothesis M R G

I1 TCE(W on Y )
Before There’s a cat on the pc. There’s a cat on the machine. ↑ ⊑ Entailment
After There’s a cat on the tree. There’s a cat on the fruit tree. ↑ ⊒ Non-Entailment

I3 DCE(T → Y )
Before There are no students yet. There are no first-year stu-

dents yet.
↓ ⊒ Entailment

After There are no people yet. There are no women yet. ↓ ⊒ Entailment

Table 6.2: Example word-pair insertion interventions for determining the total causal
effect of label-relevant word-pair changes and the direct causal effect of label-irrelevant
word-pair changes.

Intervention
Set

Target Quantity Intervention
Step

Premise Hypothesis M R G

I0 TCE(C on Y )
Before You can’t live without fruit . You can’t live without straw-

berries .
↑ ⊒ Non-Entailment

After All fruit study english. All strawberries study En-
glish.

↓ ⊒ Entailment

I2 DCE(S → Y )
Before He has no interest in seafood . He has no interest in oysters . ↓ ⊒ Entailment
After I don’t want to argue about

this in front of seafood .
I don’t want to argue about
this in front of oysters .

↓ ⊒ Entailment

Table 6.3: Example context interventions for determining the total causal effect of
label-relevant context changes and the direct causal effect of label-irrelevant context
changes.

6.4.2 Model Choice and Benchmark Comparison

We include the following models 2 in our study:

• The models evaluated in NLI-XY paper [108], namely roberta-large-mnli,
facebook/bart-large-mnli, bert-base-uncased-snli and their counterparts fine-
tuned on the HELP dataset [14]

2All pretrained models are from the Huggingface transformers library ([96]), except for infobert and
the pretrained model counterparts fine-tuned on HELP: their sources are linked in the README of the
accompanying code.
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• The infobert model, which is trained on three benchmark training sets of interest:
MNLI [18], SNLI [19] and ANLI [119] (currently at the top of the leaderboard
for the adversarial ANLI test set, as of January 2023)

• Another roberta-large checkpoint, also trained on all three benchmark NLI training
training sets (as well as FEVER-NLI [120]).

We report their scores on the mentioned benchmark datasets alongside the relevant total
and direct causal effects we are interested in.

Note that as the HELP dataset is a two-class entailment dataset (as opposed to
datasets like MNLI, which are three-class), we cannot directly compare existing reported
scores. As such, we adapt the three-class scores to a two-class score by grouping two of
the three-class labels (“contradiction” and “neutral”) into the two-class umbrella label
”non-entailment”. For all models, we report both the three-class and adapted two-class
accuracy scores on the benchmark datasets.

6.5 Results and Discussion

We examine and compare the results for the models listed in 6.4.2. We first look at
the word-pair insertion intervention experiments in 6.5.1, then the context intervention
experiments in 6.5.2 and finally present a categorical overview of these results in
section 6.5.3, contextualised by benchmark scores.

6.5.1 Causal Effect of Inserted Word Pairs

The results for the substituted word-pair intervention experiment are reported in fig-
ure 6.3. The most desireable outcome is a DCE(S → Y ) which is as low as possible in
combination with a TCE(C on Y ) which is as high as possible. The lower this DCE,
the higher the model robustness is to irrelevant context surface form changes. On the
other hand, the higher the specified TCE, the greater the model’s sensitivity to context

changes affecting the gold label.

The largest delta between these two quantities can be seen in the roberta-large-
mnli-help and facebook-bart-large-mnli-help models. This is important to note: the
HELP dataset [14] is explicitly designed to bolster model success on natural logic
problems, but until now there has been little to no evidence that it improves the treatment
of word-pair relations. In particular, the internal probing results in [108] show that
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bert-base-uncased-snli

bert-base-uncased-snli-help

roberta-large-mnli

roberta-large-mnli-help

facebook/bart-large-mnli

facebook/bart-large-mnli-help

roberta-large-snli_mnli_fever_anli_R1_R2_R3

infobert
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Insertion Interventions: Causal Effect on Prediction

Model DCE(T → Y ) TCE(W → Y ) TCE/DCE Ratio Delta

bert-base-uncased-snli 0.341 0.350 1.027 0.009
bert-base-uncased-snli-help 0.332 0.361 1.087 0.029
roberta-large-mnli 0.343 0.613 1.785 0.269
roberta-large-mnli-help 0.276 0.754 2.730 0.478
facebook/bart-large-mnli 0.342 0.618 1.805 0.275
facebook/bart-large-mnli-help 0.268 0.766 2.863 0.499
roberta-large-
snli mnli fever anli R1 R2 R3

0.294 0.682 2.321 0.388

infobert 0.291 0.674 2.320 0.384

Figure 6.3: Results for insertion interventions.

probing performance for the intermediate word-pair relation label decreases slightly
for roberta-large-mnli after fine-tuning on HELP; as such, it was thought that the
HELP improvements on natural logic could solely be attributed to improved context
monotonicity treatment. Now, however, we observe distinct improvements in robustness
to irrelevant word-pair insertion changes and sensitivity to relevant ones.

More generally, the work in Rozanova, Ferreira, Valentino, et al. [108] does indicate
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that the large MNLI-based models are already very successful in distinguishing the
relation between substituted words. The word-pair relation label has a high probing

result for all of these models, as well as strong signs of systematicity in their error
analysis. This is in line with our observations of relatively large deltas between the
DCE and TCE here, compared to the smaller BERT-based models.

6.5.2 Causal Effect of Contexts

The results for the context intervention experiments are reported in figure 6.4. The most
desireable outcome is a DCE(S → Y ) which is as low as possible in combination with a
TCE(C on Y ) which is as high as possible.

For context interventions, we start to see major distinctions in the sensitivity of
models to important context changes – especially the effect of the HELP fine-tuning
dataset in increasing model reasoning with respect to context structure. In line with
previous behavioural findings in Yanaka, Mineshima, Bekki, et al. [13], [14], Geiger,
Richardson, and Potts [84], Rozanova, Ferreira, Valentino, et al. [108], and Richardson,
Hu, Moss, et al. [121] and all the way back to Wang, Singh, Michael, et al. [6], which
observe systematic failure of large language models in downward monotone contexts,
we notice that all of the models trained only on the large benchmarks sets fail to correctly
change their prediction when a context change requires it to do so (as indicated by the
low TCE score).

In Yanaka, Mineshima, Bekki, et al. [14], Rozanova, Ferreira, Valentino, et al. [108]
and Rozanova, Ferreira, Thayaparan, et al. [110], the positive effect of the HELP dataset
is already evident, but here we may also compare it to roberta-large-mnli tuned on many
additional training sets, precluding the possibility that its helpfulness can be attributed
only to a “larger amount of training data”.

We note that although the situation of the TCE/DCE ratio for roberta-large-mnli
being less than one may seem peculiar, it is important to keep in mind that the inter-
vention sets used for estimating these quantities are sampled independently so some
margin of error is warranted. As in Stolfo, Jin, Shridhar, et al. [2], we interpret this
result to simply mean that the causal influence is comparable whether we are affecting
the ground truth result (as in the TCE(C →Y ) case) or not (as in the DCE(S →Y ) case).
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bert-base-uncased-snli
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roberta-large-mnli
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Context Interventions: Causal Effect on Prediction

Model DCE(S → Y ) TCE(C → Y ) TCE/DCE Ratio Delta

bert-base-uncased-snli 0.412 0.468 1.136 0.0563
bert-base-uncased-snli-help 0.406 0.485 1.194 0.079
roberta-large-mnli 0.107 0.081 0.751 -0.027
roberta-large-mnli-help 0.163 0.828 5.070 0.665
facebook/bart-large-mnli 0.136 0.130 0.954 -0.006
facebook/bart-large-mnli-help 0.189 0.791 4.167 0.601
roberta-large-
snli mnli fever anli R1 R2 R3

0.093 0.093 1.008 0.001

infobert 0.127 0.176 1.385 0.049

Figure 6.4: Results for context interventions.

6.5.3 Benchmark Scores and Causal Effects

A summary of the performance of all models on popular benchmarks alongside a
categorical breakdown of robustness and sensitivity is presented in table 6.4. The
robustness/sensitivity categories are a qualitative assessment, identifying the lowest and
highest scores within a category, and categorising other models correspondingly as low,
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Model NLI Benchmark Evaluation (2 Class Accuracy) Context Changes Inserted Word-Pair Changes

SNLI MNLI-M MNLI-MM ANLI-R1 ANLI-R2 ANLI-R3 Robustness Sensitivity Robustness Sensitivity

bert-base-uncased-snli 0.766 0.620 0.623 0.567 0.596 0.580 Mid Mid Mid Low
bert-base-uncased-snli-help 0.757 0.627 0.626 0.505 0.508 0.546 Mid Mid Mid Low
facebook/bart-large-mnli 0.935 0.940 0.939 0.596 0.563 0.593 High Low Mid Mid
facebook/bart-large-mnli-help 0.727 0.802 0.795 0.538 0.489 0.528 Mid/High Highest Highest Highest
roberta-large-mnli 0.931 0.941 0.940 0.614 0.529 0.5325 Highest Lowest Mid Mid
roberta-large-mnli-help 0.738 0.668 0.656 0.565 0.554 0.574 High Highest Highest Highest
roberta-large-snli mnli fever anli 0.949 0.936 0.939 0.810 0.659 0.666 Highest Lowest Mid Mid/High
infobert 0.950 0.943 0.941 0.837 0.682 0.683 High Low Mid Mid/High

Table 6.4: Overall two-class accuracy on original NLI benchmarks and qualitative
comparison against the performed causal intervention analysis. The accuracy is not
necessarily predictive of the performances achieved using a systematic causal inspection.

mid or high performers for the given categories. The sensitivity property is tied to the
desired total causal effect, while the robustness property is tied to the undesired direct
causal effect (note in particular that the latter is judged as inversely proportional: the
model with the lowest given DCE is judged the “highest” in terms of robustness).

The key observation is that the models which achieve the highest performance
on benchmarks may be far from the best performers with respect to our quantitative
markers of strong reliance of important causal features. In particular, models such as
infobert are outperformed in our behavioural causal effect analyses by weaker models
that are fine-tuned on a relatively small helper dataset such as HELP. It is important to
note that such changes coincide with drops in benchmarks performance too, but any
model interventions that discourage the exploitation of heuristics (evident from a lower
DCE for surface form features) may have that effect.

6.6 Related Work

Causal modelling has appeared in NLP works in various forms, such as the investigations
of the causal influence of data statistics [122] and mediation analyses [34], [35] which
link intermediate linguistic/semantic features to model internals. Stolfo, Jin, Shridhar,
et al. [2], our core reference, appears to be the first to use explicitly causal effect
measures as indicators of sensitivity and robustness (for some non-causal approaches to
measuring model robustness in NLP, we point to [123] and [124]). For a fuller summary
of the use of causality in NLP, see the survey by Feder, Keith, Manzoor, et al. [125].

Specific to natural logic, works with causal approaches include Geiger, Richardson,
and Potts [15] (which perform interchange interventions at a token representation
level), Geiger, Lu, Icard, et al. [81] (where an ambitious causal abstraction experiment
attempts to align model internals with candidate causal models) and the works of Geiger,



116 CHAPTER 6. CAUSAL EFFECTS OF NATURAL LOGIC FEATURES

Richardson, and Potts [15] and [126], (where attempts are made to build a prescribed
causal structure into models themselves). In particular, [126] create a “causal proxy
model” which becomes the basis for a new explainable predictor designed to replace
the original neural network.

6.7 Conclusion

In this chapter, we addressed RQ 8: (What can causal effect measures from interven-

tional experiments tell us about NLI models’ robustness and sensitivity to different

types of intermediate feature changes?) by drawing from the framework in Stolfo, Jin,
Shridhar, et al. [2] and adjusting it to our NLI setting. To this end, we produce a causal
diagram which models context monotonicity and word pair relations and the possible
influences of irrelevant textual surface form. We arrange examples from the NLI-XY

dataset into sets of interventions, changing or keeping constant the exact selection of
variables needed in order to calculate either desired total causal effects or undesired
direct causal effects. Following Stolfo, Jin, Shridhar, et al. [2], we interpret these mea-
sures as indicators of robustness and sensitivity with respect to the semantic variables
of interest.

The results here strongly bolster the fact that similar benchmark accuracy scores
may be observed for models that exhibit very different behaviour, especially with
respect to specific semantic reasoning patterns and higher-level properties such as
robustness/sensitivity with respect to target features. In this chapter, we have been
able to explicitly observe previously suspected biases in certain large NLI models. For
example, previous observations [13], [108] that roberta-large-mnli is biased in favour
of assuming upward-monotone contexts, ignoring the effects of things like negation
markers, agrees with our observations that it exhibits poor context sensitivity (a low
TCE influence of contexts which should be changing the output label). Furthermore,
the causal flavour of the study adds a complementary narrative to works that investigate
model internals via probing [108] and observe the presence/absence of intermediate
semantic features in model representations. Instead of merely suggesting that these
features are captured, we are able to gain insight into their causal influence via connected
causal effect estimates. The causal measures presented here show us that even the
highest-performing models systematically show a failure to adapt their predictions to
changing context structure, suggesting an over-reliance on word relations across the
premise and hypothesis.
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Lastly, we bring a new observation that strategies to improve model monotonicity
handling (namely, fine-tuning on the HELP dataset) also benefit the treatment concept
relations, although this was not evident in previous observational studies. Especially,
we note that the causal effect indicators in this chapter show that improved models
also demonstrate improved robustness to irrelevant concept pair changes and better
sensitivity to relevant ones.

6.8 Scoping and Limitations

Pretrained NLI models often differ in their labelling schemes (among themselves, and
from dataset labelling schemes). We have to the best of our ability attempted to cross-
check the correctness of label configurations used, but there is always the possibility in
this case, and we encourage reproduction and checking of the results before reporting
them in any external works.

The causal modeling in section 6.2.2 draws heavily on the work in Stolfo, Jin,
Shridhar, et al. [2], and we place some trust in the authors’ choice of names for the
causal effect measures with respect to the chosen intervention schemes, but this does
not affect our conclusions with regards to the interpretation of the measures provided as
indicators of robustness and sensitivity. We also point out that the causal effect measures
presented here are sample-specific estimates, which could potentially be improved upon
with even larger samples of data.



Chapter 7

Conclusion

7.1 Summary and Conclusion

In this thesis, we have considered the overarching research question RQ 0: “How

well do existing NLI models perform natural logic deductions, and to what extent are

they implicitly modelling context monotonicity and concept inclusion relations to do

so in a systematic way?”. After highlighting the previously-observed insufficiencies
in state-of-the-art NLI models’ ability to reason in downward monotone contexts and
observing the improvements afforded by fine-tuning strategies in chapter 3 (addressing
RQ 1 1), we turned to model interpretability methods to design experiments which
would help us determine the extent to which the intermediate reasoning features are
captured and used by the models we compare.

Firstly, we have summarised the landscape of relevant interpretability methods
which are being widely used for the study of NLP models in chapter 2 (in an attempt
to address RQ 2 2). The interpretability studies we have carried out in this work are
enabled by the introduction of compositional NLI-XY dataset in chapter 4 (in response
to RQ 3 3), in which each NLI example is enriched with the intermediate feature labels
for context monotonicity and the concept inclusion relation which jointly give rise to the
gold label. Our experimental findings all support the previously-stated hypothesis [13]
that the models trained only on only benchmark NLI datasets (such as MNLI and SNLI)

1How much does fine-tuning on the HELP dataset improve NLI models’ performance on existing
natural logic evaluation datasets? Would a secondary transfer-learning task based on the prediction of
context monotonicity result in an improvement in overall evaluation scores?

2Which interpretability methods are best-suited for our interest in detecting emergent intermediate
features?

3How can we construct a natural logic dataset that is suitable for both targeted evaluation and
interpretability?

118
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have failed to develop a useful notion of context monotonicity. We find that the same
models further fine-tuned on the HELP dataset display a variety of qualitative indicators
that both context monotonicity and concept inclusion relations are strongly modelled
and relied on for predictions. These qualitative indicators include the results of both
observational interpretability experiments and interventional interpretability experi-
ments. The observational interpretablity approaches include the probing, visualisation
and error analysis experiments in chapter 4 (in response to the research questions RQ 4
4 and RQ 5 5). The interventional interpretability work includes the interventional
probing experiments in chapter 5 (addressing RQ 6 6 and RQ 7 7) and the estimation of
causal effects in chapter 6 (in response to RQ 8 8).

Instances where these interpretability-based evaluations demonstrate strong indi-
cators that crucial intermediate features are captured provide greater confidence that
model reasoning patterns are following theoretically-expected strategies. For example,
the roberta-large-mnli-help model demonstrates stronger probing scores for the context
monotonicity feature, visually discernible clusters for upward and downward monotone
contexts in its vector representations and a stronger robustness to irrelevant context
interventions than the roberta-large-mnli model. As such, we are much more likely to
deduce that roberta-large-mnli-help takes the context monotonicity factor into account
rather than over-relying on the concept inclusion relation value, as roberta-large-mnli
seems to do.

Aside from the observations specific to NLI models and their treatment of interme-
diate natural logic features, a core contribution of this thesis has been the introduction
of the mnestic probing method in response to limitations of the amnesic probing method
that we have observed. The application of amnesic probing in our experimental setting
yielded some unexpected results, such as the lack of effect on the NLI performance
score of amnesic interventions which “remove” crucial information, including the gold
label itself. Hypothesizing that the issue relates to low rank amnesic transformations
with respect to the high dimensionality of the vector representations, we introduced an
alternative way to use the outputs of the INLP process carried out in the amnesic probing

4Are the intermediate features of context monotonicity and concept inclusion relations emergent in
the internal representations of NLI models which perform better at natural logic tasks?

5Which features are responsible for errors in poorer-performing models?
6“What can structural interventional methods tell us about the usefulness of the identified representa-

tions for the NLI task?”
7“How can we devise an alternative interventional interpretability method that is still informative in

the high-dimensional situations where amnesic probing fails?”
8What can causal effect measures from interventional experiments tell us about NLI models’ robust-

ness and sensitivity to different types of intermediate feature changes?
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strategy: the mnestic probing variation. As the outputs of the mnestic interventions
were of a lower rank, we were able to make more useful comparative observations that
were more in line with our expectations (and with the probing observations in other
chapters). The mnestic probing methodology can be useful in any other situations where
the model representations have a high number of dimensions while the probing task has
a low number of target classes.

In summary, a key motivation of this thesis has been that accuracy scores on
benchmark datasets and even targeted challenge sets offer us limited information about
model reasoning mechanisms and learned features. Given a selection of models trained
for the same task, we have been interested in observing more qualitative differences
between the representational structures and behavioural patterns of models that achieve
high accuracy scores and those that do not. In this work, we have demonstrated how
a set of expectations for the abstractions an NLI model would need to learn in order
to acquire a successful reasoning approach for a specific task can guide the design
of interpretability experiments which allow us to observe how the stronger presence
of these features corresponds to better task performance. Even more importantly, we
imagine that well-chosen interpretability strategies could potentially bring to light
distinctions in models that may perform similarly on a given test set, but will eventually
differ in their ability to generalise well outside of the given test set’s domain.

7.2 Opportunities for Future Work

We present a few suggestions for possible future directions which expand on our
intersection of interpretability and natural logic handling.

Multi-Hop Inferences and Individual Operators How does a given model treat a
pair of substitutions, one which occurs in an upward monotone position and another
in a downward monotone one? One route of potential expansion for the NLI-XY

dataset is to create such examples, which are implicitly testing how models can per-
form multiple monotonicity reasoning steps in a single NLI example. This is akin
to identifying the “order of operations” in an arithmetic model, such as the setting
explored in Giulianelli, Harding, Mohnert, et al. [61]. Alternatively, one can extend
this “order-of-operations” perspective to the study of how the monotonicity of individ-
ual linguistic operators affects a final entailment classification in which the effect of
multiple operators needs to be taken into account.
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Causal Mediation Analysis The causal effect analysis in chapter 6 is more be-
havioural than structural, looking at the effect of modified textual inputs on classi-
fication outputs. However, the strategy of causal mediation analysis quantifies the
extent to which a causal effect is mediated by a given structural component, such
as a vector representations or model weights. Excellent examples of causal media-
tion analysis applied to NLP problems include Vig, Gehrmann, Belinkov, et al. [34]
and Finlayson, Mueller, Gehrmann, et al. [35]. With respect to our setting, it would be
interesting to examine how well the probe-identified semantic subspaces corresponding
to a given feature mediate its causal effect on the prediction.

Layer-Wise and Training Dynamics As we have been concerned with the structure
of final model predictions, our experiments all treat the final representation layer of the
models in question. However, it could potentially be interesting to investigate how and
where the relevant feature information arises across layers, or across fine-tuning steps
during training. D. Hupkes

Generalisation D. Hupkes How methodically are models applying systematic rea-
soning methods to unexpected instatiations? The compositional NLI-XY dataset may
include unexpected examples such as “I swallowed a chair” entails “I swallowed fur-
niture”. It would be interesting to investigate how strongly model errors correlate to
low-probability substitutions, and perhaps this can be achieved with OOD detection
metrics (such as energy-based OOD detection [127]) or simply the masked language
modelling probability of a token in a given context (this would be harder to apply to
multi-token insertions, however). This question links to the idea of OOD generalisation

in models, which may be a relevant direction to branch towards. For a relevant recent
survey, see Hupkes, Giulianelli, Dankers, et al. [128].

Architectural Hypotheses As we are only comparing trained transformer models to
each other in this work, we are limited in our ability to attribute success or failure of
monotonicity modelling to specific architectural innovations. For the most part, our
conclusions relate to the quality and structure of the data being trained on. However, it
would be interesting to draw comparisons to the representations and representational
capacities of earlier architectures: for example, with similar training strategies, would
BiLSTMs (which also produce contextual embeddings, and are bidirectional in nature)
similarly be able to model a high-level monotonicity feature? Or can we build experi-
mental arguments that transformers are inherently better-equipped for this flavour of
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task?

7.3 Longevity of This Work

We see the structural interpretability work here as a useful evaluation framework for
any NLI models that have intermediate vector representations. The interpretability
experiments provide a deeper view of model internals which can show strong distinctions
between models with similar benchmark performance, highlighting differences with
respect to the treatment of crucial intermediate features. As models increasingly rely on
large crowd-source training datasets rather than high-quality training sets which exhibit a
nuanced selection of reasoning phenomena, it is important to instead use expert-curated
logic-based datasets for many levels of behavioural and structural evaluation.

Beyond NLI, the interpretability methods explored here provide a broad selection
of the kinds of experiments that may be helpful in any setting where one may wish to
enquire about the use of task-specific intermediate features for any given model task.
Lastly, our introduction of the mnestic probing method adds an additional interpretability
tool which is relevant in any situation where the iterative nullspace projection method
can be applied, especially when amnesic probing may not prove to be informative.

7.4 Ethical Implications

Especially with NLU tasks such as natural language inference, the phrasing of the task
being stated as detecting entailment or implication may create a false sense of these
models being necessarily logical in nature, which is widely observed to be far from
the case [7]. Rigid evaluation of the reasoning strategies and intermediate states of
large language models is extremely important for scrutinising their predictions, as blind
reliance on model outputs can be troublesome in any real-world applications. However,
as much as favourable interpretability indicators may increase confidence in model
performance, it must be take into consideration that model behaviour may still be erratic
and unreliable for out-of-domain examples.
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Appendix A

Code, Data and Models

Models

We use the following base models across the works in this thesis:

Base Model Source

roberta-large-mnli https://huggingface.co/roberta-large-mnli

bert-base-uncased-snli https://huggingface.co/textattack/bert-base-uncased-snli

infobert https://github.com/AI-secure/InfoBERT/tree/master/ANLI

roberta-large-snli mnli fever anli https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

The data and code for the associated fine-tuned versions is included in the reposito-
ries linked below.

Code and Data

We include the following repositories which contain the experimental code (including
all hyperparameter configurations) and data used for the experiments in this thesis:

A.1 Supporting Context Monotonicity Abstraction in
Neural NLI

The following repository includes our train/test split of the HELP dataset and the HELP-
Contexts dataset:
https://github.com/juliarozanova/supporting_monotonicity
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Decomposing Natural Logic Inferences in Neural NLI

The following repository incldes the NLI-XY dataset:
https://github.com/juliarozanova/nli_xy

Interventional Probing in High Dimensions: an NLI Case
Study

https://github.com/juliarozanova/mnestic_probing

Causal Effects in Natural Logic Handling

https://github.com/juliarozanova/nli_causal

https://github.com/juliarozanova/nli_xy
https://github.com/juliarozanova/mnestic_probing
https://github.com/juliarozanova/nli_causal
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