604 research outputs found

    Processor Generator v1.3 (PG13)

    Get PDF
    This project presents a novel automated framework for microprocessor instruction set exploration that allows users to extend a basic MIPS ISA with new multimedia instructions (including custom vector instructions, a la AltiVec and MMX/SSE). The infrastructure provides users with an extension language that automatically incorporates extensions into a synthesizable processor pipeline model and an executable instruction set simulator. We implement popular AltiVec and MMX extensions using this framework and present experimental results that show significant performance gains of customized microprocessor

    The development of a node for a hardware reconfigurable parallel processor

    Get PDF
    This dissertation concerns the design and implementation of a node for a hardware reconfigurable parallel processor. The hardware that was developed allows for the further development of a parallel processor with configurable hardware acceleration. Each node in the system has a standard microprocessor and reconfigurable logic device and has high speed communications channels for inter-node communication. The design of the node provided high-speed serial communications channels allowing the implementation of various network topographies. The node also provided a PCI master interface to provide an external interface and communicate with local nodes on the bus. A high speed RlSC processor provided communication and system control functions and the reconfigurable logic device provided communication interfaces and data processing functions. The node was designed and implemented as a PCI card that interfaced a standard PCI bus. VHDL designs for logic devices that provided system support were developed, VHDL designs for the reconfigurable logic FPGA and software including drivers and system software were written for the node. The 64-bit version Linux operating system was then ported to the processor providing a UNIX environment for the system. The node functioned as specified and parallel and hardware accelerated processing was demonstrated. The hardware acceleration was shown to provide substantial performance benefits for the system

    Beehive: an FPGA-based multiprocessor architecture

    Get PDF
    In recent years, to accomplish with the Moore's law hardware and software designers are tending progressively to focus their efforts on exploiting instruction-level parallelism. Software simulation has been essential for studying computer architecture because of its flexibility and low cost. However, users of software simulators must choose between high performance and high fidelity emulation. This project presents an FPGA-based multiprocessor architecture to speed up multiprocessor architecture research and ease parallel software simulation

    Design of a processor to support the teaching of computer systems

    Get PDF
    Teaching computer systems, including computer architecture, assembly language programming and operating system implementation, is a challenging occupation. At the University of Waikato this is made doubly true because we require all computer science and information systems students study this material at second year. The challenges of teaching difficult material to a wide range of students have driven us to find ways of making the material more accessible. The corner stone of our strategy for delivering this material is the design and implementation of a custom CPU that meets the needs of teaching. This paper describes our motivation and these needs. We present the CPU and board design and describe the implementation of the CPU in an FPGA. The paper also includes some reflections on the use of a real CPU rather than a simulation environment. We conclude with a discussion of how the CPU can be used for advanced classes in computer architecture and a description of the current status of the project

    A Survey and Evaluation of FPGA High-Level Synthesis Tools

    Get PDF
    High-level synthesis (HLS) is increasingly popular for the design of high-performance and energy-efficient heterogeneous systems, shortening time-to-market and addressing today's system complexity. HLS allows designers to work at a higher-level of abstraction by using a software program to specify the hardware functionality. Additionally, HLS is particularly interesting for designing field-programmable gate array circuits, where hardware implementations can be easily refined and replaced in the target device. Recent years have seen much activity in the HLS research community, with a plethora of HLS tool offerings, from both industry and academia. All these tools may have different input languages, perform different internal optimizations, and produce results of different quality, even for the very same input description. Hence, it is challenging to compare their performance and understand which is the best for the hardware to be implemented. We present a comprehensive analysis of recent HLS tools, as well as overview the areas of active interest in the HLS research community. We also present a first-published methodology to evaluate different HLS tools. We use our methodology to compare one commercial and three academic tools on a common set of C benchmarks, aiming at performing an in-depth evaluation in terms of performance and the use of resources

    Automatic synthesis of application-specific processors

    Get PDF
    Thesis (D. Tech. (Engineering: Electrical)) -- Central University of technology, Free State, 2012This thesis describes a method for the automatic generation of appli- cation speci_c processors. The thesis was organized into three sepa- rate but interrelated studies, which together provide: a justi_cation for the method used, a theory that supports the method, and a soft- ware application that realizes the method. The _rst study looked at how modern day microprocessors utilize their hardware resources and it proposed a metric, called core density, for measuring the utilization rate. The core density is a function of the microprocessor's instruction set and the application scheduled to run on that microprocessor. This study concluded that modern day microprocessors use their resources very ine_ciently and proposed the use of subset processors to exe- cute the same applications more e_ciently. The second study sought to provide a theoretical framework for the use of subset processors by developing a generic formal model of computer architecture. To demonstrate the model's versatility, it was used to describe a number of computer architecture components and entire computing systems. The third study describes the development of a set of software tools that enable the automatic generation of application speci_c proces- sors. The FiT toolkit automatically generates a unique Hardware Description Language (HDL) description of a processor based on an application binary _le and a parameterizable template of a generic mi- croprocessor. Area-optimized and performance-optimized custom soft processors were generated using the FiT toolkit and the utilization of the hardware resources by the custom soft processors was character- ized. The FiT toolkit was combined with an ANSI C compiler and a third-party tool for programming _eld-programmable gate arrays (FPGAs) to create an unconstrained C-to-silicon compiler

    APHID: Anomaly Processor in Hardware for Intrusion Detection

    Get PDF
    The Anomaly Processor in Hardware for Intrusion Detection (APHID) is a step forward in the field of co-processing intrusion detection mechanism. By using small, fast hardware primitives APHID relieves the production CPU from the burden of security processing. These primitives are tightly coupled to the CPU giving them access to critical state information such as the current instruction(s) in execution, the next instruction, registers, and processor state information. By monitoring these hardware elements, APHID is able to determine when an anomalous action occurs within one clock cycle. Upon detection, APHID can force the processor into a corrective state, or a halted state, depending on the required response. APHID primitives also harden the production system against attacks such as Distribute Denial of Service attack and buffer overflow attacks. APHID is designed to be fast and agile, with the ability to create multiple monitors that switch in and out of monitoring with the context switches of the production processor to highly focused coverage over multiple devices and sections of code

    Mppsocgen: A framework for automatic generation of mppsoc architecture

    Full text link
    Automatic code generation is a standard method in software engineering since it improves the code consistency and reduces the overall development time. In this context, this paper presents a design flow for automatic VHDL code generation of mppSoC (massively parallel processing System-on-Chip) configuration. Indeed, depending on the application requirements, a framework of Netbeans Platform Software Tool named MppSoCGEN was developed in order to accelerate the design process of complex mppSoC. Starting from an architecture parameters design, VHDL code will be automatically generated using parsing method. Configuration rules are proposed to have a correct and valid VHDL syntax configuration. Finally, an automatic generation of Processor Elements and network topologies models of mppSoC architecture will be done for Stratix II device family. Our framework improves its flexibility on Netbeans 5.5 version and centrino duo Core 2GHz with 22 Kbytes and 3 seconds average runtime. Experimental results for reduction algorithm validate our MppSoCGEN design flow and demonstrate the efficiency of generated architectures.Comment: 16 pages; International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 201
    corecore