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Summary

This thesis describes a method for the automatic generation of appli-

cation specific processors. The thesis was organized into three sepa-

rate but interrelated studies, which together provide: a justification

for the method used, a theory that supports the method, and a soft-

ware application that realizes the method. The first study looked at

how modern day microprocessors utilize their hardware resources and

it proposed a metric, called core density, for measuring the utilization

rate. The core density is a function of the microprocessor’s instruction

set and the application scheduled to run on that microprocessor. This

study concluded that modern day microprocessors use their resources

very inefficiently and proposed the use of subset processors to exe-

cute the same applications more efficiently. The second study sought

to provide a theoretical framework for the use of subset processors

by developing a generic formal model of computer architecture. To

demonstrate the model’s versatility, it was used to describe a number

of computer architecture components and entire computing systems.

The third study describes the development of a set of software tools

that enable the automatic generation of application specific proces-

sors. The FiT toolkit automatically generates a unique Hardware

Description Language (HDL) description of a processor based on an

application binary file and a parameterizable template of a generic mi-

croprocessor. Area-optimized and performance-optimized custom soft

processors were generated using the FiT toolkit and the utilization of

the hardware resources by the custom soft processors was character-

ized. The FiT toolkit was combined with an ANSI C compiler and

a third-party tool for programming field-programmable gate arrays

(FPGAs) to create an unconstrained C-to-silicon compiler.



Opsomming

Hierdie tesis beskryf ’n metode vir die outomatiese generasie van die

aansoek spesifieke verwerkers. Die tesis is georganiseer in drie afson-

derlike maar verwante studies, wat saam verskaf: ’n regverdiging vir

die metode wat gebruik word om ’n teorie wat die metode ondersteun,

en ’n sagteware program wat die metode besef. Die eerste studie het

gekyk na hoe die hedendaagse mikroverwerkers gebruik hulle harde-

ware hulpbronne en dit ’n statistiek, die sogenaamde kern digtheid

voorgestel, vir die meet van die benutting koers. Die kern digtheid

is ’n funksie van die mikroverwerker se opdrag stel en die aansoek

wat geskeduleer is om uit te voer op daardie mikroverwerker. Hi-

erdie studie het tot die gevolgtrekking gekom dat die moderne dag

mikroverwerkers gebruik om hul hulpbronne baie ondoeltreffend en

voorgestel dat die gebruik van die subset verwerkers dieselfde toepass-

ings meer doeltreffend uit te voer. Die tweede studie het probeer om

’n teoretiese raamwerk vir die gebruik van die subset verwerkers deur

die ontwikkeling van ’n generiese formele model van die rekenaar ar-

gitektuur te verskaf. Die model se veelsydigheid te demonstreer, is

dit gebruik om ’n aantal van rekenaarargitektuur komponente en die

hele rekenaar stelsels te beskryf. Die derde studie beskryf die on-

twikkeling van ’n stel van sagteware gereedskap wat in staat stel om

die outomatiese generasie van die aansoek spesifieke verwerkers. Die

Fit toolkit genereer outomaties ’n unieke Hardware Beskrywing Taal

(HDL) beskrywing van ’n verwerker wat gebaseer is op ’n aansoek

binre ler en ’n parameterizable sjabloon van ’n generiese mikroverw-

erker. Area-new en prestasie-optimale persoonlike sagte verwerkers

is gegenereer deur gebruik te maak van die Fit toolkit en die benut-

ting van die hardeware hulpbronne deur die persoonlike sagte verw-

erkers is gekenmerk. Die Fit toolkit is gekombineer met ’n ANSI C

compiler en 1/3-party hulpmiddel vir die programmering van veld-

programmeerbare hek skikkings (FPGAs) te skep van ’n onbeperkte

C-tot-silikon samesteller.
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Chapter 1

Introduction

1.1 Introduction

As the number of transistors on a silicon chip continue increase exponentially, as

predicted by Moore’s Law, the design of electronic systems is moving away from

the situation where discrete chips were assembled on a circuit board to one where

entire systems or networks of systems are placed on a single chip. The design of

these systems-on-chip (SoCs) and networks-on-chip (NoCs) demands new ways of

viewing the electronic systems design process and new design tools. The research

described in this work focuses on one aspect of designing SoCs and that is the

automated design systems based on one class of microprocessors.

We believe that the work presented in this thesis contributes a small, but impor-

tant, step in facilitating the paradigm shift that is required to design the SoCs

of the future. This work not only provides a reference implementation and a

theoretical framework for some new designs, but it also shows the shortcomings

of existing microprocessor implementations.

In this chapter we begin by looking at the problems that the research presented in

this thesis attempts to answer. Using some scenarios, we highlight real computer

engineering issues that motivated our research. This is followed by a description

of the objectives of the research. Next, the research methodologies that were
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used are outlined and then a description of the research’s limitations is given.

The chapter concludes with a summary of how the rest of the thesis is organized.

1.2 Problem Description

The basic question addressed by this work is, how can the properties of an applica-

tion be used to automatically generate an optimized custom processor, which will

later be used to execute the application? Application properties, in this context,

means the assembly instructions used by the application - their usage frequen-

cies, their length in bits and their cycle times. Optimized, in this context, means

that for an application set to run on the processor, each resource in the proces-

sor is scheduled at least once for the successful execution of the application. In

other words, there are no unused resources in the processor. The microprocessor

generating system developed to answer this question is easily extended to syn-

thesize microcontrollers, and this leads to a more general question related to the

program-store von Neumann model [1]: can a generic program-architecture-store

model be developed to represent these microcontrollers that have a one-to-one re-

lation between the application and the processor?

Other sub-questions arising from these, which are addressed as part of this work,

are:

• How are processors generated automatically?

• How efficiently do applications use the resources on traditional micropro-

cessors?

• How efficiently do applications use the resources on the microprocessors that

are generated as part of this work?

• Can the processor generating system developed be extended into an uncon-

strained C-to-silicon compiler?

Any effective answer to the last sub-question is of much interest to the electronic

design automation (EDA) community [2].

2



1.3 Motivation for the Research

Consider the following scenarios, which are typical of those that have motivated

this research.

• Platform Vendor versus App Developers: A device platform vendor

may want to provide some performance guarantees for applications hosted

on the device, while at the same time improving the platform’s popularity

by courting as many third-party developers to write apps for the platform.

The third-party developers may each optimize the performance and func-

tionality of their applications without regard to any other applications that

may be co-located on the device. If the device is implemented with a limited

number of microprocessors and uses context-switching-based multitasking,

then as the number of applications hosted on the devices rises, clearly the

performance guarantees are in jeopardy. For example, early releases of the

iPhone did not permit any apps to run in the background, causing outcries

from the developer community [3]. iPhone multitasking was introduced

with OS 4.0. However, even with this release, applications are categorized

and then the allocation of computing resources to these categories is prior-

itized [4].

• Application Isolation: According to some estimates, 80 percent of au-

tomobile innovations come from computer systems [5]. Premium-class au-

tomobiles now use around 100 million lines of code, and that number is

expected to reach 300 million in the near future [6]. As the amount of soft-

ware increases, so does the complexity of the systems. Complexity leads to

reliability concerns. The challenge is to continue to increase the function-

ality by adding new software applications (i.e. more lines of code), while

improving reliability by minimizing the potential for unwanted interactions

between these applications.

• Legacy Application Support: The obsolescence of technology is one of

the primary drivers for modernizing legacy information systems [7]. How-

ever, according to Sneed [8], more than 50 percent of these modernization

projects fail; he recommends an upgrade method that minimizes the risks

3



of failure. The proposed method leaves the data and the business processes

unchanged, and focuses on updating the technology components piecemeal-

wise.

• Time to Market: Raising the level of programming abstraction improves

the productivity and performance of the applications developers [9, 10]

by allowing developers to more easily describe what a desired application

should do, instead of having them focus on the details of how it should

do it. The productivity of the product developers is important since, ac-

cording to Cohen et al. [11], many technology-driven firms now compete on

product-development cycle time.

The two common themes running through the examples are: complexity, and

features. Each example involves the relationship between a computer system’s

complexity and its supported feature set. The features are encapsulated in soft-

ware applications. As more applications are scheduled to run on a computer

system, the complexity of the system increases due to (1) the interaction among

the applications and (2) the varying demands made by each application to the

shared computing resources. One way, which is the focus of this work, to manage

the latter cause of computer system complexity is to try and guarantee computing

resources for each application. The main resource in most modern computer sys-

tems is the microprocessor, so the general direction of this work is to show how we

can transparently allocate to each application a dedicated microprocessor whose

resources are tailored to the application.

1.4 Research Objectives

The objectives of our research were to:

1. Study how existing microprocessors utilize their hardware resources when

running software applications. The results of this study should help identify

any inefficiencies or missing features that require further research.

4



2. Create and evaluate a tool to automatically generate custom microproces-

sors. This tool is a new, practically useful system to perform tasks that

previously could not be achieved.

3. Develop a formalism to model computer architecture. The practical ap-

plications of the computer architecture models are that they enable us to

better understand, control and modify our custom microprocessors.

1.5 Research Methodology

In this section we use the terminology by Amaral et al. [12] to describe the research

methods used in this work.

The experimental methodology was used to measure how existing microprocessors

utilize their hardware resources as a function of the microprocessors’ instruction

sets. Industry standard benchmarks from the Standard Performance Evaluation

Corp. [13, 14] were used to provide the source code. The most popular open

source compilers were used to compile the source code and to profile compiler

outputs.

The model methodology was used to develop the ‘instructions-resources-data triplet

model, which is an abstract model of real and virtual computer architectures. The

triplet model was constructed from first principles as a recursive, set-theoretic

model. The triplet model was used to describe custom microprocessors, which

were the primary focus of this research. However, the triplet model is generic

enough and is able to model general computer components and general comput-

ing systems, as shown by the examples that were given in this work.

The build methodology was used to build, in the C programming language, a

software application that demonstrated the feasibility of automatically generating

custom microprocessors. We called this software application the FiT toolkit.

The automatically generated custom microprocessors were then implemented on

a reconfigurable computing device. The utilization of hardware resources by

the automatically generated custom microprocessors was then studied using the

5



experimental methodology. Third-party tools provided by Xilinx Corp. [15], the

vendor of the reconfigurable computing device, were used to study the generated

custom microprocessors.

1.6 Limitations of the Research

While the method of generating custom microprocessors presented in this work

raises the abstraction level and so improves the productivity of system designers.

The quality of the custom microprocessors that are produced may depend on

the quality of the executable file that is generated by the compiler. We tested

for this dependence using two popular optimizing compilers and found it not to

exist, however in order to be more conclusive, tests using a more diverse set of

compilers are needed.

The example applications of the formal model and the FiT toolkit that were

both developed as part of this research target the k85 microprocessor. The k85

is a very simple microprocessor that is code-compatible with the first popular

microprocessors, the Intel 8080 and 8085. This research needs to be extended to

target modern microprocessors, which are much more complex than the k85.

1.7 Thesis Organization

The rest of this thesis is organized around three self-contained studies. The

studies are related and they are arranged so as to build upon one another.

Chapter 2 reviews previous work on instruction set usage, formal models of com-

puter architecture, and subset processors.

Chapter 3 presents the first study in which the core density metric is developed

and compared to another instruction set usage measure. The study then describes

the instruction set usage experiments. The results of the experiments are also

discussed and compared to instruction set usage results from other researchers.

6



We propose the use of subset processors in order to generate application-specific

systems that have an optimal core density.

Chapter 4 presents the second study where a generic computer architecture model

is developed. We give a number of examples to demonstrate how the model can

be used to describe computer components as well as complete computer systems.

In this study the computer architecture model is used to describe the subset

processors that were proposed in the previous study.

Chapter 5 presents the third study, which describes the FiT toolchain. FiT is

an application-specific processor generator that accepts an application binary

file as an input, and automatically creates an HDL specification for an 8-bit

subset processor. The HDL processor specifications are then realized on an FPGA

development board. Two approaches to generating the sub-set processors are

presented and compared as to their hardware resource utilization. In the study,

we use some scripts to combine the FiT toolchain, an ANSI C compiler from

the Amsterdam Compiler Kit and the Xilinx ISE WebPACK to create a C-to-

silicon compiler. This C-to-silicon compiler takes an application described in

unconstrained ANSI C and automatically implements the application in hardware

as a microcontroller that is driven by an 8-bit subset processor.

Chapter 6 summarizes the findings of this research, highlights the contributions

of this research and presents some recommendations for future research work.
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Chapter 2

Related Work

2.1 Introduction

The research presented in this work is focused in the area of customizable pro-

cessors, also referred to as application-specific instruction processors (ASIPs).

Several researchers have described ASIPs as the next evolutionary step for mi-

croprocessors [16, 17]. The general research approaches in this area have been to

construct one or more of the following [18]: (i) Parameterizable processors (ii)

Extensible processors (iii) Custom processor development tools. As part of this

research, a custom processor development tool for parameterizable processors was

created.

In this chapter we review earlier work that laid the foundation for our research

on a particular group of ASIPs called subset processors. We also note any gaps

in the earlier work that have directed our research.

2.2 Instruction Set Usage

Foster et al. [19] describe two types of instruction set usage analyses. In the first

type, the static case, the frequency counts of the instructions used to specify the

8



logic of the problem are collected and analyzed. In the second type, the dynamic

case, the frequency counts of the instructions used to execute the logic of the

problem are collected and analyzed [20]. Foster et al. [19] proposed two measures

for instruction usage.

The first measure is based on information theory and it calculates the average

number of bits of information contained in each opcode for each application that

is analyzed. It states that if there are T instructions and pi is the probability

that the i-th instruction is used, then the average number of bits of information

contained in each instruction, I, is

I = −
T∑
i=1

pi(log2pi). (2.1)

Imax the maximum value of I occurs when the usage of any instruction is equally

probable and it is

Imax = log2T. (2.2)

The relative difference between I and Imax is a measure of the utilization of any

particular set of instructions.

The second measure estimates the effort needed to recode an application when the

number of opcodes available to the compiler or assembly programmer is reduced

to the N most popular ones after an initial unconstrained compilation. To arrive

at this measure the instructions used in the application are ordered from the most

frequently used to the least frequently used. Let Ck equals the number of times

the k-th instruction was used where Ck > Ck+1 for all k and let P equal the total

number of instructions in the original application. The fraction of all instruction

occurrences included in the set N is given by the function f(N) where

f(N) =
1

P

N∑
k=1

Ck (2.3)

and g(N) defined as:

g(N) = 1− f(N) (2.4)
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is then a measure of the effort needed to recode the original application onto a

machine that only uses the top N opcodes. Both of the measure mentioned above

applied to static and dynamic instruction usage. Foster et al. also found that the

hand-assembled code has higher static opcode usage than machine-compiled code,

and that there are no significant differences in dynamic opcode usage between the

hand-assembled and machine-compiled code.

Hennessy and Patterson [21, 22] conducted instruction set usage experiments on

several Complex Instruction Set Computing (CISC) and Reduced Instruction Set

Computing (RISC) ISAs using the SPEC CPU92 benchmark applications. They

found that on average 90% of the instruction execution comes from 10% of the

instructions in the integer programs and 14% of the instructions in the floating-

point programs. Fig. 2.1 (sourced from [21]) shows the percentage of instructions

that are responsible for 80% and for 90% of the instruction executions. The total

bar height indicates the fractions of instructions that account for the 90% of the

instruction executions and the dark portion indicates the fraction of instructions

responsible for the 80% of the instruction executions. For the x86 architecture

Hennessy and Patterson [22] found that the top 10 instructions were responsible

for 96% of the instructions that were executed as shown in Table 2.1. These 10

Figure 2.1: Instructions (%) responsible for 80% and 90% of instruction execu-
tions.
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Table 2.1: Top 10 instructions for the x86.

Rank 80x86 instruction Integer average

(% total executed)

1 load 22%

2 conditional branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 move register-register 4%

9 call 1%

10 return 1%

Total 96%

instructions represent 25 opcodes in the x86 ISA. Using the TI TMS320C540x

Digital Signal Processor (DSP), Hennessy and Patterson [22] found that the top

20 instructions account for 97.2% of all the instructions executed as shown in

Table 2.2.

Other empirical studies by Adams and Zimmerman [20], and Huang and Peng [23]

on the x86 instruction set architecture (ISA); and El-Kharashi et al. [24] on the

Java Virtual Machine (JVM) have also shown that modern applications spend

80-90% of their time accessing only 10-20% of the ISA.

2.3 Formal Models of Computer Architecture

The term computer architecture was first used to describe the attributes of the

IBM System/360 as seen by the programmer [25, 26]. Today this aspect of a

computer’s design is commonly known as its Instruction Set Architecture (ISA).

Over time, the concept of computer architecture has grown to be more encom-

passing. Mudge [26] defines computer architecture as the ISA together with its

implementation using hardware components. He adds that computer architecture

influences and is influenced by the existing technology, the applications targeted
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Table 2.2: Mix of instructions for TMS320C540x DSP.

Instruction Percent

store mem16 32.2%

load mem16 9.4%

add mem16 6.8%

call 5.0%

push mem16 5.0%

subtract mem16 4.9%

multiple-accumulate (MAC) mem16 4.6%

move mem-mem 16 4.0%

change status 3.7%

pop mem16 2.8%

conditional branch 2.6%

load mem32 2.5%

return 2.5%

store mem32 2.0%

branch 2.0%

repeat 2.0%

multiply 1.8%

NOP 1.5%

add mem32 1.3%

subtract mem32 0.9%

Total 97.2%
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to run on the computer, and other constraints such as costs, compatibility and the

marketplace. Hennessy and Patterson [27] define computer architecture as the

design specifications for a computer, which include the description of its: (i) ISA,

(ii) microarchitecture, also known as computer organization, and (iii) hardware.

These design specifications (or blueprints), when implemented, should result in a

computer that maximizes performance while subject to constraints, such as costs

and power. In this work we used the definition of computer architecture by Hen-

nessy and Patterson. When dealing with physical machines, the ‘program’ and

‘data’ components of our proposed model relate to the ISA part of this definition,

while the ‘resources’ part of our model relates to the microarchitecture and the

hardware descriptions.

A constructive computation-based theoretical framework for modeling the un-

derlying structures of computer architecture is presented by Albrecht [28]. While

this framework is generic, it has some limitations in that it is not intuitive and it

is mainly focused on modeling the operations of the components. Furthermore,

it is only accessible to computer architects with advanced mathematical training

in formal models.

Within the literature, the architecture of physical computers and the architec-

ture of virtual computers are treated as a separate subjects [27, 29]. Given the

growing importance of virtualization in the computer industry, we are of the view

that a framework which seamlessly handles both physical and virtual computer

architectures will be advantageous. Chen et al. [30] proposed a Virtual Machine

(VM) model that extends an existing model that is used for real machines. They

model both the source computer system and the destination computer system

(virtual machine) as Turing Machines, MS and MT , such that

MS =
(
Ss, IS, δS, so

S, Sf
S
)

(2.5)

where

• SS denotes the set of all the states the source machine (computer system)

may have,

• IS denotes the set of all the instructions the source machine can provide,
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• δS : S × I 7→ S × I is the execution operator of an instruction of I,

• soS denotes the initial state of a machine, and

• SfS denotes the set of all the possible final states of a machine.

For MT , simply change all the superscripts in Equation (2.5) from ‘S’ to ‘T’. To

handle the emulation they extend the execution operator to

δ : S × {I} 7→ S × I. (2.6)

This results in a state machine-based model that does not easily lend itself to

modeling the architectures such as those of application-specific processor cores

on a reconfigurable computing fabric, since the set of all states may be too large

to easily display and keep track of.

Smith and Nair [29] model virtual machines graphically. Fig. 2.2 shows an ex-

ample of one of their models for a system VM that supports multiple Operating

System (OS) environments on the same hardware. Such models are most useful

when working with a small set of virtual machines or when the level of virtualiza-

tion is low. These graphical models cannot be used to analyze virtual machines

algebraically or recursively.

Figure 2.2: A VM that supports multiple OS environments.
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Reconfigurable computing refers to “systems incorporating some form of (run-

time) hardware programmability, - customizing how the hardware is used using a

number of physical control points. These control points can then be changed peri-

odically in order to execute different applications using the same hardware” [31].

We are looking for a computer architecture model that is generic enough to take

into account the possible use of reconfigurable computing resources. Sima et

al. [32] put forward an architectural-based taxonomy for field-programmable de-

vices. Their taxonomy introduced a recursive formalism (similar to Flynn’s re-

questor/server formalism [33]) that is based on microcode in order to abstract

away any references to a particular ISA. This formalism defines a computing

machine (CM) as a doublet, consisting of a microprogram (µP ), and a set of

resources (R). That is

CM = (µP,R). (2.7)

Our proposed computer architecture model extends this formalism in Equation

(2.7) by adding a third component that will be used to model the data processed

by the computing machine. This data component will facilitate the modeling of

virtual devices and operations on inputs with different data types.

2.4 Soft Processors

A soft processor is a hardware description language (HDL) model of a micropro-

cessor core that is implemented on a reconfigurable device. In a soft processor a

HDL, such as VHDL or Verilog, is used to describe the structure and behavior of

the microprocessor. Vendor-specific logic synthesis and place & route tools are

then used to implement HDL model on a reconfigurable device, such as an FPGA.

Most of the complex soft processors that have been implemented using VHDL

and Verilog models have been based on the RISC architecture. In a RISC ISA,

the reduced number of instructions and their fixed format lend themselves to a

simpler design for the microprocessors control unit [34, 35]. One of the earliest

complete VHDL models of a commercial processor was LEON, which modeled

the SPARC V8 microprocessor [36]. The LEON required 5,300 look-up tables
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(LUTs) to implement on a Xilinx XCV300E-8 FPGA. Other RISC-based VHDL

models of complete 32-bit and 64-bit microprocessors continue to be developed

and used as research tools [37, 38]. Lu et al. developed a complete VHDL model

of the CISC-based Pentium microprocessor, which was implemented on an FPGA

and used to replace the original microprocessor on a motherboard [39]. Lu et al.

were able to install and run Windows XP and other applications on this soft

processor-driven computer system. However, given the complexity of the x86 ar-

chitecture, 65,612 LUTs were required to implement the Pentium VHDL model

on a Xilinx Virtex-4 FPGA. In all the cases above the resources required to im-

plement each soft processor, as measured by the number of LUTs used, are fixed.

However, as we will show in Chapter 3 most of these resources will not be used by

the applications running on the soft processors and so in order to more efficiently

utilize the limited resources on the reconfigurable devices any unused resources

should not be implemented.

2.5 Subset Processors

The study of subset processors is part of the broader study of ASIPs. Jain et

al. [40], in their overview of the issues and techniques in ASIP design note that the

techniques for instruction set generation fall into one of two categories: instruction

set synthesis or instruction selection from a pre-existing superset of instructions.

Our FiT toolkit uses the instruction selection technique. Soft processors have

size, performance and power disadvantages when compared to their packaged

counterparts. Bilski et al. [41] discuss some of ways that these shortcomings were

mitigated in the design of the Xilinx MicroBlaze soft processor. They did this as

follows:

• Limited the number of pipe stages to three, because adding more pipe stages

increased the number and size of the multiplexors in the processor.

• Matched the supported number logic instructions in the MicroBlaze’s in-

struction set to the input size of the Look-Up Tables (LUT), which in the

case of the Xilinx devices was 4.
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• Implemented all timing-critical functions using a carry chain in order to

reduce logic delays.

• Used the shift register mode of the LUT to implement First-In First-Out

(FIFO) and instruction fetch buffers, whenever possible.

As a result of their optimizations the MicroBlaze has a fixed floor plan and any

customizations, such as those proposed in Chapter 3, would disturb the optimal

floor plan. Customization in the MicroBlaze is achieved by adding or removing

carefully selected pre-configured modules, such as the floating-point unit. These

result in predetermined optimal fixed floor plans.

Other soft processors, such as the NIOS II from Altera [42], support extending the

instruction set by allowing users to create custom instructions. FiT does not use

a fixed floor plan scheme. To facilitate portability, the HDL model of our custom

soft processors does not take advantage of any vendor-dependent optimizations

or pre-compiled synthesis libraries. As will be discussed in Chapter 3, we do not

use instruction set extensions, as these increase the core density and require that

the source code or the tools that compile the source code be updated to handle

the new instructions.

Bush [43], in his Ph.D. thesis, proposed the synthesis of subset processors. How-

ever, since this was incidental to his primary research focus, he did not address

the theory and applications of subset processors. However, more recently Yian-

nacouras et al. [44] have taken a more substantive stab at the subject; they have

proposed a method similar to ours which they referred to as ISA subsetting,

together with an application called the SPREE toolkit that generated subset

processors. Unlike FiT, SPREE only uses a single structural processor template,

similar to the one described in Section 5.2.1 and it does not have an automated

end-to-end flow using either the source code or the object code as input to gen-

erate the custom soft processor. Yiannacouras et al. [44], also did not provide an

overarching theoretical framework for subset processors.
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2.6 Summary

Earlier research on instruction set usage showed low instruction set utilization,

however this research failed to show the relationship between instruction set uti-

lization and microprocessor hardware utilization. While, previous work on subset

processors lacked a theoretical framework, which made the analysis and compar-

ison of subset processors difficult. To overcome these problems this work es-

tablished the relationship between instruction set utilization and microprocessor

hardware utilization and proposed a way to measure the relationship. Our work,

also developed a theoretical framework for subset processors. The FiT toolkit

was created to automatically synthesize custom subset processors that are based

on our theoretical framework. These custom subset processors optimize the hard-

ware utilization.
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Chapter 3

Instruction Set Usage Analysis

3.1 Introduction

The instruction set of a processor serves as an interface between the processor’s

hardware and the software applications seeking to run on that hardware. To the

software engineer, the instruction set exposes a processor’s functionality, while to

the hardware engineer it is a measure of the hardware resources that will need to

be implemented in the processor. Given two processors with the same bus size,

but with different architectures, the one with a larger instruction set will expose

more features or operations to the software applications. In addition, it will often

require more hardware resources (as will be shown later in this study) and design

effort to implement.

The software applications that execute on a processor are created by compiling

source code that is written in a high-level programming language, such as C or

Java, or they are hand-crafted using assembly instructions and an assembler. In

both cases, the end result is an object file consisting of an ordered sequence of

operations that are to be performed by the processor.

A number of empirical studies on instruction set usage, including the one pre-

sented in this work, have shown that most of the instructions in any instruction

set are rarely used by the applications [19, 24, 20, 23]. If a processor’s instruction
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set is a measure of the hardware resources needed to implement the processor,

then these results from the empirical studies suggest that most of the hardware

resources on processors with a fixed instruction set architecture (ISA) are highly

underutilized.

In this chapter we discuss the relationship between a processors instruction set

and the hardware resources needed to support that instruction set, and define the

core density measure. We also describe our instruction set usage experiments,

present the results of these experiments and discuss their implications.

3.2 Instruction Sets and Core Density

3.2.1 Introduction

In this study we attempt to make a direct connection between instruction set

usage and processor hardware requirements. We conducted instruction set usage

experiments across a variety of existing ISAs using the SPEC CPU2006 [13] and

SPECjvm2008 benchmark [14] applications written in C and Java. For the C

applications, we used two compilers and it took into account different compiler

optimizations. The results from these experiments confirm those of previous

Figure 3.1: Transforming a fixed ISA processor into an exact ISA processor.
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studies. We describe a way to measure the resource underutilization using a single

instruction set usage measure, core density, in place of the two measures by Foster

et al. We then propose a more efficient method of allocating hardware resources

to support a given instruction set. The proposed technique generates application-

specific processors that we term exact processors, where each processor’s resources

are mapped one-to-one to the processing needs of the applications that are set to

execute on the processor, as shown by Processor 2 in Fig. 3.1.

3.2.2 Instruction Sets and Hardware

A processor instruction is a directive to the processor that specifies the follow-

ing: the instruction format; the operation to be performed, also known as the

opcode; the source operands; the result operand; and the next instruction to be

executed [45]. The instruction layout is illustrated in Fig. 3.2.

The instruction format is often expressed implicitly. The opcode encodes the

type of transformation that is to be performed. There are four basic types of

transformations for discrete information [46]:

• data transfer in space (for example, from one register to another),

• data transfer in time (storage),

• arithmetic operations, and

• logical operations.

The addresses of the source operands, result operand, and the next instruction

may be expressed in several ways: by coordinate addresses, by implication, as

immediate variables, or by association [45]. From now onwards, the terms in-

struction and opcode will be used interchangeably.

Let R be all of the hardware resources of the processor represented as functional

units and I be the processor instruction set, where

R = {r1, . . . , rM} and I = {i1, . . . , rN}. (3.1)
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Let P be the power set of R. For any i where i ∈ I, let Ri represent the set of

resources needed to implement the instruction where

Ri ∈ P and Ri ⊂ R. (3.2)

Let RI represent the resources needed to implement all the instructions in I, then

RI =
N⋃
i=1

Ri. (3.3)

Resources that are not directly related to the implementation of any instruction

will be referred to as a constant Mconst, where

Mconst = |R−RI |. (3.4)

One example of such a resource is the hardware needed to implement pipelining.

As the number of shared resources decreases, that is as∣∣∣∣∣
N⋂
i=1

Ri

∣∣∣∣∣→ 0, (3.5)

the processor’s performance improves. An example of this relationship is the

improved performance of directly-implemented processors versus their micropro-

grammed versions.

With regards to hardware requirements, in directly-implemented processors there

is a one-to-one function f , such that f : I 7→ P. As the number of instructions in

I increases, so does |RI |.

Figure 3.2: The Instruction Vector.
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In the case of microprogrammed processors, f is not one-to-one; several instruc-

tions may map onto one set of resources. However, each instruction represents a

distinct operation, and this distinction is captured in the microinstructions used

to describe it. All the sets of microinstructions and the lookup tables matching

them to their corresponding instructions are stored in the control memory. Wis-

niewska et al. [47] found that as the number of microinstructions was increased

by a factor of 3, the amount of control memory required to store them increased

by a multiple of 54, suggesting an exponential growth in hardware requirements.

Jian-Lun [48] notes that for some processors (including the Intel x86), the control

memory takes up 50% of the area on the chip.

We conclude that regardless of whether a processor is directly-implemented or it

is microprogrammed,

|I| ∝ |RI |. (3.6)

3.2.3 Instruction Subsets

Applications that execute on a processor use a set of instructions, which we

will refer to as the application instruction set. Let A represent this set. The

application instruction set is a subset of the processor instruction set, that is

A ⊂ I. (3.7)

The number of possible application instruction sets, N , is

N = 2|I|. (3.8)

The resources required to implement RA the application-specific processor for A

are,

RA =

|A|⋃
i=1

Ri (3.9)

where,

RA ⊂ RI . (3.10)
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From Equation (3.7), we have

|A| 6 |I| (3.11)

and from Equation (3.10), we have

|RA| 6 |RI |. (3.12)

The results of the experiments presented below show that for the benchmark

applications,

A� I. (3.13)

Now using Equations (3.6), (3.12) and (3.13) we have

|RA| � |RI |. (3.14)

That is, the average application-specific processor requires much less hardware

resources than the processor that implements the complete instruction set. The

next Section describes a measure that can be used to compare the resources

between the two processors in Equation (3.14).

We will refer to the processor that implements the complete processor instruction

set as a general-purpose core (GPC), while the processor that implements only

the application instruction sets that will target it, we will call an exact processor

core (EPC). There is another type of core that allows for run-time extensions

to the GPC, which we will refer to as the extensible processor core (XPC). The

Xtensa processor from Tensilica provides an example of an XPC [49]. Since, in

every case, the GPC ⊆ XPC , the ISA utilization of the XPC is at best only equal

to that of the GPC. Therefore, we will only address the relationship between the

GPC and the EPC in this study.
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3.2.4 Core Density

Given a set of applications that have been compiled to run on a given ISA, we

define the applications’ core density (η) as

η =
Amount of hardware resources needed to implement a GPC

Amount of hardware resources needed to implement an EPC
(3.15)

For example, assume that we have an application that uses 22% of the target

ISA and Mconst = ∅, then the application’s core density η = 100/22 = 4.5. That

is, the hardware resources of four and a half EPC modules are equivalent to the

resources of a single GPC module that implements the target ISA.

Before discussing the relationship between our core density metric and the first

measure on opcode usage proposed by Foster et al. [19], we will briefly describe the

latter. The number of bits, Bop , used to encode any opcode from the instruction

set I has to be

Bop > log2|I|. (3.16)

Let pk represent the probability that the k-th opcode is used by the processor,

then the average number of bits of information contained in each opcode, bI , is

bI = −
|I|∑
k=1

pk(log2pk) (3.17)

If all opcodes are equally probable, then

pk =
1

|I|
and bI−max = log2|I| (3.18)

From Equations (3.16) and (3.18) we see that

bI−max 6 Bop (3.19)

According to Foster et al. [19], the relative difference between bI and bI−max is a

measure of the utilization of any particular set of opcodes.
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Now, let us consider an application with an instruction set A that is set to execute

on the application-specific processor, in this case:

bA = bA−max (3.20)

since all the opcodes in A are utilized, and thus are equally probable. Also,

bI−max = αbA−max (3.21)

where α > 1, since |I| > |A| more bits are required to represent each opcode in

the processor instruction set than in the application instruction set. The core

density, η, is given by

η =
α|I|+Mconst

α|A|+Mconst

=
α(2bI ) +Mconst

α(2bA) +Mconst

(3.22)

and from Equations (3.20), (3.21) and (3.22) we have

η =
α(2bI ) +Mconst

α(2(
bI−max

α
)) +Mconst

. (3.23)

From Equation (3.23) we see that core density and the first measure in Foster et

al. [19] are both related to bI and bI−max .

The second measure proposed by Foster et al. [19] estimates the effort needed to

recode an application when the number of opcodes available to the compiler is

reduced after an initial unconstrained compilation. Let us consider an applica-

tion instruction set, A, and a compiler that is constrained to use only the N most

frequently used opcodes in A to recompile the application. We will call the re-

sulting application instruction set Ac. Clearly Ac ⊆ A and |Ac| = N . The second

metric proposed by Foster et al. [19] measures the effort required to recompile

the code that uses instructions in set A to code that only uses instructions in set

Ac. They determined that the effort required is proportional to e−βN , where β is

a constant.

Jones [50] and others have demonstrated abstract processors that have an in-
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struction set consisting of only one opcode. In other words, a compiler can be

constrained until N = 1 if the compiler supports this universal opcode.

To illustrate the process of constraining a compiler, let us look at an exam-

ple. Suppose we have an application, which when compiled by an unconstrained

compiler has an application instruction set, A3, consisting of three opcodes;

IF. . . THEN, NOT, and OR, with the first opcode in this list as the most fre-

quently used. For ease of manipulation, we will represent these opcodes by the

logic symbols ⇒, ¬, and ∨ , respectively. So,

A3 = {⇒,¬,∨} (3.24)

We further suppose that our compiler is set to recognize the following equiva-

lences:

(p⇒ q) iff (¬p ∨ q)

¬p iff (p⇒ false) (3.25)

If the compiler is now constrained to N = 1, then using the equivalences in

Equation (3.25) the object code using A3 can be recompiled into code that uses

application instruction set A1, where

A1 = {⇒}. (3.26)

Note that the transformation from A3 to A1 often comes at the cost of more in-

structions (larger program size) and/or slower execution, since the opcodes that

are stripped out of A3 implement their operations faster than the transformed

IF. . . THEN instruction. We will discuss later how by increasing η, this perfor-

mance penalty can be mitigated.

The core density for an application using a compiler that is constrained to only

use the N most popular opcodes and targeting a processor with an instruction

set I is

η =
α|I|+Mconst

αN +Mconst

(3.27)
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Table 3.1: Architectures Studied

Architecture Machine Type Implementation Unique Opcodes

JVM Stack Software 204

MIPS64 Register Hardware 1182

PowerPC Register Hardware 533

x86 Register Hardware 659

x86-64 Register Hardware 1101

3.3 ISA Usage Experiments

In our experiments we only considered opcodes and their static usage. We varied

four factors; the benchmark applications, the ISA of the target processors, the

compilers, and the compiler optimizations. Below is a description of how the

experiments were setup.

3.3.1 Architectures and Compilers

A virtual machine with 64-bit version of the Linux (kernel 2.6.32) Ubuntu 10.40

LTS distribution was used as the platform for all the experiments. We used the

GNU Compiler Collection (gcc) and the Portable C Compiler (pcc) to build the

C benchmark applications. For the Java applications we used the pre-compiled

class files that came with the JVM benchmark applications. We also used the

GNU Compiler for Java (gcj ) to compile the JVM benchmark applications’ source

code to directly target the x86-64 platform.

We used gcc version 4.4.3 with the m32 flag set and pcc version 1.0 as the native

C compilers. The crosstool-ng was used to build the gcc cross-compilers for

the MIPS64, PowerPC, and x86-64 architectures, which we will refer to as the

hardware processors. We determined the number of unique opcodes for each of

the hardware processors in Table 3.1 from the manufacturers’ product manuals.
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Table 3.2: C Benchmark Applications

Application Description Type

401.bzip2 Data compression tool Integer

403.gcc C language optimizing compiler Integer

429.mcf Combinatorial optimization tool for single-depot
vehicle scheduling

Integer

433.milc Quantum chromodynamics simulation tool Floating Point

456.hmmer Gene sequence database search application Integer

458.sjeng Game playing (chess & variants) and pattern
recognition application

Integer

464.h264ref Video compression Integer

470.lbm Computational fluid dynamics using Lattice
Boltzmann method

Floating Point

482.sphinx3 Speech recognition system Floating Point

999.specrand Pseudorandom number generator Floating Point

3.3.2 Benchmark Applications

The benchmark applications were divided into two categories: the C applica-

tions and the Java applications. The ten C benchmark applications are listed

in Table 3.2 and they are all part of the SPEC CPU2006 benchmark suite [13].

The applications in this category are further divided, according to their primary

computation type, into two groups: floating-point or integer.

The eight Java benchmark applications are listed in Table 3.3 and they are all

part of the SPECjvm2008 benchmark suite [14]. Only the class files from this

benchmark suite have been used; we did not compile any of the source code.

3.3.3 Method

All the C applications were compiled three times with the gcc compilers, and with

each compilation a different optimization scheme was used together with the -S

option to generate assembler files instead of binary files. In the first iteration

there is no optimization, in the second the applications were optimized for size

(-Os flag), and in the final iteration they were optimized for speed (-O3 flag). All
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Table 3.3: Java Benchmark Applications

Application Description

Compiler Compiles a set of .java files using the OpenJDKfront end compiler

Compress Compresses data using a modified Lempel-Ziv method (LZW)

Crypto Encrypt & decrypt samples using AES, DES and RSA protocols

MPEGaudio MP3 audio decoding

Serial Serializes and deserializes primitives and objects

Startup Starts each benchmark for one operation

Sunflow Tests graphics visualization

XML XML.transform and XML.validation

the C applications were also compiled twice with the pcc compilers, and with each

compilation a different optimization option was used. In the first pcc iteration

there was no optimization; in the second, the applications were optimized for

speed (-O flag).

In the case of the Java applications, the classfiles shown in step 3 of Fig. 3.3,

provide the starting point for the data generation process. The classfiles were

disassembled using the javap utility into JVM assembly files.

The opcodes are extracted by parsing the assembly files for each run and collating

them into a single flat file. The data analysis of the raw data files and the

generation of the tables and charts were performed using Microsoft Excel.

3.4 Results and Discussion

In this Section we present the results of the ISA utilization experiments and

discuss their implications.

3.4.1 Compilers

For the physical architectures, the same source code was used with the gcc and

pcc compilers. These two compilers follow different compilation strategies, as
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Figure 3.3: Opcode extraction and analysis process for each application.
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Figure 3.4: Instruction usage by instruction type and compiler.

displayed by the relative differences in the instruction types of the compiled code

in Fig. 3.4.

However, with regards to the relationship between instruction set utilization and

architecture, the choice of compiler did not make a difference, as seen in Fig.

3.5. The average utilization for all the applications in the C benchmark set is 2%

higher that when the applications are considered individually. The PowerPC and

x86 architectures have higher utilization rates compared to the MIPS and x86-64

architectures. The latter architectures have larger instruction sets.

Given the relative invariance of the instruction set utilization when different com-

pilers are used, we will, for the remainder of the study, only considers benchmark

data generated using the gcc compiler.

3.4.2 Optimizations

The impact of the compiler optimizations on the size of the application is shown

in Fig. 3.6. The optimization for speed reduced the average application size for

all the hardware processors when compared with the un-optimized applications.

The optimization for size results are as expected; across all the platforms, the

size of the applications is significantly reduced when compared to both the un-

optimized case and the case in which the applications are optimized for speed.

No compiler optimization experiments were performed for the software processor

since, for this processor, we only used the class files that were provided with the

SPECjvm2008 benchmark suite.
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While the compiler optimizations affect the program size, we observed that they

did not have a significant impact on ISA utilization, as shown in Fig. 3.7. With

the exception of the PowerPC architecture, the differences between any pair of

results in the ISA utilization-versus-compiler optimizations all fall within a 3%

margin. The margin for the PowerPC architecture is 6%. Based on this observa-

tion, from this point forward we will only discuss the results for the applications

that were optimized for size.

3.4.3 Instruction Set Usage

The number of instructions used by each application is shown in Table 3.4 for

the hardware processors and in Table 3.6 for the JVM or the software processor.

The x86 and the x86-64 platforms are what were traditionally called CISC-based

architectures that use more instructions than the other two hardware processors,

Figure 3.5: Average ISA utilization by target architecture and compiler.
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Figure 3.6: Average instruction counts by compiler target and optimization.

Figure 3.7: Average ISA utilization by compiler target and optimization.
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Table 3.4: Number of instructions (opcodes) used

Application\Architecture MIPS PowerPC x86 x86-64

401.bzip2 17,543 15,104 12,465 10,095

403.gcc 801,853 630,836 616,909 438,257

429.mcf 2,371 2,135 2,003 1,562

433.milc 27,755 21,279 20,954 16,191

456.hmmer 68,736 56,292 57,601 43,726

458.sjeng 29,999 25,391 19,620 14,331

464.h264ref 124,775 107,945 98,543 77,030

470.lbm 3,953 2,274 2,275 1,875

482.sphinx3 42,780 35,486 34,450 27,557

999.specrand 150 121 108 77

Average number of instructions 111,992 89,686 86,493 63,070

traditionally called RISC-based. This result is at odds with one of the widely held

views that CISC-based applications require fewer instructions than RISC-based

ones. However, there may be two potential explanations for this result. Firstly,

the distinction between RISC and CISC in most modern processors is no longer

clear-cut. For example, RISC architecture should have fewer opcodes, but a look

at the number of opcodes for each processor in Table 3.1 reveals that the MIPS64

processor has more opcodes than the x86-64. Secondly, the discrepancy may be

due to the fact that the compiler produces more compact code for the CISC-

based processors. The CISC-based processors have been more popular in the

market place and hence more resources may have been committed to optimizing

compilers for the processors.

In order to estimate Mconst , we assume that 50% of the processor consists of

instruction-dependent hardware. This estimate is in line with findings of Jian-

Lun [48]. Using this approximation, η reduces to

η =
|I|
|A|

. (3.28)

The ISA utilization results for the hardware processors, expressed in terms of

core density, are presented in Table 3.5.
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Table 3.5: Application Core Densities

Application\Architecture MIPS PowerPC x86 x86-64

401.bzip2 20.38 5.03 10.14 19.32

403.gcc 16.42 3.37 7.40 13.59

429.mcf 30.31 8.20 16.07 29.76

433.milc 20.74 5.38 8.45 18.35

456.hmmer 16.19 4.26 7.57 13.43

458.sjeng 17.91 5.03 9.98 18.35

464.h264ref 16.19 3.73 7.01 13.59

470.lbm 23.64 8.46 12.43 25.60

482.sphinx3 16.65 4.33 8.04 14.68

999.specrand 39.40 15.68 24.41 47.87

Average η 21.78 6.35 11.15 21.45

η/10-App Set 15.76 3.05 6.72 11.35

Max. η/10-App Set 39.40 15.68 24.41 47.87

Considering the case of the x86-64 processor, we note that if it were executing

any one of the ten applications, its average core density would be 21.5. However,

if it were only executing the 999.specrand benchmark application its core density

would be 47.9. This indicates that for this application, the traditional processor

model (or GPC) fails to utilize more than 98% of the processor resources, since

only 1 exact core is required. However, resources equivalent to 48 exact cores are

deployed in an existing traditional processor. Based on these results, a multi-

core solution may be pursued in order to improve utilization and performance

by several orders of magnitude, while using the same hardware resources as a

traditional processor. For example, consider an embedded system that executes

only the sphinx3 application. By designing an EPC for this application, forty

eight such cores can be deployed using the same amount of hardware resources as

one existing x86-64 processor. We also note that when using the exact processor

model, resources do not need to be optimized for the average case; they can be

optimized for the individual case and the resource utilization rate of a multi-core

system is equal to the average of the resource utilization rates of its component

cores. So, by using exact cores whose individual resource utilization rates have

been maximized, the resulting multi-core system will have the maximum resource

utilization rate.
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If however, all ten applications were to run on the x86-64 processor, then let S

be the set of all the applications. That is

S =

{
401 .bzip2 , 403 .gcc, 429 .mcf , 433 .milc, 456 .hmmer ,

458 .sjeng , 464 .h264ref , 470 .lbm, 482 .sphinx3 , 999 .specrand

}
.

The application instruction set for S is⋃
k∈S

Ak. (3.29)

where Ak is the application instruction set of the k-th application generated by

the compiler targeting the x86-64 processor. So for S, the core density, shown in

the row for η/10-App Set in Table 3.5, is determined as

η =
|Px86−64 |
|
⋃
k∈S Ak|

= 11.4. (3.30)

This indicates that as more varied applications run on the processor, the utiliza-

tion rate of the resources improves. However, even in this case, more than 90%

of the processor’s resources are not utilized.

Instruction-set usage statistics for the software processor are presented in Table

3.6. The average core density for the software processor is lower than that for the

hardware processors, indicating better resource utilization by this processor. This

may be due to the fact that the JVM has the least number of unique opcodes of all

the processors in this study. As the number of opcodes in a processor approaches

1, the core density also approaches 1. In other words, ISA utilization approaches

100%.

3.4.4 Top N Instructions

The top 25 instructions account for more than 89% of all the instructions used

by the applications, as shown in Fig. 3.8. This result confirms the locality of

reference property of applications and is in line with the results of Adams and

Zimmerman [20], and Hennessy and Patterson [22].
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Table 3.6: JVM instruction-set usage statistics

Application Core Density Opcodes Used Top50 Opcodes

Compiler 2.83 1357 98%

Compress 2.49 1041 97%

Crypto 3.52 939 100%

MPEGaudio 4.43 149 100%

Serial 2.58 2041 97%

Startup 4.16 363 100%

Sunflow 6.38 57 100%

XML 2.76 1645 96%

Average 3.64 949 98%

η /10-App Set 1.77

Max. η /10-App Set 6.38

Figure 3.8: TopN opcodes used as a percentage of total opcodes used.
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Selecting for the constrained compiler, we get the core densities shown in Table

3.7, and these core densities are in the range of the maximum cases in Table 3.5

and Table 3.6.

The top 100 instructions account for all the instructions used by all the proces-

sors. This leads us to question why most current processors have more than 100

instructions, which is a reframing of the CISC-RISC debate. A follow-up ques-

tion is, which 100 instructions are needed? Our answer is to keep any existing

ISAs, but to provide two options to create application-specific processors. In the

first option, an instruction set usage analysis of the application binaries that are

set run on the processor is performed to get the set of instructions used. The

application binaries may be pre-existing ones or they may be new ones created

from source code. An application-specific processor is then synthesized using the

set of used instructions; this processor will be referred to as a subset processor.

In the second option, a processor that supports a subset of the ISA is imple-

mented without knowing beforehand the applications that are going to use it.

A constrained compiler targeting this processor is then developed. Finally, the

applications set to run on the subset processor are (re)compiled using the new

constrained compiler.

Table 3.7: Core densities using the Top25 opcodes.

MIPS PowerPC x86 x86-64 JVM

Core Density 118.2 53.3 65.9 110.1 20.4

3.5 Significance of this Study

Our study results indicate that the average resource utilization of modern fixed

ISA microprocessors is in the 5-20% range. We have shown that on average,

nine heterogeneous exact cores can be placed on the same microprocessor chip in

which a single core resides today. As part of this study we defined a new measure,

the core density, to measure this property. Resource utilization is application-

dependent and the results show that by using exact processor cores, the resulting

system can be as much as 48 times more efficient than today’s processors.
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The results show that maximum resource utilization can be achieved by con-

straining the number of processor instructions available to the compiler. Using

this technique resource utilization can be improved by up to 118 times. This

option suggests a new paradigm in compiler design, where the compiler will in-

fluence the final instruction set of the processor that will execute the compiled

code. It also suggests a change in instruction set design where a universal in-

struction is available, or a set of primitive instructions is used to build the rest

of the instruction set.
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Chapter 4

A Computer Architecture Model

4.1 Introduction

The theory of computing is now a well-established area in computer science. A

wide array of abstract computing machine models, such as finite-state machines,

random-access machines, push-down automatons and Turing machines, can now

be proposed, compared, and otherwise analyzed. However, the same cannot be

said when it comes to the theoretical foundations for the engineering areas in-

volved in the design and realization of these computing devices. The design of

general-purpose computers has, until recently, been largely a qualitative exercise

[51]. The work by Flynn [52] and Hennessy and Patterson [27] has helped start

a reversal of that trend by putting the design of computers on a quantitative

footing. Along those lines, in this work we propose to formalize the description of

computer architectures. We develop a generic model for computing architecture

that has the following three features:

• Fidelity: The model accurately represents the structural parts of a given

architecture and how they are related, while at the same time it allows for

abstract computer models to represent the operations of these parts and

their interactions.

• Accessibility: The model is an intuitive, algebraic model that can be used
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by computer architects and other designers of digital systems with little

training in formal mathematical methods.

• Extensibility: The model can be used to model entire systems or the

individual components of such systems.

This study adds more details to our earlier presentation of the model in [53]. Our

development of the model primarily focuses on the static aspects of a computer’s

architecture; that is, the associations between its components. The dynamic as-

pects, which describe how the connected components interact in order to perform

the computations, are discussed briefly.

In this chapter we develop the simple model of computer architecture, together

with an example of its application. We then extend the simple model into the

general model. Applications of the general model to microprogramming, reconfig-

urable computing, microprogrammed processors, general computing systems and

virtualized systems are presented. Finally, a model of the subset microprocessors

that were created as a part this research is developed.

4.2 Formulating the Simple Model

For the development of the first iteration of our model we are going to use, as

an example, a simple microprocessor that has a hard-wired control unit without

pipelining and without any other sophisticated microarchitecture. Ways to add

new microarchitectural features to the processor model will be discussed later,

in the Applications section. We will call this simple microprocessor the k85.

The simple model will follow along the lines of the one proposed by Sima et al.

[32]; however, we make significant extensions to that model in order to facilitate

later generalizations. Our model uses a triplet instead of a doublet as the pri-

mary structure and we introduce the use of relations to describe the relationship

between the triplet elements.

Let us assume that we have a computing machine (CM) which consists of a set

of N computing resources (R) that use a set of Q operations or instructions (I)
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Figure 4.1: Instruction to resources relation.

to operate on a set of P data types (D). An implementation of a CM can be

formalized by means of a triplet:

CM = (I, R,D) (4.1)

For the instruction set,

I = {i1, i2, . . . , iQ}. (4.2)

Each instruction, ik, where 1 6 k 6 Q, is typically represented by an instruction

mnemonic or an opcode. Similarly, for the computing resources or functional

units,

R = {r1, r2, . . . , rN}. (4.3)

A resource, rk, where 1 6 k 6 N , may represent a component of the micropro-

cessor, such as an adder or a register.

Each instruction, ik, controls one or more resources, as shown in Fig. 4.1. That

is, each instruction controls a set of resources, Rk, where

Rk ⊂ R

|Rk| > 0. (4.4)

We introduce a set of triggers, T . These triggers are state transitions that
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are used to initiate other processes. An example of such triggers is a set of X

sequential rising edges of a clock signal that are numbered and represented as

{clock1, clock2, . . . , clockX}.

T = {t1, t2, . . . , tX} (4.5)

Let Uk represent the relation between ik, Rk, and Tk, where Tk ⊂ T and it

represents the set of triggers needed to implement instruction ik. We are now

able to model Uk as a set of triplets, where each instruction’s resource pool can

now be modeled up to the point in which each element in the pool is required.

That is,

Uk = {(ik, rk1 , tk1), (ik, rk2 , tk2), . . . , (ik, rkN , tkX)} . (4.6)

Following a similar line of development, we now considering the data types

D = {d1, d2, . . . , dP}. (4.7)

Each data type, dk, where 1 6 k 6 P , represents a data format or addressing

mode. Data types may represent immediate data or indirect data. Immediate data

is embedded in the instruction and as such is available for immediate processing by

the computing resources. Indirect data represents a location where the computing

resources can find the data to be processed as part of the instruction execution.

Each resource, rk, can operate on zero or more data types, as shown in Fig. 4.2.

That is, each resource can process a set of data types, Rk, where

Dk ⊂ D

|Dk| ≥ 0. (4.8)

Let Vk represent the relation between rk, Dk and Tk. That is,

Vk = {(rk, dk1 , tk1), (rk, dk2 , tk1), . . . , (rk, dkN , tkX)} . (4.9)

44



Putting the component of the triplet together, as shown in Fig. 4.3, we see that

the composition Uk ◦ Vk allows us to express the relationship that exists between

the instruction ik and data of type dk whenever there exists a suitable resource

rk at interval tj:

ik (Uk ◦ Vk) dk ⇔ {∃rk∃tj|(ikUkrk) ∧ (rkVkdk)} (4.10)

Suppose bOp is a generic binary operation, such as addition, and that ik is a

specific instance of that operation acting on two data items of types dk1 and dk2 .

An example of ik would be the addition of an unsigned integer and a floating

point number. We have ik ∈ bOp and

[ik(Uk ◦ Vk)dk1 ∧ ik(Uk ◦ Vk)dk2 ]⇒ (dk1 bOp dk2) . (4.11)

Generalizing the result above to ik that is an n-ary operation (nOp ) acting on n

data items, we have ik(Uk ◦ Vk)dk1∧ . . . ∧
ik(Uk ◦ Vk)dkn

⇒ nOp (dk1 , . . . , dkn) . (4.12)

The distribution of processor specifications in a format consistent with relation-

Figure 4.2: Resources to data relation.
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Figure 4.3: Graphical representation of the triplet model.

ships in Equations (4.10), (4.11), and (4.12) should facilitate automated compiler

construction for new architectures.

Next, we present a way to model the dynamic aspects of a computer’s architecture.

The resources needed to execute each instruction, as shown in Fig. 4.1, are often

marshaled using a sequence of microoperations that are ordered by the elements

of the trigger set T. We introduce a set of microoperations M where

M = {m1,m2, . . . ,mY }. (4.13)

For each instruction, ik, there is a corresponding set of microoperations, Mk,

where Mk ⊂ M . Each microoperation, mki , where mki ∈ Mk, accesses at most

two resources, rki1 and rki2 , for inputs. Each microoperation places its result in

one resource, rko , at most. Now, we are able to model Wk, the operations of

each instruction, and ik over the interval Tk as a sequence of triplets shown in

Equation (4.14).

Wk =

 (mk1 , R
w
k1
, tk1), (mk2 , R

w
k2
, tk2),

. . . , (mkX , R
w
kX
, tkX)

 (4.14)

where

Rw
ki

= (rki1 , rki2 , rko).
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4.2.1 Example of the Simple Model

In this section we apply the model to the k85 which is a simple 8-bit micropro-

cessor that is binary-compatible with the Intel 8080 and the Intel 8085. The

architecture diagram of the k85 microprocessor is shown in Fig. 4.4. We assume

that the controller for our processor is hardwired and not microprogrammed. At

the top level we describe the processor model as

CMk85 = (Ik85, Rk85, Dk85) (4.15)

where,

Ik85 = {ANDA,MOV,CALL, . . . ,XHL} (4.16)

using instruction mnemonics or using opcode templates

Ik85 =

{
10100XXX, 01XXXXXX

11001101, . . . , 11100011

}
. (4.17)

The processor has 59 types of instructions; that is,

M = |Ik85| = 59. (4.18)

The width of the data bus is 8 bits; we will use that as the default size of

each resource. Any resource with a different size will be shown with its size in

parenthesis next to the resource name. Using Fig. 4.4, we can put together Rk85

as

Rk85 = {ALU,Control Unit,Register File, . . .} (4.19)

where Register File is a macro for an array of all the registers in the processor.

That is,

Register File = A,B,C,D,E,Flags, H, L, IR,

PC(16), SP(16),Temp,W, Z

. (4.20)

Some registers or combinations of registers are directly available to Ik85, and these

represent data types. In the case of our processor, REG, is the set of available

8-bit registers, while REG16 consists of overlapping register pairs, or other 16-bit
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Figure 4.4: The k85 microprocessor architecture block diagram.

registers that are available to Ik85.

REG = {A,B,C,D,E,H,L} (4.21)

and

REG16 = {BC,DE,HL,PC(16)}. (4.22)

Now we can put together the data types for our processor.

Dk85 =
REG ∪ REG16 ∪
{address(16), data, data(16), port}

(4.23)

where data and port are any 8-bit numbers representing data or a port respec-

tively, while data(16) and address(16) are any 16-bit numbers representing data

or a memory address respectively.

Next, the relations S and T are specified. Let us consider the ANDA instruction

group. That is, k = ANDA in Equations (4.6) and (4.9).
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The ANDA instruction has two options:

ANDA register − the register is ANDed with the

A register and the result is stored in A.

ANDA M − the data in the memory location pointed to

by the contents of the HL register is

ANDed with the A register, and the result

is stored in A.

In Register Transfer Level (RTL) notation, the actions performed by the ANDA

instruction are described as follows:

ANDA register : t1 A← A ∧ register

Z← 1

S← 1

P← 1

C← 0

A← A〈3 〉 ∨ register〈3 〉

(4.24)

where register is replaced by M for the second option, and the number between

each angled bracket represents a bit position. A,C,P, S and Z represent the

individual flags in the Flags register. We can now model how this instruction

operates as

UANDA =


(ANDA,ALU), (ANDA,REG),

(ANDA,HL), (ANDA,Control Unit),

(ANDA,IR), (ANDA,Decoder Unit)

 (4.25)

VANDA =


(ALU,REG), (ALU,data), (ALU,Flags),

(PC,address(16)), (Control Unit,REG),

(Decoder Unit,data)

 (4.26)

WANDA =


(∧, (A, register ,A), t1),

(, (1 , ,Z), t1),

· · ·
(∨, (A〈3 〉, register〈3 〉,A), t1)

 . (4.27)
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4.3 The General Model

We generalize our model by transforming Equation (4.1) into a recursive for-

malism. Our simple model may be viewed as a computing object consisting of

three related components: the program or ordered set of instructions that direct

some computing resources to act on some data. The computing object can be

represented by the triplet

computing object = (instructions , resources , data). (4.28)

In the general model, parts of I, R and D from Equation (4.1) may be replaced by

models for computing objects that each have a format corresponding to Equation

(4.28). We represent the general model of the computing machine using the

following triplet

level
architectureCM =

 (level+1)
architectureI,

(level+1)
architectureR,

(level+1)
architectureD

 (4.29)

and the relations as

(level+1)
architectureU and

(level+1)
architectureV. (4.30)

The implementation reference level (IRL) is defined as level = 0, as shown in Fig.

4.5. The IRL can be set arbitrarily; however, it is preferable to set the IRL as close

to the primary computing device being modeled. In this way the components of

the device being modeled will appear at level > 0 and any aggregate structures

or networks using the device will appear at level < 0.

4.3.1 Example of the General Model

Let us consider the ALU from our previous example as an assembly of a mul-

tiplexor together with six 8-bit circuits that implement the Adder , Shifter ,

AND , OR, XOR and NOT functions, as shown in Fig. 4.6. The MUX, along
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Figure 4.5: Tree-based representation of the generic model.

with its input and output signals, form the processor’s control plane. The 8-bit

circuits along with their data input and output form the processor’s datapath.

The ALU can now be modeled as

2
k85 ALU =


3

MUX OpSelLUT,
3

MUX OpModules,
3

MUX ControlSignals

 (4.31)

Figure 4.6: The arithmetic logic unit (ALU).
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where 3
MUXOpSelLUT is the set of codes used to direct the MUX to select the

appropriate function circuit,

3
MUX OpModules =

{
Adder, Shifter, AND,

OR, NOT, XOR, MUX

}
(4.32)

The 3
MUXControlSignals emanate from the Control Unit shown in Fig. 4.6. We

can now rewrite Equation (4.29) as

0
k85 CM = ( 1

k85 I, 1
k85 R, 1

k85 D) (4.33)

where
1

k85 R =
{

2
k85 ALU, 2

k85 ControlUnit, . . .
}
. (4.34)

4.4 Applications of the Model

Our proposed model can be used to either:

1. Describe the architecture of an entire computing machine, as the virtual-

ization application example below shows, or to

2. Describe an optimized part of an existing machine, as demonstrated by the

microprogramming application example below.

An existing lower (numerical) level model may be extended by ‘plugging’ into it

the model of a new higher level component, as shown in Fig. 4.5.

In general the proposed model can be used in the following manner: Firstly,

identify a potential processor application or optimization scheme. Next, generate

a triplet covering the whole application area. If required, interface this new

model to an existing higher- or lower-level model. Finally, define the relationships

between the triplet components.

In addition to the application of the triplet model to describe a fixed processor

that we have used throughout the study in modelling the k85 microprocessor, we

are also going to provide five more examples to demonstrate the applications of
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this model.

4.4.1 Microprogramming

While hard-wired processors, like the one in our microprocessor example above

may offer a performance advantage over their microprogrammed counterparts,

many commercial microprocessors today are microprogrammed. Microprogram-

ming offers the following advantages when compared to hard-wired architectures:

ease of development and maintenance, flexibility, and lower costs [54].

A microprogram is a sequence of microinstructions that are not directly accessible

to the programs running on the machine. Each microinstruction corresponds to

a primitive operation that the machine can perform, often referred to as a micro-

operation. The microinstructions are often described using RTLl. A processor’s

programmer-visible instruction can then be described by a microprogram, as the

example of the LHL instruction from the k85 architecture shows.

LHL addr : t1 Z ← M [PC ]

PC + +

t2 W ← M [PC ]

PC + +

t3 L← M [WZ ]

WZ + +

t4 H ← M [WZ ]

(4.35)

The microprogrammed control unit can be implemented using control memory, a

control address register, and a next address generator unit [55], as shown in Fig.

4.7. Each microinstruction is stored as a word in the control memory.

We model the microprogrammed control unit as the triplet:

2ControlUnit =

 3In, {
3Ra,

3Rm},

{2Di,
3Dn,

2Do}

 (4.36)

where 2Di and 2Do map one-to-one with the Control Unit input and output
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Figure 4.7: Microprogramming control unit organization.

signals from Fig. 4.6, respectively. 3In is a hardware circuit that generates the

next address to be latched into 3Ra based on 2Di and 3Dn. Now, the model in

Equation (4.36) can be substituted into the model in Equation (4.34).

The discussion above, as well as the model in Equation (4.36), can be applied to

co-designed virtual machines. By way of contrast, Chen et al. provide a state

machine-based model [30] of such machines. In a co-designed virtual machine the

source architecture, that is the one visible to the binary applications running on

the machine, is emulated on a target architecture. One of the most well-known

co-designed virtual machines is the Transmeta Crusoe processor [56] which uses a

‘code morphing’ (CMS) layer [57] to transparently run Intel IA-32-based software,

which serves as the source architecture, on an underlying very Long instruction

word (VLIW) architecture. This serves as the target architecture. Using our

model, this CMS layer can be implemented in 3In in order to maximize perfor-

mance or it can be implemented in 3Rm in order to maximize design flexibility

and post-production maintenance.

4.4.2 Reconfigurable Computing

Given a reconfigurable system RC, the amount of physical hardware (Rflex) re-

mains constant; however, the logic functions F (x) that are implemented on this

hardware change over the lifetime of the system, or even the lifetime of the set

of applications, App, that is scheduled to run on the system. In addition to

the applications, configuration software Sconfig, that is used to program the logic
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functions onto the hardware, is also input into the system. We can now model

this system as
0RC = (1F(Sconfig),

1Rflex,
1D) (4.37)

where the data member of the model

1D = {App, Sconfig} (4.38)

and the model’s program member is mapped directly onto the hardware, since

1F(Sconfig) 7→ App. (4.39)

The net effect is that the application will be directly executed by the hardware

thus sidestepping the fetch-decode-execute cycle of traditional microprocessors

[31].

4.4.3 Microprogrammed Processor

The microprogrammed processor model can be generated from the model of the

fixed processor by replacing the hard-wired control unit in Equation (4.34) with

the microprogrammed control unit from Equation (4.36).

4.4.4 Basic Computer System

A basic computer system (BCS), in general, consists of one or more micropro-

cessors, a ROM module, a RAM module, and an IO interface module. All these

modules are connected to the data, address, and control buses [55]. Attached to

this system are the IO devices, such as a keyboard and a hard-disk drive. All the

above-mentioned items form the R member of the triplet model for the BCS.

Each of the elements of R may be replaced by a higher-level triplet that describes

its functions in more detail. For example, the microprocessor in R may be re-

placed by a triplet model of a microprocessor, like the one shown in Equation
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(4.33). We model the basic computer system as

0
arch BCS = ( 1

arch I, 1
arch R, 1

arch D) (4.40)

where
1

arch I =

{
Process Control, Interrupt Handlers,

Device Drivers, Memory Management, . . .

}
and

1
arch D =

{
Bootsrap Program, System Program,

User Programs, System Calls, . . .

}
.

4.4.5 Virtual Computer System

Virtualization is formally described as a one-one homomorphism between a ‘real’

system and a ‘virtual’ system, with respect to all the operators in an instruction

sequence set [58]. That is, for any state transformation in the ‘real’ system, an

equivalent transformation can be performed in the ‘virtual’ system. One realiza-

tion of virtualization is through virtual machines (VM). A VM is a software layer

that emulates a desired machine’s architecture [29]. The VM executes (runs) on

a real machine whose architecture may or may not be the same as that emulated

by the VM.

We will model the generic virtual machine as

architectureVM =

 architectureI,
soft

architectureR,

architectureD

 , (4.41)

while the physical or ‘real’ machine is modeled as

architecturePM =

 architectureI, architectureR,

architectureD

 (4.42)

where soft
architectureR is a set of programs that emulate corresponding elements of

architectureR in the model in Equation (4.42). Note that there are no physical

components in architectureVM.
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The model for a physical machine that is hosting a VM is

arch 1CM =


arch 1VMM, arch 1PM, arch 2VM
 (4.43)

where VMM is the virtual machine monitor or hypervisor.

Traditionally, if arch 1 6= arch 2, the host machine model above is said to repre-

sent a simulation, otherwise, the model represents virtualization.

The host machine model presented above allows us to more easily propose and

describe extensions to existing virtualization technologies. An example is a multi-

tenancy hypervisor that can support multiple virtual machines with different

architectures. Such a system can be modeled by replacing arch 2VM in Equation

(4.43) with {arch 1VM, . . . , arch nVM}. In this case, we can have, say, an x86

hypervisor that supports ARM, PowerPC, and x86 virtual machines modeled as

x86CM =

 x86VMM, x86PM,{
ARMVM, PowerPCVM, x86VM

}  . (4.44)

We note that all the elements of the model triplet can be implemented as hardware

or software, depending on the purpose of the model. For example, the I triplet-

component in the microprogramming example in Equation (4.36) is implemented

in hardware, while the I, R, and D triplet components in the virtualization ex-

ample in Equation (4.41) are all implemented in software.

4.5 Reconfigurable Subset Processor Models

One of the goals of this thesis is to develop an automated system to synthesize

subset processors and implement them on a reconfigurable computing platform.

In this section we use the ideas developed so far in this study to outline a theo-

retical framework for the subset processors on a reconfigurable computing fabric.

Using the same notation that was presented in Section 3.2 for the processor

instruction set (I) and the application instruction set (A), we model appSP, the
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subset processor for the application stored in the binary file appD, as

appSP =
A,RA, appD

 (4.45)

where from Equation (3.7), A is a subset of I. In order to place the subset

processor onto a reconfigurable platform, the model from Equation (4.45) is now

used as the configuration program for the reconfigurable device, and Equations

(4.38) and (4.39) are rewritten as

1D = {appD , appSP} (4.46)

and
1F(appSP ) 7→ appD. (4.47)

The reconfigurable platform hosting the subset processor can now be modeled by

replacing Equations (4.38) and (4.39) in Equation (4.37) with Equations (4.46)

and (4.47), respectively

0RC = (1F(appSP ), 1Rflex,
1D). (4.48)

In order to model a set of B subset processors placed on a single reconfigurable

device, such as might be found on multicore systems, we introduce an index, k,

where 1 6 k 6 B and appSPk is the k-th subset processor on the reconfigurable

device. We now rewrite Equations (4.45), (4.46) and (4.47) for the k-th subset

processor as

appSPk =
Ak,RAk, appDk

 , (4.49)

1Dk = {appDk , appSP k}, (4.50)

and
1F(appSP k) 7→ appDk (4.51)

The multiple subset processor version of the triplet model’s data component is
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now represented by

1D =

|B|⋃
k=1

1Dk. (4.52)

while its instructions component is now represented by

1F(appSP ) =

|B|⋃
k=1

1F(appSP k). (4.53)

Equations (4.52) and (4.53) can now be substituted into Equation (4.48) in order

to produce the multi-subset-processors model.

4.6 Significance of this Study

In this study, we have developed a formal model of computer architecture and

shown how this model can be used to describe physical and virtual computer sys-

tems together with their components, such as hard-wired and microprogrammed

processors. We have also shown how reconfigurable computing systems may be

modeled using our proposed framework. The triplet components of the model can

be used to represent programs, hardware/resources, and the data of the system

under design to an arbitrary level of detail as required by the designer. The model

requires an understanding of some basic set theory and Boolean logic operators,

both of which are almost universally accessible to computer architects and other

digital designers. The level notation combined with the recursive nature of the

formalism allows the model to be extended by including detailed sub-component

triplets or by adding the primary model’s triplet into that of a larger super struc-

ture. We believe that this model combined with the quantitative architecture

tools mentioned in the introduction, can help take the design of new computers

architectures from an art form to a science form.
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Chapter 5

Matching Processors to

Applications

5.1 Introduction

Driven by Moore’s law, the number of transistors available to system designers

continues to grow exponentially resulting in the exponential fall in the average

cost of each transistor. Designers continuously take advantage of this dynamic

by adding more functions into the hardware which has enabled the recent trends,

like SoCs and multiple-processor SoCs (MPSoCs). As more functions are added

to electronic systems, their designs get more complex. This complexity increases

the risks in both the design project and the final product. To deal with this

complexity and it consequences, the design process has been abstracted away

from the hardware layer to progressively higher software layers. System design has

evolved from transistor level to schematic level and then to hardware description

language (HDL) level.

The challenges in electronic system design now relate to the design of SoCs and

MPSoCs. There are technical and non-technical issues that need to be considered

as part of the design process. The key technical issues revolve around the need

to balance the performance of the system with its size on the chip and its power
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consumption/dissipation. Meanwhile, the principal non-technical issues relate to

• time to market

• costs

• availability of skilled personnel for product development, and

• post-sales/in-field product support, maintenance, and upgrades.

The complexity involved in the design of SoCs using hardware description lan-

guage makes it difficult to meet the challenges mentioned above - particularly the

non-technical ones. A new higher level of abstraction, the application level or

electronic system level (ESL), is now taking shape to address the design of SoCs.

This work presents one such ESL tool.

SoCs by definition have at least one microprocessor or processing element. In

Chapter 3, using the core density measure, we showed how existing microproces-

sors use their resources inefficiently. In this study, we seek to develop an applica-

tion that optimizes the number of resources that are utilized by microprocessors.

We refer to this application as the FiT toolkit and it uses the following steps to

automatically generate a custom processor. Firstly, FiT analyzes the instruction

set usage of all the programs that are set to run on the microprocessor. And

as we found out in Equation (3.13) the set of instructions that are used by the

programs is much smaller than the set of instructions that are supported by the

processor. Next, FiT generates a VHDL model of the subset processor that only

supports the instructions found in the first step. This model is optimized for area,

by not implementing those functions that will not be needed by the programs.

FiT uses the model presented Equation (4.45) to develop the VHDL model of

the subset processor. Each instruction in the instruction set has some VHDL

code associated with it, when launched FiT builds a tree structure that stores

these associations and when an instruction is used by a program the associated

VHDL code is added to the VHDL model. Other custom processor generators,

such as the one by Trajkovic et al. [59], focus on generating custom processors

that are optimized for performance. They do so by analyzing the C source code

of the programs set to run on the custom processor and identifying any parts
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of the program that can be parallelized. In this chapter we use FiT to generate

custom soft processors that implement subsets of the Intel 8080/8085 instruction

set architecture (ISA) [60].

5.2 Toolkit Description

FiT automatically generates custom soft processors based on the theory of subset

processors proposed in chapters 3 and 4. The toolkit takes as its input one or more

application binary files and the template for the general-purpose processor tem-

plate. The toolkit outputs an HDL model of the custom soft processor, which is

then implemented on a reconfigurable computing fabric. In this study, the recon-

Figure 5.1: The Xilinx Spartan 3E Development Board.
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Figure 5.2: The k85 microprocessor architecture block diagram.

figurable computing fabric consisted of a Xilinx Spartan 3E field-programmable

gate array (FPGA) on a Digilent development board, as shown in Fig. 5.1.

5.2.1 General-Purpose Processor Templates

Two types of general-purpose processor templates are used as input to the FiT

toolkit. The first, which we refer to as the structural template, combines models of

all the components of the physical processor. The structural template emulates

the datapath and control of the physical processor shown in Fig. 5.2. The

only major architectural difference between the soft processor generated from the

structural template and the physical processor is that the control module for the

soft processor is hard-wired and not micro-coded. In the FiT toolkit, only the

control module is customizable when using structural template. The structural

template results in an area-optimized implementation of the processor where only

one instruction can be executed in each clock cycle.

The second general-purpose processor template type, which we refer to as the

behavioral template, is generated from a behavioral description of the physical
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processor. Using this template type with FiT, both the datapath and the control

circuitry are customized to suit the ISA subset. The control module of the result-

ing custom soft processor is also hard-wired. The behavioral template takes ad-

vantage of the parallelism offered by FPGAs to produce a performance-optimized

implementation of the processor. Using the behavioral template, the bus width

can be adjusted so that the processor executes one instruction in each clock cycle.

Furthermore, when there are no data dependencies in the instructions and the

bus is appropriately sized, the performance-optimized processor can be designed

to execute multiple instructions concurrently.

5.2.2 Operation

Before using FiT to generate a custom soft processor, the applications that will

execute on the custom soft processor need to be compiled using a compiler that is

targeted at a general-purpose processor. This general-purpose processor’s ISA is

a superset of the custom soft processor’s ISA. In this study, the general-purpose

processor is the k85 microprocessor which is a soft processor that implements all

of the Intel 8080/8085 ISA.

Fig. 5.3 shows the data flow in and out of the FiT toolkit. For each application

binary file, FiT disassembles the file and extracts the unique opcodes used into

an application instruction set. A set union of all the application instruction sets

is performed to produce the custom soft processor instruction set. The custom

soft processor instruction set is used together with the general-purpose processor

template to produce a VHDL model of the custom soft processor. The Xilinx

ISE WebPACK tool [15] is used to synthesize, place & route, and program the

FPGA with the custom soft processor.

FiT has a command line –no-disassemble option which causes the toolkit to

bypass the disassembling of the application binary files and to instead read the

opcodes needed for the custom soft processor description from a text file. This

option is used to generate custom soft processors for arbitrary sets of opcodes

and is especially useful for the processor verification.
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Figure 5.3: The FiT toolkit flow diagram.
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Figure 5.4: Timing diagram for the Processor, ROM, and SRAM modules.

5.2.3 Verification

The operations of the custom soft processors were verified using VHDL test-

benches that produced timing diagrams, as well as using the visual output from

the applications when available. Fig. 5.4 shows a timing diagram for the micro-

controller consisting of the Processor, ROM and SRAM modules in Annexure A.

This was generated using the Xilinx ISE Simulator.

Fig. 5.5 shows a microcontroller on the FPGA that has its ROM loaded with

the ‘Hello World!’ application and a soft video controller. The code in the ROM

is executed by the custom soft processor and the results are displayed on the

monitor.

5.3 Benchmarks

The C source code for the benchmark applications, listed in Table 5.1, is available

in [61] and was compiled using the Amsterdam Compiler Kit (ACK) [62] with the

Intel 8080 ISA as the target. The 8080 structural and behavioral templates were

used to generate an area-optimized custom soft processor and a performance-
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Figure 5.5: Running a ‘Hello World!’ application.
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optimized custom soft processor, respectively, for each benchmark application.

The core density measure presented in the first part of this work only took into

account the presence of each unique opcode in the application instruction set.

In this part we also look at the length, in bytes, and the clock cycles for the

instruction associated with each unique opcode in the application instruction set.

We put together the instruction length (IL) index and instruction cycle (IC) index

and these are defined as follows: Given an application instruction set A, let lk and

tk represent the length and clock cycle, respectively, for the instruction associated

with the k-th opcode in A then,

IL index =

|A|∑
k=1

lk (5.1)

and

IC index =

|A|∑
k=1

tk (5.2)

5.4 Results

Using FiT with the –no-disassemble option and an input file with all the opcodes

for the Intel 8080 ISA, we obtain the results in Table 5.2. These results represent

the resources required to implement a complete Intel 8080-compatible soft pro-

cessor and serve as the base for the core densities of the benchmark applications.

The basic reconfigurable unit in an FPGA is a look-up table (LUT). In this study

Table 5.1: FiT Benchmark Applications.

Application Description

anneal Traveling salesman problem by simulated annealing

fitexy Fit data to a straight line, errors in both x and y

mglin Linear elliptic PDE solved by multigrid method

pearsn Pearson’s correlation between two data sets

spctrm Power spectrum estimation using FFT
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we used the number of LUTs needed to implement a design on an FPGA as a

measure of the resources needed to implement said design.

Table 5.2: Results for the complete 8085 ISA opcode set.

Unique Opcodes in 8080 ISA 244

Instruction Length (IL)-index 314

Instruction Cycles (IC)-index 383

LUTs used - Structural Template 1047

LUTs used - Behavioral Template 3440

The number of unique opcodes in the Intel 8080 is comparable to that of the

Java Virtual Machine as shown in Table 3.1, and as a result, the core densities

for these two processors are similar. The performance-optimized soft processor is

on average 3.3 times larger than the area-optimized one, based on the number of

LUTs required to implement either type of soft processor for the benchmarks.

5.4.1 Area-Optimized Custom Soft Processors

Fig. 5.6 shows the core densities of the area-optimized custom soft processors for

the benchmarks.

Based on these results and the average core densities in Table 5.3, we observe

that the average actual core density does not match the average core density for

the unique opcodes. We also note that the actual core density does not scale

with the sizes of the benchmark application instruction sets. This is contrary

to what is predicted using Equation (3.6). Several factors may account for this

discrepancy. Below are two possible causes.

• The resources required to implement the datapath are equal to or greater

than those required to implement the controller. As a result, our decision

to only customize the controller then produces custom soft processors that

do not scale. Custom soft processors do not scale when their actual core

densities approach 1, regardless of the application instruction sets as seen

in Fig. 5.6.
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Figure 5.6: Core densities for area-optimized custom soft processors.

• The structural template uses a MUX-based design that saves on area at the

expense of speed and flexibility. Since the complete Intel 8080 ISA has 244

unique opcodes and only 14 registers, it is possible that very small subsets

of the unique opcodes will use up all of the available registers. This will

result in the actual core densities approaching 1 in all of those cases.

A customizable datapath and controller for the structural template will need to

be designed to test if either of the factors mentioned above is the cause of the

contradiction. Based on the results from SPREE [44], it would appear that the

contradiction is due to the fact that the datapath was not being customized.

Table 5.3: Average core densities of area-optimized custom soft processors.

Core Density Average

Actual 1.4

Unique Opcodes 4.1

IL-index 3.5

IC-index 3.9
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Figure 5.7: Core densities for performance-optimized custom soft processors.

5.4.2 Performance-Optimized Custom Soft Processors

The core densities of the performance-optimized custom soft processors for the

benchmarks are shown in Fig. 5.7. We see that the actual core density of the

performance-optimized custom soft processors scales linearly with the core den-

sity based on the unique opcodes. This result is in line with Equation (3.6).

The actual core density of the performance-optimized custom soft processors also

scales linearly with the other two core densities.

Table 5.4 shows the average core densities of the performance-optimized custom

soft processors. We observe that the average IL-index core density more closely

approximates the average actual core density.

Based on these results, we conclude that a core density measure based on the

unique opcodes used provides a good approximation of resource utilization. A

better approximation of resource utilization is provided by a core density measure

that is based on the IL-index, that is on a combination of the unique opcodes

used and their bit-lengths.
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5.5 Application

In this section we demonstrate two applications of the FiT toolkit. First, we show

how with some minor modifications, the FiT toolkit was modified to generate

custom soft microcontrollers or SoCs. Fig. 5.8 is based on the custom 8080-

compatible soft processors. The following modifications were made to the FiT

Figure 5.8: Custom 8085-based microcontroller.

toolkit.

1. As part of the disassembly of the application executables, a VHDL model

of the ROM with only the instructions in the application executable was

Table 5.4: Average core densities of performance-optimized custom soft proces-
sors.

Core Density Average

Actual 2.9

Unique Opcodes 4.1

IL-index 3.5

IC-index 3.9
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created.

2. If any of the disassembled instructions was an IO instruction, then a VHDL

model of the 8080-based IO module that implements only the ports required

by the instructions was created.

3. A 256 kilobyte dual-port RAM VHDL model was created.

4. The three models above together with the custom soft processor model were

combined into a single model for the microcontroller.

Next, we combined the FiT toolkit together with a C compiler and a third-party

FPGA synthesis and place & route toolkit to create a C-to-silicon compiler, as

shown in Fig. 5.9. Although we completed this step manually, it can however be

scripted using the TCL scripting language, which is compatible all of the three

components. The C-to-silicon compiler took a C source file and compiled it into

an executable file. FiT created a VHDL model of the custom microcontroller with

a custom soft processor tailor-made for the executable file and the executable file

was loaded into the custom ROM. The third-party tool, in this case the Xilinx

ISE WebPACK, synthesized the microcontroller’s VHDL model and programmed

it into the FPGA.

Figure 5.9: C-to-silicon Compiler.

5.6 Significance of this Study

In this study we presented a tool, FiT, for automatically generating custom soft

processors which is supported by a resource usage theory. We showed that the

custom soft processors can be optimized for area or for performance. The resource
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usage results of the performance-optimized custom soft processors are in line with

the resource usage theory’s predictions. Based on the results, we suggested an

update to the theory to make it more consistent with the observed results. We

also gave possible reasons as to why the results for the area-optimized custom

soft processors were not as predicted by the theory.

Two applications of the FiT toolkit were presented. The first showed how a

custom microcontroller can be generated by adding custom ROM, RAM and I/O

modules to the custom soft processor generated using FiT. Second, we showed

how a C-to-silicon compiler was assembled with FiT as the central component.

To the best of our knowledge, this work is the first that presents an automated

toolkit, FiT, for generating custom soft processors with only the object code

as input. FiT does not require its users to learn a new programming language

or to use only a subset of an existing programming language. Furthermore, the

application on which a custom soft processor is based does not need to be profiled,

as a first step, to identify any hot spots that are candidates for optimization. We

believe that FiT is an ESL tool that helps address most of the non-technical

design issues mentioned above.
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Chapter 6

Conclusion and Future Research

6.1 Summary

An assertion that modern day microprocessors use their resources inefficiently

was made in Chapter 3. The core density metric to measure this inefficiency

was proposed. The core density metric was shown to be related to a measure

of instruction set usage that was proposed earlier by other researchers. Subset

processors were proposed as a more efficient way to utilize a microprocessor’s

resources. Experiments were undertaken to quantify, in terms of core density,

how efficiently modern day microprocessor utilize their resources. The processors

studied were the JVM (if realized in hardware), MIPS, PowerPC, Intel x86, and

Intel x86-64. The primary results of these experiments were:

• The larger the instruction set, the more inefficiently the processor utilizes

its resources (the processor has a core density). This result was independent

of the processor’s design philosophy. That is, it did not matter whether the

processor was a CISC design or a RISC design, nor if it was a virtual or a

physical processor.

• Neither the choice of compiler nor the compiler optimizations that were

used to generate the benchmark applications changed the result mentioned

above regarding the impact of the instruction set size on processor resource
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utilization.

A theoretical formalism to describe the subset processors, in particular, and com-

puter architecture, in general, was developed in Chapter 4.

The FiT toolkit has been constructed and its operation was described in Chapter

5. FiT is an application that automatically generates VHDL models of custom

soft processors from an application binary file. The custom soft processor VHDL

models generated by FiT were then implemented on a Xilinx FPGA using the

FPGA vendor’s synthesis tools. The resulting synthesized processor designs were

then evaluated and compared to the assertions and relationships derived in Chap-

ter 3. The primary results were:

• Area-optimized soft processors are on average 3.3 times smaller (i.e. use

fewer transistors) than performance-optimized soft processors.

• The number of unique opcodes is linearly proportional to the hardware

resources used by the microprocessor for the performance-optimized soft

processors.

• The number of unique opcodes is not linearly proportional to the hardware

resources used by the microprocessor for the area-optimized soft processors.

• A core density metric that comprises the number of unique opcodes, used

together with the bit length of the used opcodes more accurately measures

a processor’s resource utilization than the originally proposed core density

metric, which only uses the number of unique opcodes.

By combining the FiT toolkit with an ANSI C compiler and the Xilinx ISE

WebPACK, an unconstrained C-to-silicon compiler has been constructed.

6.2 Contributions

Our research makes the following contributions:
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• We develop a model of computer architecture that extends the traditional

von Neumann program-data model by storing a hardware architecture de-

scription of the computer, along with the program that it will execute and

the data that it will use.

• We confirm the low instruction set usage rate results, found by several

other researchers, through experiments that were broader than those done

by most of the earlier researchers. Our experiments have as variables

the: benchmark applications, target microprocessor architectures, compil-

ers, and compiler optimization options.

• We propose the core density metric to measure the hardware resource uti-

lization of an application on a given microprocessor platform. Using the

instruction set usage experiments, we show that current microprocessor ar-

chitectures result in high core densities.

• We present approaches to lowering the core density to its optimal value of

1.

• We contribute an implementation of an application-specific processor gen-

erator toolchain, called FiT, whose output processors all have a core density

of 1.

• We show how the combination of the FiT toolchain with a traditional ANSI

C compiler and a vendor-specific synthesis tool produces an unconstrained

C-to-silicon compiler.

6.3 Future Research

The research work presented in this thesis can be extended in the following areas:
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6.3.1 Extending the Study on Instruction Set Usage

Further research is needed to determine the optimum number of instructions

that will be needed to constrain a compiler, so as to minimize the recompiling

effort and the size of the generated code, while maximizing the performance of

the resulting processor. The opcode statistics for the C benchmark applications

were gathered using source code, another research approach would have been to

compile the benchmarks applications into an executable (binary) file and then

disassemble the binary files to collect the opcode statistics. This is the approach

used by the FiT toolkit.

6.3.2 Extending the Computer Architecture Model

Further research is needed to show that the triplet model can be used to describe

modern processors, like the Intel Pentium processor. A software application to

store, input and visually manipulate triplet models is needed as designs get more

complex.

6.3.3 Extending the FiT Toolchain

Future work includes investigating larger processors and generating a more cus-

tomizable structural template. Another avenue will be to explore ways to auto-

matically generate networks of custom soft processors on a single FPGA chip.

Future research may target popular programming languages in order to create

other high-level-language-to-silicon compilers, such as Fortran-to-silicon compiler

or Java-to-silicon compiler.
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ANNEXURE A

.1 Processor Module

This section shows hand-crafted VHDL code for a soft processor that is a subset

processor of the k85 microprocessor. This only implements 5 opcodes. The FiT

toolkit automatically generates for the performance-optimized soft processors,

VHDL code (model) similar to the one presented here. The area-optimized soft

processor VHDL models are automatically generated in a slightly different manner

since they are assembled at the functional unit level. A soft microcontroller is

generated by combiining this processor module, together with the ROM module

in Annexure A.2 and the SRAM module in Annexure A.3.

------------------------------------------------------

-- Engineer: Charles Mutigwe

-- Create Date: 7:36:25 06/07/2009

-- Design Name: 8080_Computer

-- Module Name: PROCESSOR

-- Project Name: D.Tech Research Project

-- Target Devices: Xilinx xc3s500e-5fg320

-- (Spartan-3E Starter Kit)

-- Tool versions: Xilinx WebPACK ISE 9.2.04i
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-- Xilinx ISE Simulator

-- Description:

-- This module setup the 8080 Datapath and Control Logic

-- that implements five opcodes.

--

-- Dependencies:

--

-- Revision: 0.01 - File Created

--

-- Additional Comments:

--

------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity PROCESSOR is

-- size of EPROM

generic (numInstr : integer := 9);

port (clk : in std_logic;

notReset : in std_logic;

int : in std_logic;

data : inout std_logic_vector (7 downto 0);

address : out std_logic_vector (15 downto 0);

intAck : out std_logic;
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readM : out std_logic;

writeM : out std_logic;

readIO : out std_logic;

writeIO : out std_logic);

end PROCESSOR;

architecture Behavioral of PROCESSOR is

signal state: integer range 0 to 8 ;

-- Debugging Signals --

-- Program Counter signal

signal PCs: integer range 0 to (numInstr - 1) := 0;

-- Instruction Register signal

signal IRs: std_logic_vector(7 downto 0);

begin

data_transform: process(clk,notReset,int,state)

variable addressv: std_logic_vector(15 downto 0);

variable datav: std_logic_vector(7 downto 0);

variable intAckv: std_logic := ’0’;

variable readMv: std_logic := ’0’;

variable writeMv: std_logic := ’0’;

variable readIOv: std_logic := ’0’;

variable writeIOv: std_logic := ’0’;

-- Instruction Register

variable IR: std_logic_vector(7 downto 0);

-- match EPROM

variable PC: integer range 0 to (numInstr - 1):= 0;
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-- A Register

variable A: std_logic_vector (7 downto 0);

-- H Register

variable H: std_logic_vector (7 downto 0);

-- L Register

variable L: std_logic_vector (7 downto 0);

-- W Register

variable W: std_logic_vector (7 downto 0);

-- Z Register

variable Z: std_logic_vector (7 downto 0);

begin

if (notReset = ’0’) then

state <= 0;

PC := 0;

addressv := (others => ’0’);

elsif (rising_edge(clk)) then

if (int = ’1’) then

state <= 1;

end if;

-- initialize all outbound variables

datav := (others => ’Z’);

if (PC < numInstr) then

addressv := conv_std_logic_vector(PC, 16);

end if;

-- handle the opcodes
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case state is

when 0 => -- instruction fetch

IR := data;

PC := PC + 1;

readMv := ’1’;

writeMv := ’0’;

state <= 3;

when 2 => -- interrupt service routine

PC := PC - 1;

intAckv := ’1’;

IR := conv_integer(data);

state <= 3;

when 3 => -- wait to read/write to SRAM

state <= 4;

when 4 => -- state s2

-- instruction decode

case conv_integer(IR) is

when 0 => -- NOP

-- do nothing

readMv := ’1’;

state <= 0;

when 38 => -- MVI H data

H := data;

PC := PC + 1;

readMv := ’1’;
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state <= 0;

when 46 => -- MVI L data

L := data;

PC := PC + 1;

readMv := ’1’;

state <= 0;

when 54 => -- MVI M data

W := data;

PC := PC + 1;

readMv := ’1’;

state <= 5;

when 58 => -- LDA addr

Z := data;

PC := PC + 1;

readMv := ’1’;

state <= 5;

when others =>

-- do nothing

state <= 0;

end case;

when 5 => -- wait to read/write to SRAM

state <= 6;

when 6 => -- state s3

-- instruction decode

case conv_integer(IR) is

92



when 54 => -- MVI M data

datav := W;

addressv := H & L;

writeMv := ’1’;

readMv := ’0’;

state <= 0;

when 58 => -- LDA addr

W := data;

PC := PC + 1;

readMv := ’1’;

state <= 7;

when others =>

-- do nothing

state <= 0;

end case;

when 7 => -- wait to read/write to SRAM

state <= 8;

when 8 => -- state s4

-- instruction decode

case conv_integer(IR) is

when 58 => -- LDA addr

A := data;

addressv := Z & W;

readMv := ’1’;

state <= 0;
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when others =>

-- do nothing

state <= 0;

end case;

when others =>

state <= 0;

end case;

-- set the final values of the outbound signals

if (writeMv = ’1’) then

data <= datav;

else

data <= (others => ’Z’);

end if;

address <= addressv;

IRs <= IR;

PCs <= PC;

intAck <= intAckv;

readM <= readMv;

writeM <= writeMv;

readIO <= readIOv;

writeIO <= writeIOv;

end if;

end process data_transform;

end Behavioral;
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.2 ROM Module

This section shows hand-crafted VHDL code for the ROM module which is loaded

with the executable file to be used by the Processor module in Annexure A.1. The

FiT toolkit automatically generates the VHDL model for the application-loaded

ROM module when building the microcontroller.

------------------------------------------------------

-- Engineer: Charles Mutigwe

-- Create Date: 14:36:25 04/09/2008

-- Design Name: 8080_Computer

-- Module Name: EPROM

-- Project Name: D.Tech Research Project

-- Target Devices: Xilinx xc3s500e-5fg320

-- (Spartan-3E Starter Kit)

-- Tool versions: Xilinx WebPACK ISE 9.2.04i

-- Xilinx ISE Simulator

-- Description:

-- This module implements the ROM

--

-- Dependencies:

--

-- Revision: 0.01 - File Created

-- 0.02 - asynchronous ROM tests

--

-- Additional Comments:

--
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------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity EPROM is

generic (

bits : integer := 8; -- # of bits in a word

words : integer := 9; -- # of words in ROM

databus : integer := 15 -- address bus width

);

port (

nCS : in std_logic;

nOE : in std_logic;

address : in std_logic_vector(databus-1 downto 0);

data : out std_logic_vector(bits-1 downto 0)

);

end EPROM;

architecture behavioral of EPROM is

signal tempval: integer range 0 to words-1;

type vector_array is array (0 to words-1) of \

std_logic_vector(bits-1 downto 0);

constant memory: vector_array :=

( -- for the test

"00100110", --(26H/38) MVI H, data
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"10000000", --(80H/128)

"00101110", --(2EH/46) MVI L, data

"00000101", --(5H/5)

"00110110", --(36H/54) MVI M, data

"11000001", --(C1H/193)

"00111010", --(3AH/58) LDA addr

"10000000", --(80H/128)

"00000101" --(5H/5)

);

begin

tempval <= conv_integer(address) when (nCS = ’0’) \

and (nOE = ’0’);

data <= memory(tempval) when (nCS = ’0’) and \

(nOE = ’0’) else

(others => ’Z’);

end behavioral;
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.3 SRAM Module

This section shows hand-crafted VHDL code for the SRAM to be used by the

Processor module in Annexure A.1. The FiT toolkit automatically generates the

VHDL model for the SRAM module when building the microcontroller.

------------------------------------------------------

-- Engineer: Charles Mutigwe

-- Create Date: 14:36:25 04/09/2008

-- Design Name: 8080_Computer

-- Module Name: SRAM

-- Project Name: D.Tech Research Project

-- Target Devices: Xilinx xc3s500e-5fg320

-- (Spartan-3E Starter Kit)

-- Tool versions: Xilinx WebPACK ISE 9.2.04i

-- Xilinx ISE Simulator

-- Description:

-- This module implements the SRAM

--

-- Dependencies:

--

-- Revision: 0.01 - File Created

-- 0.02 - Synchronous RAM tests

-- - Inferred Distributed/Block RAM

-- Additional Comments:

--
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------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity SRAM is

-- # of bits per word

generic (

bits: integer := 8;

-- # of words in the memory

words: integer := 8;

-- address bus width

databus : integer := 15

);

port (

nCS : in std_logic;

nOE : in std_logic;

nWE : in std_logic;

clk : in std_logic;

address: in std_logic_vector(databus-1 downto 0);

data : inout std_logic_vector(bits-1 downto 0)

);

end SRAM;

architecture Behavioral of SRAM is

signal temp: integer range 0 to words-1;
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type vector_array is array (0 to words-1) of \

std_logic_vector(bits-1 downto 0);

signal memory: vector_array;

begin

temp <= conv_integer(address) when (nCS = ’0’);

process(clk)

begin

if (rising_edge(clk)) then

if (nOE = ’1’) and (nWE = ’0’) then

if (nCS = ’0’) then

memory(temp) <= data;

end if;

end if;

end if;

end process;

-- LUT-based RAM

data <= memory(temp) when (nOE = ’0’) and \

(nWE /= ’0’) and (nCS = ’0’) else

(others => ’Z’);

end Behavioral;
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