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Abstract

The Anomaly Processor in Hardware for Intrusion Detection (APHID) is a step

forward in the field of co-processing intrusion detection mechanism. By using small,

fast hardware primitives APHID relieves the production CPU from the burden of se-

curity processing. These primitives are tightly coupled to the CPU giving them access

to critical state information such as the current instruction(s) in execution, the next

instruction, registers, and processor state information. By monitoring these hardware

elements, APHID is able to determine when an anomalous action occurs within one

clock cycle. Upon detection, APHID can force the processor into a corrective state,

or a halted state, depending on the required response. APHID primitives also harden

the production system against attacks such as Distribute Denial of Service attack

and buffer overflow attacks. APHID is designed to be fast and agile, with the ability

to create multiple monitors that switch in and out of monitoring with the context

switches of the production processor to highly focused coverage over multiple devices

and sections of code.
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APHID:

Anomaly Processor in Hardware

for

Intrusion Detection

I. Introduction

Modern operating systems are becoming increasingly complex. Studies show

that the average number of bugs per 1000 lines of code is between 1 and

16 [7]. Commodity operating systems (Linux, Unix, and Microsoft Windows XP)

contain between 2 and 30 million lines of code, resulting in a conservative estimate

of 15 thousand bugs in a typical operating system [42, 43]. One author claims that

a medium-sized corporation could have as many as 5 million remotely exploitable

security vulnerabilities when the problem is compounded over the corporation’s net-

work (approximately 30,000 nodes) [23]. Furthermore, device drivers make up a large

portion of the operating systems and are often written by third parties. These drivers

operate at elevated privilege levels (kernel mode) and have access to critical data

structures and memory spaces that the operating system must use [38, 43]. These

third party programs may not be developed with the same quality assurance and

testing that is afforded by the developers of the operating system kernel. Even efforts

in the area of driver certification are not enough because certification does not imply

that the program is bug free, only that it meets certain minimum criteria, certified

code may still contain software vulnerabilities and exploits [27]!

The spread of broadband to the masses compounds the problem of high bug

count. While most users in the fields of computer science and engineering are con-

cerned with security and take at least the minimal security precautions on the systems

they use, the masses at large are notoriously bad at securing their systems. Home

users have unsecured wireless routers, unpatched operating systems, and disabled

1



firewalls. Often useability trumps security. As a result of the large number of unse-

cured machines, distributed denial of service attacks become feasible. All an attacker

needs to do is gain access to a sufficient number of machines (and turn them into

zombies). The average home user would never know of this intrusion and can be an

unwitting pawn in the schemes of attackers. Recent bot-net based denial of service

attacks against the 13 root domain name servers exemplify the increasing severity and

sophistication of the attacks [18].

1.1 Proposed Solution

Thesis Statement: Intrusion Detection through the use of dedicated hard-
ware running anomaly detection schemes at low levels (i.e. in hardware) will result
in significant improvements in response time and reliability over software intrusion
detection systems. Applying hardware primitives to the problem of denial of service
attacks can increase a system’s overall resistance to failure.

The Anomaly Processor in Hardware for Intrusion Detection (APHID) is a

method for creating a trusted computing environment while maintaining system per-

formance. We accomplish this using hardware primitives and dedicated co-processing

rather than a software only solution. The result is increased security with minimal

performance impact as compared to a host-based intrusion detection system running

as a separate software task on the main system production processing units (PPUs).

Furthermore, the detection of intrusions can be accomplished in real-time, as the

event occurs, rather than after some passage of time, giving rise to the potential for

repair of intrusions (or even stopping the intrusion before damage occurs).

1.1.1 Merits. APHID hardware primitives offer the opportunity to capture

bad events as they happen. Doing so can allow one to perform security checks at

a very low level (resulting in high fidelity compliance checking) and at hardware

speeds. Offloading the security monitoring overhead to dedicated processing allows

the production system to operate without interruption when not under attack and

to operate with minimal disruption when being actively attacked. Using APHID

primitives also allows the administrator to harden the system against various forms

2



of attacks ranging from buffer overflows on device drivers to denial of service attacks

on the network interface.

1.1.2 Costs. The benefits from APHID are not without their costs. APHID

requires modification of commodity hardware platforms. Currently this is done with

reconfigurable hardware, but for true performance benefits the primitives will need to

be placed into the fabric of modern processors. Furthermore, the specific detection

algorithms used by APHID are application specific and require the programmer to

be intimately familiar with the devices and libraries they are protecting. Improper

or naive implementations could result in a substantial performance penalty or an

unstable system.

1.2 Document Organization

The remainder of this document is broken into five chapters. Chapter II dis-

cusses the past and current work in intrusion detection as well as important back-

ground material that the reader may find useful for understanding concepts presented

later in the document. Chapter III presents the theoretical APHID architecture and

testing models. Where possible, implementation specific details are omitted to keep

the model as flexible as possible. Chapter IV presents our implementation of APHID

and discusses the process taken to arrive at that implementation. Chapter V presents

the results of the APHID implementation. Some of the results are empirical, gathered

from simulation, and some are more theoretical, based on some simplifying assump-

tions that abstract away more complex issues to demonstrate the power of APHID

where actual testing has not been possible to date. Chapter VI concludes the docu-

ment with discussions about APHID and future research opportunities.

3



II. Related Research and Background Information

This chapter outlines research in the field of computer system security (specifically

intrusion detection) and touches on some necessary background and fundamen-

tals which may assist the reader with understanding topics discussed in later chapters.

It is assumed that the reader has a general background in computers and information

systems. This section provides a basis for further understanding of what intrusion

detection involves and the work that has been done to address the problem.

2.1 Definition of Intrusion

This research is in the area of intrusion detection. For the sake of clarity we

must define the term intrusion to remove ambiguity. An intrusion can be defined as:

“An improper or unauthorized use of computer resources, with or without malicious

intent.” This definition encompasses the aspects of insider threat, and external at-

tacks [5,24,45]. While we are concerned with insider threat activities, the bulk of this

research deals with general protection of code while in execution. We do not address

access policies in terms of who is allowed to be on the machine. We are specifically

concerned with illegitimate code execution through the exploitation of vulnerabilities

in software. Therefore, we can tighten the definition of an intrusion to: “Illegitimate

execution of code on a system by exploiting software vulnerabilities.” For the remain-

der of this document, the word intrusion is used with the more restricted definition,

unless otherwise noted.

2.2 Classification of Intrusions

Intrusions take advantage of system weaknesses. Hoglund and McGraw place

use the following categories to classify weaknesses: Bugs, Flaws, Vulnerabilities, and

Design Vulnerabilities [23]. This classification is in order of increasing complexity

and increasing effort for repair.

2.2.1 Bugs. Bugs are code level issues. Incorrect use of a function call

such as strcpy() in C can result in a buffer overflow exploit if array bounds are

4



not checked. Unfortunately, this type of bug is one of the most common sources of

system vulnerabilities. A common exploit can result in arbitrary code running at the

privilege level of the process with the buffer overflow bug, compromising the system

even to the point of being remotely controlled by an intruder. Most bugs can be

resolved using simple scanning of software. Good programming practices reduce or

eliminate these.

2.2.2 Flaws. Flaws run a deeper risk. A flaw is a problem with the imple-

mentation of a section of software, involving a more complex interaction than misuse

of a system call or improper bounds checking. Flaws manifest from poor design

decisions. A flaw may or may not be exploitable.

2.2.3 Vulnerabilities. Vulnerabilities are problems that can be exploited by

an attacker. A bug or a flaw can result in a vulnerability. Vulnerabilities have to do

with design decisions and access. Particular points of interest are interfaces between

software modules (such as device drivers and system libraries). Vulnerabilities can

either be directly exploited or used in combinations for gaining access to the system.

A buffer overflow is a direct exploit of a bug. By running past the bounds of an array

(buffer) the attacker can inject malicious code into the execution path, or can change

the control flow of the program resulting in an intrusion. Examples of combination

attacks involve exploitation of timing or interface flaws. Some error handling states

can leave a system in an insecure state if a exception occurs, or certain application

programming interface (API) calls can leave vulnerabilities exposed.

2.2.4 Design Vulnerabilities. Detecting a design vulnerability is more of an

art than a science. Design vulnerabilities can take the form of improper configurations

which expose data channels; improper error handling (as mentioned above), incorrect

use of access control mechanisms (weak passwords, or unencrypted password files, for

example), or complex interactions among distributed systems that “leak” information

through unintended sources (message types and traffic analysis).
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It is possible to classify intrusions according to the type of vulnerability ex-

ploited, however it is most common to classify them according to the type of activ-

ity performed. The following is a list of common classifications of intrusions. It is

not exhaustive or complete. The information for this list is gathered from various

sources [11, 13, 23].

Virus: A virus is malicious software that attaches itself to other software within

the system, lacking the ability to self propagate outside the system.

Worm: A worm is software that performs malicious actions and also has the

ability to propagate to other systems.

Trojans: A trojan is malicious software embedded in an innocuous package

that can open security holes to create new vulnerabilities. Trojans can behave as a

worm or as a virus.

Rootkit: Rootkits are a more recent addition to the list of vulnerabilities. The

design of a malicous rootkit is particularly insidious in that it may become embedded

in the operating system in such a manner that it can intercept and change any system

messages. The result is that the rootkit maintains root level access for the intruder,

but hides all such activities from the operating system. They can operate by several

means. A masters thesis research effort by Nerenberg classifies rootkits according to

their various strategies and implementations [32].

Timing Attacks: Mentioned above, timing attacks can take advantage of

insecure system states achieved by sequences of system or function calls. Additionally,

timing based attacks can take advantage of knowledge of scan intervals (by the IDS) or

of other similar vulnerabilities in order to avoid detection and compromise a system.

Sequenced Attacks: Sequenced attacks involve using design vulnerabilities

to build up an intrusion. These usually require extensive knowledge of the system,

or some additional intrusion access through virus, worm, or trojan activities. The

sequenced attacks often result from unintended consequences of library calls on the

system state.
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2.3 Detection Timeliness

One goal of this research is to achieve real-time detection using our IDS. To that

end, it is necessary to explicitly define some terms for the remainder of the research.

Rather than reinventing the wheel, we refer to definitions from Kuperman’s Ph.D.

dissertation [24].

Real-time: Kuperman defines real-time as: Detection of a bad event, b, takes

place while the system is operating, and before any event dependent upon b can

occur.

Near Real-time: Near real-time is defined as: Bad event b is detected within

some finite (and small) time δ of b’s occurrence.

Periodic: A scan by the security system at a set interval p. Detection must

take place within a worst case maximum of 2 ∗ p for the detection scheme to qualify

for this name. This worst case occurs when b occurs immediately after the previous

scan has finished and is not detected by the current scan until immediately before

the next scheduled scan. If this were not the case, there would be a bottleneck in the

detection system and the system could scan and process enough events to keep up

with the incoming event stream.

Retrospective: An offline review of events to detect the bad events. This

review can be as simple as a person reading the logs, to as complex as a full forensic

analysis of a system.

2.3.1 Measuring Time to Detection. For the purposes of this research time

is measured as the number of operations (defined as instructions at the assembly

code level) executed from the time bad event b begins execution until b is detected.

The reasons for this choice are twofold. First, on systems with similar instruction

set architectures (such as Power PC and MIPS) one can make an “apples to apples”

comparison of detection times, regardless of clocks rate. Likewise, on machines with

differing instruction set architectures (such as MIPS and Intel x86), there is generally a

7



sense of the average ratio of instruction counts acquired from compiling the same code

on both machines. Using the instruction counts and average number of instructions

executed per clock cycle on each machine allows for a rough comparison between

the two machines. The second reason is related to the overall effects of an intrusion.

Logically, more instructions executed, from the time b occurs until it is detected, offers

an intruder a greater opportunity to cause damage. The metric executed instructions

between event occurrence and event detection gives a sense of the extent of damage

that can be accomplished. Furthermore, intrusions involving relatively few bytes of

executed code (like the SQL Slammer attack with a size of 376 bytes [19]) could

execute and remove traces of the intrusion if the time to detection is large.

2.4 Attack Surfaces

Attack surfaces, defined by Manadhata and Wing, is the concept of the size

of vulnerability presented to the attacker [28]. For instance, an entire operating

system, with all of the services and processes running, presents an extremely large

attack surface. It is not reasonable to expect a single monitoring unit to effectively

protect this entire surface. By choosing a sufficiently small attack surface it is possible

to create an monitor capable of protecting the code section in real time.

2.5 General Classification of Intrusion Detection Systems

An intrusion detection system (IDS) is generally classified as either a network

IDS or a host IDS. Our research, while mainly focused on host based systems, has

potential applications as a blended approach, incorporating both network and host-

based IDS concepts.

2.5.1 Network IDS. A network IDS examines network traffic at the packet

level and can be a stand-alone system which monitors all traffic on a specific network

segment, or an internetworked set of intrusion detectors that share a private network

(either physical, or virtual through a virtual private network) [8]. A network IDS
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has visibility only of the traffic on the network. In a typical setup, the network IDS

operates its network interface card (NIC) in promiscuous mode, capturing and exam-

ining all traffic on the network where it sits. This may require special configuration

of the router or switch connected to the network IDS where the switch forwards all

traffic to the IDS as well as to the destination. A prime example of a network IDS is

the open source, self proclaimed de facto standard for intrusion detection/prevention,

Snort [41].

2.5.2 Host IDS. Like the integrated air defense system, a secure enterprise

system should not rely on only one layer of defense, rather there should be multiple

rings (layers) of protection. A network IDS is one component of such a plan. A Host

IDS is a component that can be used to add an additional layer of security. Host IDSs

monitor a particular single computing unit (what we would think of as a single server

or desktop computer). The host IDS has access to internal information available to

only that host, but has limited global awareness. The host IDS is used to monitor

the processes and user activities on the single machine and can only monitor network

traffic specifically destined for that machine. Dorothy Denning [16] provided the

framework for much of the current work in general purpose IDS designs, and most

host intrusion detection systems can be classified as derivatives of her work.

In the class of host based ID systems, three main approaches have been taken.

The first uses anomaly detection (which we lean toward in our research), the second

uses signature based detection, and the third uses specification based detection. We

refer the reader to Axelsson’s paper [3] for a thorough taxonomy of ID systems and

the approaches taken, with the note that he specifies only two IDS classes, anomaly

detection and signature detection. The third class, specification based detection, was

noted by Williams in [45] as a reflection of the state of the art in intrusion detection.

Anomaly Detection: Anomaly detection works on the principle that a sys-

tem knows what normal is. This can occur through either self learning, or through

programming. Using this sense of normal, the IDS can ascertain when something
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outside of those parameters occurs. Anomaly detectors can suffer from higher false

positive rates, so a tradeoff must be made by setting thresholds of acceptable deviation

from normal. Raising the thresholds can reduce the false positive rates (incorrectly

identified intrusions), but can have an inverse effect on the rate of missed detections.

Signature-based Detection: Signature based systems use knowledge of previ-

ously encountered attacks to create a signature for a specific attack or class of attacks.

This signature allows the IDS to search through events and detection occurs when a

signature matches an event. The result is a highly reliable detector for events that

have signatures. However, the detector can be easily fooled by even slight changes to

the event, and will allow unknown intrusion events, for which there is no signature,

unrestricted, undetected access to the system [45].

Specification-based Detection: Growing interest (and concern) in the arena

of computer security is resulting in a change of perspective towards specification based

systems. The concept of specification based systems is not new (especially in terms

of the pace of computing system progress). Once thought to be too expensive (too

hard to implement) and too restrictive, the realization of the need for tighter security

models is bringing this concept to the forefront [10]. The Bell-Lapadula model [9] is

one security model that is commonly applied to these type of systems. A specification-

based system explicitly defines a condition of security for the system. Any state that

does not match a state in this security specification is flagged or raises an alarm.

Hybrids: There are examples of IDSs that apply more than just one detection

approach in an effort to improve reliability and accuracy. As mentioned before, a

detection on a signature based system has a high probability of being correct, but

it is trivial to manipulate many intrusions so that the signature is rendered invalid,

while the attack remains a threat. Applying anomaly detection (or specification-based

detection) in concert with a signature-based detector can improve the reliability and

accuracy of the system.
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2.5.3 Host-based IDS Execution Classes. We can classify host-based intru-

sion detectors by the manner in which they operate.

Interleaved: This IDS runs as a separate process, interleaved with other

processes running on a multitasking machine and it relies on the operating system

to schedule the IDS to run frequently enough to capture any intrusions. The best

detection timeliness any interleaved IDS can hope for is near real-time, but the more

likely case is a periodic detection timeliness (see Section 2.3 for the definition of near

real-time).

Interposed: An interposed IDS works by adding a software layer to the

system so that all system calls activate the IDS. The result is a finer granularity of

detection, with the (potentially high) cost of added overhead to every system call.

Co-processing: A coprocessing based IDS offloads the overhead of running

security tasks from the PPU to the security co-processor. This has the added benefit

of providing parallel processing with the potential for real-time detection (see Section

2.3 for the definition of real-time). One hindrance to this approach is that the co-

processor may not have necessary access to the PPU data structures and hardware

without modification of the computer system architecture and operating system. This

research is focused on defining new hardware primitives to advance co-processing IDS

capabilities.

Virtual Machine Monitors: A virtual machine monitor (VMM) based IDS

works by running the IDS in a software layer below the operating system (OS. Doing

this allows the IDS to have access to virtual machine (VM resources and the IDS can

perform detection on each guest OS running on that system. This method appears

to have some merit and should prove to be very useful with the increasing emphasis

on visualization technology [29].
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2.6 Related Research in IDS Co-processing

This research is focused on using co-processing to implement a host-based IDS.

The following sections highlight the main points of existing research in IDS co-

processing. Co-processing systems stand in contrast to uniprocessor intrusion detec-

tion systems in that they are able to process in parallel with the production execution

unit, allowing for a finer granularity of detection.

2.6.1 Cryptographic Co-processing. While not a true IDS, a cryptographic

co-processor provides the system with services that increase overall system security

by encrypting data streams between functional units on the system. The resulting

secured busses and channels allow for data integrity checking. Cryptographic co-

processors do not necessarily prevent an intrusion, but they do minimize the attack

surface presented to that intrusion source by securing the channels. In the event of

an intrusion, the attacker is presented with a greater challenge in capturing mean-

ingful data from the system. The trusted platform module used in Intel’s LaGrande

technology (TPM) is a mainstream example of a cryptographic co-processor [4].

2.7 CuPIDS

The co-processing intrusion detection system (CuPIDS), introduced by Williams,

works on symmetric multiprocessing (SMP) systems. Most SMP systems attempt to

balance the workload by spreading processes evenly across the processors. CuPIDS

differers from this approach by making a conscious tradeoff between security and per-

formance and dedicating one of the processors in the SMP architecture to security

related processing tasks. This difference allows CuPIDS to perform parallel moni-

toring in real time (see Kuperman’s definition in Section 2.3) [24, 45]. The parallel

monitoring performed by CuPIDS supports the broader class of security policy com-

pliance monitoring (SPCM) which includes intrusion detection as well as a number of

related areas including error detection and computer forensics [10].
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2.7.1 CuPIDS Goals. The goals of CuPIDS are:

• Harness the power of SMP systems to perform security monitoring.

• Allocate one processor to perform parallel monitoring at higher fidelity than

possible in a uniprocessor intrusion detection system.

• Use the opportunities afforded by parallel monitoring to perform actions not

available to a uniprocessor IDS, such as real time monitoring and self healing.

2.7.2 CuPIDS System Architecture. The foundation for the CuPIDS archi-

tecture is monitoring a production process by running the monitoring process in par-

allel (on a separate processor) as the production process executes. Designed around

a shared resource, general purpose SMP architecture, CuPIDS separates protected

processes into two components: A CuPIDS production process (CPP) and a CuPIDS

shadow process (CSP). CuPIDS is event driven. The stream of events that CuPIDS

operates on is generated by the CPP and used by the CSP. The shared memory re-

sources are not shared symmetrically. The CSP is given insight into the memory space

of the CPP but the CPP is not given any access to the memory space of the CSP. This

allows the shadow process (CSP) to monitor the production process non-intrusively,

while it executes. The CSP is also able to control the activities of the CPP through

a control stream.

2.7.3 Basic Capabilities. Several characteristics define the capabilities and

characteristics of CuPIDS. From Williams’ dissertation [45], they are:

1. Hardware resources (a processor in this case) are dedicated solely to security

tasks (See Figure 2.1).

2. All of the state of the monitored process (the CPP) is available to the monitoring

process (the CSP).
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Figure 2.1: CuPIDS: Using SMP Architectures for Security Policy Compliance
Monitoring

3. Primary detection tasks are specification-based. That is, explicit knowledge of

how the protected application is intended to behave is used to detect incorrect

or illegitimate behavior.

4. Security monitoring is done in parallel (concurrently) with the execution of the

monitored task.

5. Attacks may be immediately acted upon because of the parallel monitoring.

Any information or analysis gathered by the monitor can be used to halt the

attack an keep the system from entering a damaged state, in contrast to an IDS

running on the uniprocessor model (interposed or interleaved) where the attack

may disable the IDS (or hide from it) before it has a chance to execute.

6. The parallel monitoring is not instruction-by-instruction. CuPIDS traces the

execution path in parallel, keeping the appropriate monitor running with its

production code.
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7. CuPIDS is event based. The execution state of the monitored process is trans-

mitted to the monitoring process via an event stream. The event stream can be

automatically generated from some sources, and others require explicit instan-

tiation by the programmer.

8. The monitoring unit is synchronized with the protected application by the event

flows.

9. Monitoring can be performed asynchronously from the protected application,

further complicating the task of the attacker.

10. CuPIDS resides and operates inside the host OS, giving the monitoring task

complete visibility into the state of the OS and full control of a monitored

process. This is a much higher level visibility than that provided by other

approaches (virtual machine monitors and cryptographic processors).

11. CuPIDS can be implemented on commercially available hardware using modified

commercially available software.

2.7.4 Strengths and Weaknesses. CuPIDS has strengths and weaknesses as

pointed out by Williams.

Strengths: CuPIDS can detect intrusions in real time (again using Kuper-

man’s definition). This is the main advantage of CuPIDS. Since it monitors in parallel,

CuPIDS can also observe activity internal to the monitored process that a unipro-

cessor IDS simply cannot observe because it cannot run in parallel. The result is a

higher fidelity detection model, using internal control flow events, programmer defined

events, and interactions with external entities (e.g., libraries, drivers, system calls).

Another strength of CuPIDS is that it removes the burden of security processing

tasks from the production process. As security takes a larger role, the cost of secu-

rity processing will also expand. CuPIDS uses some hardware that could have been

used for production processing, but introduces minimal overhead on the production

processor(s) it does not use.
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Weaknesses: CuPIDS exists inside the production operating system. Because

of this, its communications and processes are vulnerable if the host OS is compromised.

Messages are passed through the kernel, and a compromised kernel could alter or

suppress those messages, resulting in a broken event stream, and rendering CuPIDS

inoperative. The tradeoff between visibility of processing state and protection of the

security system is the source of this weakness.

2.8 Security Enhanced Chip Multiprocessor

The Security Enhanced Chip Multiprocessor (SECM) is another research effort

in the field of parallel co-processing intrusion detection. Like CuPIDS, SECM uses

commodity hardware and software (with modifications) to perform the monitoring

tasks. SECM differs from CuPIDS in that it uses an asymmetric multiprocessing

approach where the production processor uses a full blown kernel, with limited access

to “riskier” system calls and the security processor runs a minimal kernel for higher

performance and smaller attack surface. The security processor is given higher access

to machine state and also access to the production kernel state for monitoring purpose,

but the production kernel does not have the same privileges. State information about

the production OS is gathered from the memory bus and shared memory resources.

SECM, by having elevated privileges over the production OS is able to detect rootkit

attacks on that OS (because it has visibility to layers “beneath” the OS where a rootkit

would be embedded). Furthermore, given the elevated privileges, the security OS can

dump a compromised production OS and reload a clean version of the production

kernel in the event that an intrusion is detected. This allows the production OS to

maintain some resemblance of robustness to attacks.

2.9 CoPilot

CoPilot approaches the co-processing intrusion detection problem from a differ-

ent perspective [36]. Rather than dedicate a full CPU to the task of monitoring, the

CoPilot system places a co-processor on the PCI bus. Here, the co-processor works
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much like a graphics card works for acceleration of graphics libraries. Because the

processor sits on the PCI bus, it can only gather system state information through

that bus and it cannot directly impose control over the system. Residing on the main

memory bus allows co-pilot to do a 1 to 1 mapping of memory addresses to mem-

ory space but limits its access to hardwired (non virtualized) kernel pages that do

not move. CoPilot works by monitoring these memory locations for changes using

anomaly detection. Due to overhead issues, CoPilot monitors on a periodic basis (see

Section 2.3 for definition). Because of this, CoPilot cannot achieve real-time or near

real-time detection. The idea of using a peripheral card holds promise despite the

aforementioned timeliness and memory visibility issues.

2.10 Other Security Systems Using Methods Similar to APHID

This section briefly describes other security systems (not necessarily IDSs) that

behave in ways similar to the desired behavior of APHID. These systems are related

in that they either contain an idea similar to APHID concepts or use similar methods

on different problems.

2.10.1 Techniques for Monitoring Control Flow. Zhang in [49] and Arora in

[2] present independent methods for checking control flow at various levels of fidelity.

Zhang’s method modifies the hardware of a processor to allow for control flow checking

at the instruction level. The checking is done by running anomaly detection routines

in hardware. The anomaly detector is programmed statically with compile time data

regarding branching and then the program is trained in a “sandbox”, or a known

secure environment. Doing this allows the hardware to record common branching

and to gather a sense of normal behavior.

Arora’s team presents three methods of integrity checking in an embedded envi-

ronment. Her work provides: Intra-procedural control flow checking, where branches

within a procedure are monitored for illegitimate activity, Inter-procedural control

flow checking, where branches from one procedure to another are monitored for cor-
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rectness, and finally, instruction stream integrity using hashing algorithms. Proce-

dures are hashed at compile time and the hardware then hashes the procedure at

run-time to check against any modifications that may have occurred.

2.10.2 ESP: The Embedded Sensor Project. The Embedded Sensor Project

(ESP) is actually a software extension that embeds specific calls in sections of code

(it is an interposing IDS in a sense) [48]. However, ESP aims at making the sensors

small and fast, and optimized for the task of protecting a specific section of code.

Synergistic coupling of the embedded sensors can allow ESP to provide intrusion

detection at varying levels from the application level to the operating system level,

even to the network level if deployed on several machines and given the ability to

communicate with one another.

2.10.3 Protecting the Stack with Hardware. Buffer overflows continue to

be a steady source of vulnerabilities, even though the solution to the problem is

well known. Secure programming practices should eliminate this source of intrusions.

Despite this, CERT continues to report vulnerabilities related to the technique of

“stack smashing” on a fairly routine basis [13]. The majority of attacks involve the

attacker injecting specially crafted code into a buffer with unchecked bounds. The

attacker will write the bytecodes corresponding to a NOP (no operation in assembly

code) creating what is known as a NOP sled. The attacker then replaces the return

address on the stack with an address that is likely to be in the range of the NOP sled

and the processor will then execute the NOPs until it reaches the malicious code at

the end. If the buffer overflow vulnerability existed in code with elevated privileges

the resulting intrusion can grant root level access to the attacker. Figure 2.2 shows

a simple example of a buffer overflow in action. In this example, the buffer is in

the program stack. The process reads input from the data source (user input, for

example), the input exceeds the space allocated to the buffer and important stack

data are overwritten. Here we see that the malicious data (from the array overflow)

writes over the return address with the calling address of the malicious code. When
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Figure 2.2: A Buffer Overflow on the Stack

the process executes the call and returns to what it thinks is the code section that

made the original call, it will actually begin execution in the malicious code section

where bad things (such as remote root-level access) can occur.

Several methods have been introduced to cope with this epidemic. Lee et al. pro-

pose a secure return address stack SRAS, which imposes additional hardware checking

to stack calls. If SRAS detects a modification to the stack, then a flag is raised [26].

Smashguard employs similar techniques, but handles the problem of deep stack re-

turns more elegantly than Lee [34].

2.11 Classifying the Hardness of a Computing System

It becomes necessary to classify computing systems according to their level of

protection, or hardness. The term hardness is chosen to frame the concept in terms

of military physical protection. For example, sandbags provide a level of protection
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against light munitions, thereby improving the security of anything behind the sand-

bags. Further hardening could involve bunkers buried deep underground, with 12 foot

thick blast doors. Obviously, there is a tradeoff between the cost of hardening and the

level of protection required. It does not make sense to build a subterranean bunker

to protect a units meal rations for the day. A truck or small building will provide

adequate security. Likewise, it is not prudent to place critical command and control

nodes in a canvas tent, that is what the hardened bunkers are for.

We use this analogy to make a point. The act of hardening a system imposes

a cost on the system. The cost involves complexity (which can mean higher financial

burden for designers) and usability/productivity/performance (which can result in

higher financial burden for the users). There is an direct relationship between the

cost of the system and the security of the system. This implies that there is a need to

harden the system to the appropriate level (as defined by the purpose of the system).

In keeping with the thesis statement in Chapter I, we aim to reduce the cost of

the security mechanism by pushing the security aspects to a hardware monitor on a

system, thereby increasing the security level of the system while minimizing the costs

associated with that new security level.

We classify the hardness of a system using a ring topology. Our classification

system has six levels numbered 0 to 5 (Figure 2.3).

Ring 0: Perfect Security. A useable system corresponding to this ring does

not exist. A system with this level of security is a closed system. No information

flows out of the system, nor can it interact with its environment. Unfortunately, this

system is useless (notwithstanding its excellent properties as a paper weight).

Ring 1: Deeply Hardened. In the military analogy, this is the secure,

hardened, underground facility. There is limited direct contact with systems in the

outside world. Only trusted entities are allowed access (physical or remote). It can be

compromised, but this requires an trusted insider with access to sabotage the system.
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Figure 2.3: Levels of Security

This is the type of system you want your bank to have in place for managing deposits

and withdrawals from your account.

Ring 2: Hardened. The military analogy is a concrete building with access

security and various levels of protection. From the information technology perspective

this is like an enterprise server with physical access policies, running behind a firewall,

up to date patching, and some type of intrusion detection systems in place.

Ring 3: Heavily Armored. This can be analogous to military heavy armor,

like tanks and other vehicles. They are resistant to most attacks from similar plat-

forms. In terms of computing systems we would classify this as a patched, firewalled,

small business class network without automated intrusion detection capabilities, but

with all appropriate traffic logging and security software (such as virus scanning and

strong password login requirements) in place.

Ring 4: Lightly Armored. In the analogy we compare this level to a

lightly armored vehicle. It can withstand many attack types, but cannot handle a

direct attack from larger munitions and focused attacks by multiple sources. This
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Figure 2.4: The Network Protocol Stack and Packet Encapsulation

would be the equivalent of a home user system, with up to date security patches and

perhaps a personal firewall. Here the level of protection is good for very low cost.

Ring 5: Unsecured. Consider this as an unarmed soldier in an enemy camp.

This is what you get when you install an operating system and without patching

connect to the internet via broadband. Almost immediately, the system can become

compromised. Moving from Ring 5 to Ring 4 is easy and has an excellent cost to

benefit ratio.

2.12 Networking Background

Figure 2.4 shows both the protocol layering and the datagram packaging con-

cepts discussed in the following sections.

2.12.1 The Network Protocol Stack. The Network Protocol stack is the In-

ternet’s layered service protocol stack that facilitates communication over networks.

Using protocol layering allows different technologies to communicate by abstracting

away complexity of the system. The Internet protocol stack has five layers: Applica-

tion, Transport, Network, Link and Physical. Each layer provides a service to the layer

directly above it in the stack. The following list contains examples of technologies

that provide services in each layer, in order from top to bottom [25]:

22



• Application Layer: End user programs , such as instant messengers, maintain

connections at this layer.

• Transport Layer: TCP (transmission control protocol) and UDP (user data-

gram protocol) provide datagram services at the transport layer level. TCP pro-

vides an end-to-end connection-oriented service with delivery guarantees, while

UDP provides a connectionless service with no delivery guarantee. Both modes

are used extensively and have merits depending on the particular application.

• Network Layer: The Internet Protocol (IP) provides the source and destination

routing services to transport layer packets in the network layer.

• Link Layer: In the link layer, IP packets are provided with the point to point

delivery services. Packets at this level are called frames. Ethernet, Wi-Fi, and

the point-to-point protocol are examples of link layers.

• Physical Layer: The physical layer delivers bits and provides the mechanism

for delivery of frames. This is where the hardware resides. We can think of this

layers as the wires, or the radios involved in transmission and receipt of data.

2.12.2 Internet Protocol Packets. IP packets are the workhorses of the

Internet. An IP Packet is wrapped in a frame and sent across links. Upon arriving at a

host, the IP Packet is extracted from the frame and examined for destination address.

If the host doing the examination is the destination, then the packet continues up to

the transport layer. Otherwise the packet is ignored or forwarded, depending on

the role of the receiving host. This research is primarily concerned with IPv6 (IP

version 6) packets because they are (slowly) replacing IP version 4 packets as the

new standard [25]. This choice provides several advantages. First, the amount of

work that must be done to parse the packets is reduced because the specification

removes variability of the header length. This was a problem in IPv4 where the

header could have optional data resulting in more complex parsing algorithms [14].

Beyond that, the IPv6 packets also do not allow fragmented packets, which simplifies

design choices in this research. As a result, the hardware that works with the IP
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packets must handle larger addresses (128 bit versus 32 bit), and address ranges,

than it would have handled with IPv4 packet specifications [15].

2.12.3 Denial of Service. Denial of Service (DoS) attacks are of particular

importance to this research. Current events illustrate that this form of attack is still

very much a threat [37]. A DoS may either originate from a single source or from many

distributed sources. The attack from distributed sources is known as a distributed

denial of service (DDoS) [25]. A system being attacked by a single source DoS needs

only to block traffic from that source. A DDoS requires a more sophisticated approach,

and there may not be any perfect solutions, depending on the intensity and spread

of the attack. When a system comes under a DDoS, it may receive modest traffic

from hundreds to thousands of unique nodes. The synergistic effect of this traffic

can easily overwhelm most enterprise level servers [35]. Figure 2.5 shows a generic

example of how a DDoS is initiated by the attackers. The zombies (or agents in some

literature) generally participate unknowingly in the attack. The attack coordinators

are far enough removed from the actual attack execution that it is difficult to prove

their involvement in many cases. Handlers may also participate in the attacks, but

typically this is avoided to keep the trail of evidence from being too strong.

Source address spoofing gives rise to on particular kind of DDoS attack that is

particularly difficult to deal with. Legitimate sites are tricked into playing part in

a DDoS by group of zombies. Rather than using the zombies to directly flood the

target system, the zombies spoof their source address to that of the target and then

send a TCP packet to a number of legitimate web sites. Because of TCP’s three

way handshake connection protocol, those sites respond with an acknowledgement.

Unfortunately, the target system is suddenly inundated by the acknowledgements

from these various sources. TCP’s automatic retransmission further increases the

problem.

Another interesting class of DDoS is the flash crowd. This DDoS is not a

coordinated attack with malicious intent, but has serious consequences nonetheless.
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Figure 2.5: A Distributed Denial Of Service Attack

Flash crowds (also known as the slashdot effect [44]) occur when a particular web site

becomes overwhelmed by legitimate requests for data because of a sudden increase in

popularity or visibility stemming from being linked to by one of many popular article

posting sites like Slashdot [39], digg [17], or Fark [20].

Much research has been in the area of protection against DDoS attacks using

signature methods and or dropping specific types of traffic when under attack, using

flow monitoring. For example, if the attack appears to be UDP based, then the

firewall is directed to drop all UDP packets regardless of source. The problem with

this ‘solution’ is that it gives the desired effect of a DoS for any legitimate sources

communicating via UDP protocols.

One interesting direction of research is using history based IP filtering on edge

routers of a particular network [35]. This research was discovered after the APHID

proposal for doing a similar task in hardware, and it appears to have merit. Peng

states that in a code red (a well known worm) attack the source IP address is spoofed
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using a randomly generated IP address [35]. Only 0.06% to 14% of those spoofed

IP addresses corresponded to addresses previously seen by the system. The authors

describe a system of DDoS Protection where the edge routers of the network build up

a history of IP addresses that have recently accessed the system [35]. They use two

rules to define what a trusted IP address is. First the frequency of visits by an IP

address, and second, the packet count generated by that IP address. Attack statistics

show that most attacking IP sources generate a relatively low traffic volume compared

to active users. Using this knowledge they build a system using the two rules to allow

access (via a tuneable metric) to specific IP sources when an attack is taking place.

In Section 3.5 we discuss how APHID builds upon this concept and Section 5.3

shows how the hardware primitives improve the situation through increased speed of

filtering and decreased operating system load.

2.13 Reconfigurable Hardware

Field programmable gate arrays (FPGAs) are devices that allow for rapid proto-

typing of digital designs [40]. Often described as a “sea of gates”, an FPGA contains

thousands of look up tables (LUTs) which can be used to implement arbitrary logic.

Current generation FPGAs often contain embedded, optimized, hard wired, devices

that are common fixtures in many designs. Examples of the hardwired blocks are

multipliers, memories, and even processor cores. FPGAs are generally programmed

using a hardware description language (HDL) which is compiled and translated to

bitstreams by vendor specific software. Other approaches to programming involve

writing code in a specialized C dialect that allows translation to the hardware. FPGA

designs generally have limited clock speeds compared to integrated circuits. Applica-

tions where FPGAs are useful generally involve applications where using the parallel

execution nature of hardware gives an advantage over serial execution of software

commands. Pattern matching, vector operations, and memory to memory operations

are examples of applications that see performance gains from FPGA implementations

[47].
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2.13.1 Useful Hardware Primitives. Using FPGA technology allows a de-

signer to have access to (or to create) hardware primitives that have constant time

performance, with low overhead, for problems that require multiple iterations or even

polynomial time algorithms in software. By pushing the algorithm to hardware and

exploiting parallelism, the designer can see huge performance improvements. One

example of such a hardware primitive is the look up table (not the same as the tiny

LUTs that make up FPGA fabric) . Look up tables have the same basic function as

a hash table does in software. A key is associated with a memory location. The ben-

efit that a hardware look up table has over a hash table is that the “hash” function

in hardware requires very little time, whereas in software it can require significant

overhead. Furthermore, access times for a look up table are often in the range of 1

to 2 clock cycles, depending on implementation. Of particular interest is the look up

table known as a Content Addressable Memory (CAM). CAMs have the feature that

the data to be stored is the key. This scheme is particularly useful in determining

whether a piece of data is a member of a particular set. This research will make heavy

use of CAM technology.

2.14 Chapter Summary

This chapter covered various topics including the concept of intrusions and

intrusion detection. Other topics discussed include various methods and classifications

of intrusion detection systems and current IDS implementations. A brief overview of

the basics of network protocol stacks and network vulnerabilities is included. A short

description of technologies used in this research closes out the chapter.
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III. APHID Model

This chapter defines the APHID architectural model. The discussion includes a

description of the generic architectural primitives as well as a proposed proof

of concept application model. Finally, the chapter outlines the testing model that is

used to examine the potential benefits of the hardware monitor enhancements.

3.1 Problem Definition

The current security climate is changing. Security was once an afterthought and

performance was king, but we are now seeing a shift in priorities. Security is coming

to the forefront as performance from current hardware exceeds the requirements of

most systems. Attacks of increasing intensity, severity, and frequency on commercial

operating systems with common vulnerabilities are forcing the community, at large,

to examine other ways to combat the problems. APHID is one solution among many

that should be part of a layered defense approach.

3.1.1 Research Hypothesis. Hypothesis: Intrusion Detection through the

use of dedicated hardware running anomaly detection schemes at low levels (i.e., in

hardware) will result in significant improvements in response time and reliability over

software intrusion detection systems. Applying hardware primitives to the problem

of denial of service attacks can increase a system’s overall resistance to failure.

Software ID systems, running as a concurrent task on a multitasking operating

system are forced to make a tradeoff between system overhead and detection gran-

ularity. In other words, a software IDS must be scheduled by the operating system

to run. More frequent IDS scheduling by the OS results in a finer grained detection.

That is, the chances of detecting an intrusion are greatly increased. The tradeoff is

in terms of performance overhead. Every time the IDS gets scheduled, the system

resources are being used for security processing rather than working on production

processes.
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By moving this overhead into hardware, we make the tradeoff at a different level.

We sacrifice potential processing power (transistors, memory, etc...) to implement a

hardware level detection mechanism that runs in parallel with the production pro-

cess. The parallel monitoring frees the production processor from some of the burden

of running IDS tasks, and therefore frees more resources for the actual production

processes. Because we choose to protect a small attack surface at any given time, we

are able to increase the reliability of results from anomaly detection.

3.2 Solution Framework

APHID builds off of the CuPIDS [45] model of using hardware to exploit

parallelism and achieve faster detection and response to attacks on a system. CuPIDS

uses a symmetric multiprocessor system where one processor (the security processing

unit, SPU) monitors the operation of the other (production processing unit, PPU)

processor. Special messages (execution traces) are passed through memory resulting

in detection times orders of magnitude faster than a standard uniprocessor intrusion

detection system [45]. This research extends and modifies the CuPIDS concept

by further separating the SPU, departing from a symmetric multiprocessor to an

asymmetric multiprocessor system with the SPU dedicated to the task of monitoring

specific parts of the system. In the general case, any part of the system may be

monitored. This application of APHID monitors the network protocols to include the

OSI stack and system calls related to network operations. This scheme will provide

general protection of device drivers as well as user processes.

3.2.1 Research Goals. This goal of this effort is to achieve significant re-

ductions in response time to intrusions by asymmetric coprocessing to perform IDS

functions. Response time, for the purposes of this paper, is defined as the time it

takes the IDS to detect the attack and take some form of action, initially in the form

of a simple notification.
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To achieve the goals above, we define new hardware primitives and connect
them to the PPU in ways that allow for novel detection schemes. We strive to answer
the following questions:

1. Can a device driver be monitored by hardware to determine if malicious actions
are occurring?

2. How fast can detection occur using the APHID scheme and how does this com-
pare with existing methods?

3. What is the performance benefit gained by pushing the monitoring work into
parallel hardware?

These questions can be summarized with the following goals.

1. Determine feasibility of detection through the use of hardware to monitor and
protect device drivers.

2. Determine response time (time to detection in terms of instructions executed)
of the APHID protected system and compare that to the software protected
response times.

3. Develop an understanding of how APHID increased hardness on a system versus
software only methods.

3.3 Approach

APHID is an asymmetric security co-processor that monitors device drivers and

OS kernel code for anomalous behavior. Anomaly detection is facilitated by gathering

statistics of normal behavior in a trusted environment. Then, when operating in an

untrusted environment, APHID compares the current system state (or small portions

thereof) with what it is given as normal activity.

The ideas behind APHID emphasize using hardware co-processing to enhance

security instead of enhancing performance alone. In practice, the potential for per-

formance enhancement exists because APHID is designed to reduce the burden of

security on the production processing unit (PPU). In general, this design allows the

PPU (which may consist of multiple processors) to operate as normal, without having

to run a separate security task as overhead. The security task is offloaded to dedi-

cated hardware where we take advantage of hardware parallelism to perform real-time

security compliance checking. In our research we define real-time to mean monitoring
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the PPU(s) as they operate without interrupting them to perform the checks. Only

when a security event triggers APHID to take action will the PPU be affected by the

existence of APHID. In contrast, a security process running on the PPU will always

require system resources (memory, processor time, CPU cycles) regardless of attacks.

Refer to Kuperman’s definition of real-time in Section 2.3.

APHID is made up of hardware primitives, which are tightly coupled with the

existing hardware platform. From the perspective of the OS, APHID does not exist.

There is no need for OS support or connection to APHID. In fact, modifying the OS

to be aware of APHID, and to have some control over it, would remove most of the

security benefit in the event of many rootkit type of intrusions [23].

In the following sections we describe a notional system, composed of APHID

primitives and their interfaces with the existing hardware.

3.4 Device Driver Monitor

The initial purpose for APHID is to monitor device drivers as they interact with

the system. We have chosen device drivers because of their elevated privileges and

generally limited interface with the operating system, that is, the attack surface is

small (See Section 2.4). Because of this, we can create small and fast monitors to

quickly detect intrusions. The same principles can be applied to system calls with

some modification.

3.4.1 Modular design. APHID is designed to be modular, enabling the

ability to monitor many types of devices. Additionally, APHID is designed to be

useful for protecting other types of code. To facilitate these we propose the possibility

of a Monitor Cache. The address comparator mentioned in Section 3.4.5 is used as

a selector to a specific monitor based on which protected section of code (if any) is

being executed.

Monitor Cache. A key function of the modular design is to allow for moni-

toring of many different devices and code types. These monitors are small enough to
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reside in a reconfigurable memory cache. Figure 3.1 shows a monitor cache. Using

the address comparator (shown as “state machine selector” in Figure 3.1), a specific

monitor can be enabled when the section of code that it is designed to monitor enters

execution on the PPU. The monitors execute custom state machines, tuned to the

specific application. Enabling monitors in this way allows the monitors to be traded

in and out in the same time it takes to to a process swap on the CPU, and the safety

coverage can be seamless.

3.4.2 Anomaly detection. APHID uses anomaly detection to perform the

monitoring tasks. To facilitate the anomaly detection, we use fast hardware look up

tables to store a set of known legitimate actions (KLA). APHID monitors the behavior

of a specific device driver and compares the actions it performs (jump to address x,

return to address y, etc...) to the KLA set. If an action occurs that is not in the KLA

set, the detector triggers and a flag is raised. The monitor then uses that information

to perform corrective actions when possible. The KLA set is currently static and

created ahead of time. Further enhancements to APHID can implement a dynamic

reinforcement scheme where APHID is “trained” in safe mode, where intrusions are

not allowed to occur. Then, using the dynamically collected KLA set, APHID can

reinforce the static set and, additionally, learn from false positives and true positives

through a feedback mechanism.

3.4.3 Justifications of Sizes. Several assumptions have been made that are

important to note at this point. APHID monitors use control flow changes (branches,

jumps, returns and calls) to generate the KLA set. Hennesey and Patterson [22]

present profiles of several benchmarks, in Appendix B of their book. From these

profiles we gather that 17% of all instructions in these benchmarks affect control flow.

We will assume that most device drivers are comparable in instruction profile to these

benchmarks. Ball et al have done a static analysis of Windows device drivers for the

sake of error detection [6]. In their paper they list the lines of code for the twenty-six

device drivers included in the Windows device driver kit. The sizes range from 24536
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Figure 3.1: Monitor Cache
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lines of code down to 304 lines of code. Using the metric of 17% of all instructions

as branches we can generate KLA sets ranging from 51 entries up to 4172 entries.

Based on several of compilations of C source code, the average line of C translates

to somewhere between 4 and 5 assembly instructions. This is highly dependent on

the number of function calls in the C code, but as a general rule, assume 5 assembly

instructions per line of C, which means we should inflate the KLA set sizes by a factor

of at least 5. The result is a KLA set of 255 entries to 20000 entries. Each entry takes

4 bytes resulting in a table size of 1200 to 80000 bytes. This means that a table larger

than 64 kilobytes will require caching off of the Monitors memory, and the response

time will be longer than that of a table smaller than 64 kilobytes.

3.4.4 Monitor Primitives. The driver monitor must be able to:

• Determine whether the current section of code in execution is protected.

• Decode the type of instruction being executed and any target addresses in that
instruction.

• Compare the action to the KLA set.

• Take appropriate measures when the current action is not in the KLA set.

Corresponding to the list of requirements: The monitor has a look up table of

protected addresses (or address ranges). There is hardware dedicated to decoding

the instruction (similar to what exists for the PPU). Additionally a look up table for

the KLA set exists. Finally, there is a mechanism for executing to repair damage

from illegitimate actions. The mechanism could be as simple as a state machine

(different from APHID’s state machine) in hardware or as complex as a dedicated

microprocessor running software (separate from the OS and PPU). Figure 3.2 shows

a flowchart of the decisions that APHID must make and some actions that must be

performed.

The monitor implements a Moore type state machine (see Section 3.4.6). For

the sake of modularity, we separate the state machine into two parts; the control

unit and the execution unit. The control unit takes an input of the system clock and
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Figure 3.2: APHID Flowchart
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Figure 3.3: Device Driver Monitor Architecture

system state (current instruction in execution and program counter). As the control

unit moves through the states, based on the inputs, it produces output signals to the

execution unit. The execution unit then acts on the control unit output signals. See

Figure 3.3 for representation of the system.

3.4.5 Address Comparator. APHID monitors must be able to detect when

they are operating in a protected code section at hardware speeds. This is achieved

by hardware look up tables where the current address on the program counter (PC) is

checked against a table of protected addresses. With the proper implementation, this

lookup occurs in constant time (O(1) in big O notation) with a low constant factor.

The entire KLA set for a device driver (and potentially many device drivers) fits in

a 64Kbyte block of ram which is adjacent to the monitors. Williams notes that the

whitelist for WU-ftp (which is notably larger than most device drivers) fits in a cache

of similar size [45].
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3.4.6 State Machine. The APHID model can be created using various types

of logic as needed. For example, an implementation may use gate level logic to create

a detector using only combinational logic. Other implementations may use flip flops

or registers and register transfer logic (RTL) to create a detector that is synchronized

to the PPU and has guarantees on when detections occur. We propose using RTL

and some combinational logic to implement a finite state machine (FSM) in hardware

that allows the monitor to be easily modified and extended.

As shown in Figure 3.4, APHID’s state machine consists of four states when

monitoring device drivers. The initial state, WAIT, is where the state machine begins

operation. While in WAIT, APHID watches for the section of code that it is designed

to monitor. When the processor begins executing the protected code, APHID moves

to the MONITOR state. While in MONITOR, APHID watches for any commands

that alter the flow of execution, like jump or branch instructions. When one of these

instructions is encountered, the address is checked using the comparator as described

above. If the combination is not found in the KLA set, the state machine moves to the

HALT state. In HALT, APHID signals the processor to stop and marks the anomaly

in the instructions log. Once all actions in HALT are completed, the state machine

moves to the RESUME state. RESUME makes any corrections or repairs and returns

control to the processor. In future work, RESUME, will likely be expanded to several

smaller states to accomplish more detailed repair tasks. Because we implement the

state machine in hardware, APHID is able to execute the logic and transitions during

the clock period of the production processor, allowing rapid detection of illegitimate

behavior. It is important to note that only the transitions from WAIT to MONITOR

and MONITOR to HALT require the single clock period implementation to keep up

with the instruction stream. When illegitimate behavior is detected, the HALT and

RESUME states have more flexibility in the number of cycles required to correct the

situation.
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Figure 3.4: APHID State Machine

3.4.6.1 Corrective Action. Intrusion detection is not the only goal of

APHID. A useful feature is the ability to repair damage from intrusions and resume

normal operation. We have designed APHID to deal with this capability. The final

state in the APHID state machine is the repair state. In practice this state will

be made up of multiple states, or even another state machine. The implementation

details will then follow some algorithm to repair or nullify any effects that the action

may have had and return control to the production processor. For this system to work,

one must assume that the architect of the monitor understands all of the effects that

the driver has on the system to avoid stability issues. This is an area of future work.

The possibilities for repair are depend greatly on the device and application being

protected.

3.5 Network Stack Monitor

One application of interest for the hardware primitives is protection of the net-

work interface to the system. APHID is not designed to replace the current security

mechanisms (firewalls, secure network designs, etc...). However, we can use it to en-
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hance the overall system security by adding an additional protection mechanism. We

apply the APHID primitives to the network stack (from the network interface card,

up to the OS). By doing this we can reduce the effect that a Denial of Service type of

attack can have on a system like a web server, as well as protecting the system from

intrusions. While protecting against a DoS, APHID is designed to maintain service

(at a reduced capacity) by allowing access from trusted sources while denying access

to untrusted sources. This may result in a denial of service to some legitimate users

who do not happen to be in the trusted sources list (such as new customers), but

should maintain service for the trusted sources. Additionally, APHID systems could

be configured to communicate with the enterprise level firewall (as well as protecting

the firewall) with trusted address lists. The firewall can then filter traffic as necessary

to maintain the system integrity on a corporate/enterprize level.

For general intrusion detection purposes, we can set the appropriate code pro-

tection ranges in the APHID monitor and populate the KLA set for the monitor. By

applying additional hardware primitives to the system, we can also add protection

against denial of service attacks by using selective filtering of incoming network traf-

fic. The network stack monitor is actually a device driver monitor with additional

primitives to assist in monitoring the network stack.

The APHID network monitor sits (in logical terms) as a filter between the link

layer (Layer 2) and the network layer (Layer 3) in the Network Protocol stack (for

reference see Section 2.12.1). APHID needs to be as close to the hardware as possible

to get the benefits of hardware speeds and to minimize or eliminate changes required

to the protected operating system. The actual system implementation will dictate

exactly where APHID needs to interact, but generally speaking, we can think of

APHID as a thin layer between the traditional layers 2 and 3. Inserting APHID here

gives APHID the ability to operate on raw (untouched by the Operating System)

packets, but removes the requirements of knowing the details of the physical medium

and link layer parameters such as error handling and retransmissions.
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3.5.1 Limitation of the Network Stack Monitor. The network stack monitor

works on the principle that we can remove the negative effects of a denial of service

by refusing to operate on untrusted network traffic in an attack scenario. By pushing

this filtering down to the hardware level, APHID can selectively drop packets and

their interrupts/notifications at hardware speeds without involving the production

software/hardware. Of course this is no substitute for secure network designs, and

normal firewall techniques. One must assume that all nodes/links in the route(s)

between the attacker(s) and the protected target have sufficient resources to handle

the volume of traffic being presented by the DoS. If one of those nodes/links is over-

whelmed, then the DoS succeeds at that point, the “weakest link”. What APHID is

proposing makes the end system a hardened system. By doing this, it is no longer the

weakest link. In practice, the APHID system should be applied on all levels of the

target infrastructure to push the attack resistance to the farthest distance from the

production servers as possible (see Figure 3.5). In most cases, filtering will eliminate

the majority of the attacking packets. Only in the event that the attacker knows the

trusted sources list could an effective attack take place.

3.5.2 Operation of the Network Stack Monitor. During normal operation,

the network stack monitor acts passively. That is, only the monitor is active, but

the filter is disabled. Packets pass through the filter unaltered, and there is no differ-

ence (from the OS perspective) between this mode and an unprotected machine. The

APHID driver monitor (described in Section 3.4) watches for intrusions as described

above, and also keeps track of system workload parameters that are related to net-

work traffic. For example, the driver monitor may keep track of the processor usage

statistics by the protected driver process, and/or it may keep a record of the rate

that the particular memory addresses associated with receiving a packet are accessed.

When a threshold is crossed for a sustained period of time, APHID concludes that it

is under a denial of service type of attack. This threshold is set based on past usage

metrics. When the APHID driver monitor detects this threshold breach, it activates
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Figure 3.5: Deploying APHID Network Stack Monitor

the filter on the Stack Monitor. When the attack ceases, as determined by sustained

sub-threshold workloads, then APHID resumes full, filter-free, service. In this way,

access is restored to all sources, regardless of trust.

3.5.3 Filter Design. When activated, the filter works by examining a packet

as it is received from the network. If the source of the packet is untrusted, then the

filter simply drops the packet without signaling the operating system in any way. This

can be accomplished in several ways, depending on the architecture of the system.

Generally, whether the system is based on polling or interrupts, the filter keeps the

packet from queueing to the operating system and drops the signal that lets the
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system know that a packet has arrived. This filtering mechanism allows trusted users

full access while muting the effects of untrusted packets.

3.5.3.1 Filtering the Packet. APHID Network Stack Monitor is only

concerned with the IP packets it receives over the network. Other packet types are

allowed to pass, since these packets usually originate from within the local network

and are required for housekeeping purposes, one example is the address resolution

protocol, which facilitates communication on a local area network [25]. As the packet

arrives to the system, it passes through the physical and link layers of the Network

Protocol stack (see Section 2.12.1 for details) and is then captured by the filter. The

filter must extract the packet type from the frame and only if it is an IP packet does

the filter continue processing. If the type is other than IP, it is passed on without

filtering. The IP packet headers are parsed to determine the source, and the source

is checked against a trusted sources hardware lookup table (similar to the address

comparator and KLA set lookup tables). If the source is in the table, the packet is

allowed to proceed. If the source is not in the table, then the packet is dropped and

notification (interrupt or flag) of packet receipt to the PPU is suppressed. Figure 3.6

shows a flowchart of the decisions in filtering.

3.6 APHID System: Putting it All Together

The primitives outlined in Sections 3.4 and 3.5 must be combined with a produc-

tion system to be of real benefit. Figure 3.7 shows a simplified computer architecture

with the APHID primitives included. This layout is a notional design. Specific hard-

ware platforms will differ in design due to architectural decisions and performance

requirements. Generally, APHID requires access to the program counter (PC) and

the current instruction under execution. APHID also needs to be able to capture

interrupts from the device under protection (the network interface in our case) and

the incoming data on the device. Finally, APHID needs to be able to halt the pro-

cessor. Future work needs to be focused on what access is required to data structures
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Figure 3.6: Network Stack Monitor Flowchart

and memory components for the purpose of repairing damage caused by intrusions.

APHID aims to minimize the required access by keeping the time to detection very

short, thereby limiting the potential for damage to the system.

3.7 APHID Testing Model

The Design of Experiments model is used to set up the framework for the

APHID testing model. For reference on this technique see the NIST handbook [33].

The APHID testing model below is designed to represent testing of a critical parts

of the APHID system in a white box environment. By supplying test vectors to
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Figure 3.7: The APHID System

the system it is possible to determine whether the primitive being tested operates

correctly and data about the latencies involved (in terms of number of clock cycles

elapsed) is gathered.

3.7.1 System Boundaries. The Anomaly Processor In Hardware (AHPID)

is the system under test. The scope of this research to detection of a DDoS attack

with APHID enabled and with a software Intrusion Detection System. Therefore,

only the network stack and drivers are monitored with the APHID system. Figure

3.8 is a block diagram of the system under test .

3.7.2 System Services. APHID provides the following services and out-

comes. First, APHID provides intrusion detection. This is shown as Attack Detected,

in Figure 3.8. The outcome of this service is binary. Either the attack is detected,

or it is not. The final output of the system is a metric of the time until detection.
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Figure 3.8: The System Under Test

As stated before, time until detection is measured in terms of number of instructions

executed. Despite the fact instruction execution time is variable, the number of in-

structions executed is chosen because each instruction is a potential intrusion or a

part of an intrusion.

3.7.3 Workload. In this scenario, APHID is protecting a web server. The

workload presented to APHID is in terms of legitimate traffic intensity, attack traffic

intensity, and the type of attack. Legitimate traffic intensity has three levels. Low

intensity traffic, on the order of a few (less than 10) accesses to the web page per

minute, moderate intensity traffic (2 to 5) accesses per second, and high intensity

traffic (20+ access per second). These levels were chosen based on the capabilities of

the hardware being used. In production class systems, the intensity levels may need

to be adjusted to accommodate the higher performance capabilities of the systems.

An empirical study on the capacity of the hardware would provide a more accurate
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assessment of the requisite intensity levels. Attack intensity comes in 3 levels as

well, corresponding to the same number of attacks per second as the legitimate traffic

intensity. Attack type, the final workload parameter, is defined as either a buffer

overflow attack on the network interface device (intrusion only), or a Denial of Service

on the web server, or a combination, where the intrusion is masked by the DoS.

3.7.4 Performance Metrics. System performance, in terms of the SUT,

is measured in time to detection of the intrusion, and correct filter operation. The

second metric is a binary result. That is, the filter either works or does not work.

3.7.4.1 Time to Detection of an Intrusion. Time to detection is mea-

sured by counting the number of instructions executed since the injection of the

intrusion to the system. This is not a true measure of time, rather it is a measure

of the potential for damage to the system. Given that APHID is expected to detect

attacks on the order of a few instructions, it is reasonable to assume that an attack

may be captured prior to completion, allowing for damage repair. This stands in

stark contrast to a software IDS which has no guarantees on when the multitasking

operating system will return control to the monitor. It is conceivable that an attack

could occur and never be noticed by a software IDS, while dedicated hardware can

capture the same attack rather quickly.

3.7.5 Parameters. The system parameters that affect the SUT performance

are the Operating System, PPU, and device driver being monitored. These parameters

are fixed for these experiments because of the hardware platform we are using to

conduct the research.

3.7.5.1 Workload Parameters. The workload parameters that affect

performance of APHID testbed are normal (legitimate) network traffic intensity, at-

tack type, and attack intensity. Normal network traffic intensity affects SUT because

IDS algorithms can be thought of as a sensor, and if the ‘noise level’ is high, then it

46



Table 3.1: The Factors

may be more difficult to detect a particular ‘signal’, or attack in our case. It would

seem logical that an attack is more easily detected if the attack intensity is signifi-

cantly greater than the normal network intensity. In reality, a DDoS attack works

only because the attack overloads the server under attack. The attack type is a pa-

rameter of the workload because APHID is designed to deal with both intrusions and

denial of service attacks.

3.7.6 Factors. The factors selected are normal network traffic intensity,

attack intensity, and hardware/software detector. Normal (legitimate) network traffic

intensity has three levels, low, medium, and high. Section 3.7.3 defined three levels

of intensity for both attacks and legitimate traffic. Low intensity is on the order of

10 hits per minute. Moderate intensity is on the order of 2 to 4 hits per second.

High intensity is on the order of 20+ hits per second. Moderate and highs levels were

chosen to study the ’interesting’ parts of the system performance. We assume that

low intensity normal network traffic is of minimal interest because software detection

schemes should be able to manage under this scenario. Attack intensity also has three

levels, low, moderate and high. While, a low intensity DDoS attack may not even be

successful as a DDoS, a low intensity intrusion is the most likely type of intrusion.

The attack type has three levels; DDoS only, intrusion only, or both. Refer to Table

3.1 for the factors.
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3.7.7 Evaluation Technique. This research evaluates performance using

empirical measurement based on simulation of VHDL and direct measurements of

implementation on limited parts of the system under test. There are no current an-

alytical models for this type of study, and currently there is no implementation of

a full APHID system. FPGA technology allows rapid hardware design turnaround

required, and gives us a mechanism to attach our hardware primitives to a soft-core

(VHDL based) processor. The main evaluation technique is simulation of the VHDL

for proper operation. Direct measurements on the hardware are possible using em-

bedded debugging components in the reconfigurable FPGA fabric. However, lacking

a working implementation of APHID, we fall back to evaluating the hardware prim-

itives using VHDL simulation of the design that is eventually compiled into the full

system. From the simulation we can obtain reliable data about the operation of the

hardware primitives. These data are the number of clock cycles for the particular

operation of a primitive, and correct operation of that primitive, based on the inputs

given.

3.8 Chapter Summary

Chapter III covered the APHID design and testing models. APHID design con-

sists of several components. The heart of APHID is a state machine designed to

execute a monitoring algorithm, based on the flowchart shown in Figure 3.2. Ad-

ditional primitives are required to accomplish the required monitoring and security

functions. These primitives are the KLA set, which is made up of a hardware look up

table, the network filter, which eliminates untrusted packets from the network, and a

monitor cache to enable the capability of protecting more than one device.

The APHID testing model defines the proposed method of testing a full APHID

implementation. The tests include running the system under a DDoS, and attacking

the APHID protected system with buffer overflow class intrusions over the network.

Varying intensity levels are defined to test the system under different load levels.
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Finally the methods of simulating APHID components are described as a backup

plan to testing the full implementation.
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IV. APHID Implementation

This chapter describes the implementation and testing of APHID. Implementa-

tion of the Chapter III models are detailed, giving more information regarding

how APHID connects to the test production system. The reader must note that there

is a distinction between the planned implementation and the current state of the im-

plementation. Where necessary, a comment regarding these differences is inserted,

and finally a section is dedicated to the impact of these differences on the testing

model provided in Section 3.7.

4.1 Hardware and Software Platforms Used

The APHID platform will be entirely contained on a Digilent XUP2VP FPGA

evaluation board based on a Virtex II Pro FPGA. The initial test configuration uses

a Microblaze Xilinx IP core is instantiated on the FPGA as the production processor.

Using Xilinx debugging tools gives some capability for metric gathering purposes, and

simulation provides the mainstay of the results at this time. The APHID FPGA con-

figurations are designed using the Xilinx ISE 8.1 Professional Edition and Xilinx EDK

8.1 Professional Edition. uClinux is the operating system being run on one Microblaze

core, while a stand alone process runs on another Microblaze core. This stand alone

process is created to reduce the complexity involved in writing a device driver for the

embedded uClinux operating system, given the time constraints. The network is set

up using a network traffic generator as the aggressor machine. The traffic generator

is a LANForge Appliance by Candela Technologies [12]. The generator is capable of

emulating 2000 separate network connections through multiplexing 4 data generator

ports, and can generate 250 Mbps worth of UDP/TCP traffic per CPU, resulting in

500 Mbps traffic. The aggressor and APHID are connected using a 8 port switch to

allow the aggressor to behave as a Distributed DoS. The traffic generator comes with

scripts that execute DDoS activities. A custom payload in a single message serves as

the test for the intrusion detection component.
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An alternate implementation uses the Altera Quartus II 6.1 WebPack HDL

design envionment. This environment is used to implement the APHID device driver

monitor on a simplified MIPS processor. The choice to use this platform was made

because the MIPS processor was already working in that environment and rather

than dealing with porting the VHDL to the Xilinx environment, we chose to port the

APHID primitives (which are smaller) to the Altera environment. The functionality

provided by each environment is essentially equivalent.

4.2 APHID Network Stack Monitor Implementation

Figure 4.1 shows the implementation details of the APHID filter. The filter

takes the incoming packet (and its associated interrupt) as inputs. An additional

input is the activation control from the APHID monitor. If the monitor does not

enable the filter, then the packet and associated interrupt pass through the filter with

no processing or delays and proceed directly to the I/O buffer. When the APHID

monitor asserts the activation control to True, then the incoming packets are filtered

by placing them into a register. The source address of the packet is extracted from

the packet itself by a set of fast combinational logic gates and that address is used

as input to a content addressable memory. The CAM responds with a boolean result

in 1 clock cycle. We use the result of the CAM lookup to enable the output on the

register. If the address does not exist in the CAM, then the CAM output is logic low

resulting in no output from the register. If the address does exist, the CAM responds

with logic high and the register output is enabled, so the packet and its interrupt

are allowed to pass through the filter. Note that this introduces one additional clock

delay to the transmission of packets up the stack, but this is not a concern because

the filter is clocked at the same rate as the rest of the memory. It does not cause a

bottleneck, only 1 additional clock latency.
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Figure 4.1: The APHID Network Filter

4.3 Integrating APHID with a Production Processor

This section describes the attempts at integrating APHID with a working pro-

duction class processor. We were able to make some progress, but due to time limita-

tions, there is not a final implementation of APHID working in concert with the real

processor.

4.3.1 Proposed Architecture. In designing APHID, a conscious choice to

target the RISC family of architectures was made. This is mainly due to the fact

that the processors on the FPGA platforms are RISC based (both the Power PC and

Microblaze are RISC machines) and also due to the easier implementation of hardware

when using register-register architectures. Figure 4.2 is a component level diagram of

APHID working with a RISC processor. Here MIPS is represented, but Microblaze

and PowerPC architectures are very similar.

4.3.2 Successes. Related research proposed by Stephen Mott [31] shows

that this is feasible. While the APHID model is fundamentally different from his
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Figure 4.2: The APHID Implementation on a RISC Processor
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work, the concepts and techniques used are similar. Building from that research, it is

possible to connect APHID primitives to the Microblaze processor.

The Xilinx tools allow for two distinct modes of creating systems with embedded

processors and custom peripherals. In this case, the APHID primitives are custom

peripherals. In the first mode, one must create the peripheral using the ISE develop-

ment environment, and then create a custom wrapper to create an IP core. An IP

core is a ‘drop-in’ component used by the Xilinx design tools. This IP core is then

accessed through command options in the XPS design environment and the bus ar-

chitectures are connected inside the tool. The second method is an inverse of the first

method. First the embedded system including processors and memories is created in

the XPS design tool, and the necessary interfaces are made visible. Then the design

is exported to the ISE development environment where the additional architectures

are attached as needed. The benefit to this method is that the XPS component does

not require drivers for the new hardware, whereas the previous method does require

custom drivers regardless of their necessity.

4.3.3 Roadblocks. Several roadblocks were encountered during the pursuit

of this research. The baseline design required an embedded Linux kernel running

on the Xilinx Microblaze processor core. Due to tool chain complications it became

evident early in the process that the task of integration with the Microblaze core

would be more difficult than initially expected. The implementation chain chosen

required that drivers exist for the hardware primitives, and this was an error in design.

Reverting to the design flow of creating a project in XPS and then augmenting the

hardware in ISE required us to redo much of the work. The compiling tool chain

proved difficult to work with because of the degree of customization available and lack

of relevant documentation for a multi-core example. When the baseline Microblaze

running uClinux was finally operational, there was little time to tinker with adding

new functionality to the core. We chose instead to fall back to a simpler test system.
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4.3.4 Fallback Options. Starting small, the APHID primitives were imple-

mented in VHDL and tested in simulation only. Our next step was to attach APHID

to a minimal VHDL implemenation of a MIPS processor (Appendix B contains the

full VHDL source code for the processor). This processor is available with the Altera

DE2 evalution board [1] course software and is described in the book [21]. The mini-

mal MIPS implementation has only a small subset of the instruction set architecture.

This limits the ability to test APHID with real software. Fortunately it is possible

to create a small set of processes that can test the ability to catch actions not in the

KLA set because simple PC relative branching exists.

4.4 Intrusion Attacks on APHID

Using the minimal MIPS architecture we are able to create several small pro-

cedures to run in a simulation. Since the waveform screen is small, and all of the

instructions must be ‘compiled’ by hand to opcode, the procedures are kept to a few

instructions each. To test APHID, the processor operates on a sequence of actions

where the entries (branch + address) exist in the KLA set, and confirm that legiti-

mate actions are unaltered. Then a sequence is executed where some of the actions

are not entries in the KLA set. The processor simply halts and control is shifted to a

“fail safe” loop upon attempted execution of an illegitimate action (see Figure 4.3).

4.5 Distributed Denial of Service Attacks on APHID

Because we have been unable to get a working prototype to hardware, we cannot

test the system using real network traffic. As a substitute we have created a limited

set of addresses that are fed to the APHID Network Filter and we monitor the results

of the trusted source set output when presented with these addresses. Doing this

verifies correct functionality at the behavioral level. Direct compilation of the VHDL

to hardware should have equivalent operation.

To keep the test as realistic as possible we use IPv6 length addresses (128 bits)

and we create packets the size of the maximum transmission unit defined by the
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Figure 4.3: The APHID Network Filter

IPv6 protocol. In so doing, future applications should require minimal rework to

incorporate the APHID primitives into a real system.

4.6 Incomplete Implementation and its Effect on Testing

Because of the difficulties in implementation on hardware, we have not been able

to test APHID according to the test plan in Section 3.7. Work towards future publi-

cations, beyond this document, will make concerted efforts to get APHID running on

a real hardware testbed. In the mean time, we have been limited to running simula-

tions on small components of APHID and to connecting APHID to minimal processor

implementations. There is a potential for instantiating the APHID primitives in the
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FPGA hardware and testing performance on hardware, however, the benefit of this

over simulation is minimal, and the amount of work required would be significant.

The hardware instantiation and testing would definitely be of great use for follow on

research. Not only would it expose the researchers to the tool chain early on, but it

would also provide hands on insight into how the hardware primitives work.
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V. Results

This section shows the results of simulation, numerical calculation and limited

hardware instantiation of APHID. The test model from Chapter III is followed

to the degree that it is applicable to the current limited implementation of APHID.

Many of the tests proposed in Chapter III are not feasible with the current lack of

networking support. Simulations are substituted where possible. We simulate the

components first and then build up to a more robust simulation involving a MIPS

processor in VHDL as described in Chapter IV.

5.1 Results of Tests on APHID Primitives

5.1.1 APHID Finite State Machine Simulation. The first test is a simu-

lation of the APHID state machine. Refer to Section 3.4.6 for a discussion on the

modeling of the state machine. The state machine has the following inputs and out-

puts. Figure 5.1 shows the results of the simulation.

Inputs:

• CLK – The system clock.

• Protected – Flag to indicate that CPU is operating in protected code.

• Legitimate – Flag to indicate that the current action is in the KLA set.

• Ready – Flag to indicate that HALT operations are complete.

Outputs:

• halt out – Halt signal sent to APHID monitor which then forces the CPU to
halt. In this early implementation the halt is accomplished by forcing the CPU
to execute a NOP repeatedly. The PC is not allowed to advance. Alternative
implementations could force the CPU to a ‘dump’ routine where the state is
quickly saved for forensics and then damage could be repaired before returning
the processor to normal operation.

• resume out – A signal sent to the processor from the RESUME state to return
execution to the protected code section again.

• current state – For simulation purposes only, this displays the current state the
FSM is in. Note that there is a transient “glitch” in the waveform output when
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both lines change (i.e., from state 1 to 2 which translates as 01 to 10 in binary).
This is not an error in the FSM, rather it is a result of displaying the state with
combinational logic rather than clocked logic.

The reader can observe in Figure 5.1 that the state machine behaves as desired.

After reset, the state machine sits in state WAIT (FSM WAIT or S0 in the source

code) and will remain in WAIT until the address comparator (as described in Section

3.4.5) signals that the processor is entering a protected section of code by raising

the input Protected to logic 1. While Protected is asserted, the FSM moves to

the MONITOR state (also known as S1). The FSM will remain in MONITOR while

Protected is asserted and Legitimate is stays at logic 1. If Protected stays at logic

1 and Legitimate is set to logic 0, then the FSM enters the HALT state (S2) and

raises the halt out signal. This signal is attached to the execution unit of the monitor

as described in Section 3.4.6. The execution unit (not shown in this simulation) then

performs the tasks necessary to halt the PPU and perform corrective actions (as

needed). The FSM remains in HALT until the execution unit responds with Ready

asserted to logic 1. When the FSM received the Ready signal, it proceeds to the

RESUME state (S3) where the resume out flag is pulsed for 1 clock cycle (until the

FSM leaves RESUME). The resume out signals the execution unit that the FSM is

now entering MONITOR and that the PPU should resume operation. Note: There is

a 2 clock cycle delay on the current state output. Since the FSM is a moore type

state machine, where the outputs occur only at states, one should notice only a 1 cycle

delay from the time the input causes transition until the output reflects the change. In

post simulation analysis, we determined that the cycle shows up because the outputs

in the simulation are registered (that is, the output is stored in a register), causing

an additional one cycle delay. This registering is an artifact of a configuration option.

When the FSM is part of a larger system, the outputs are not registered because they

are inputs to other synchronous systems (e.g., memory, processor, execution units)

and the additional register would cause a redundant delay.

Appendix A contains the full source code for the APHID state machine.
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Figure 5.1: Results from Simulation of APHID State Machine

5.1.2 APHID Address Comparator Discussion. The APHID address com-

parator uses a content addressable memory (CAM) to achieve fast determination of

set membership (KLA set or Trusted Address set). Rather than recreating the hard-

ware, we rely on Xilinx (or Altera) prefabricated cores. The benefit: The design is

optimized and tested. In lieu of simulation, we refer the reader to the Xilinx user

guide and data sheet [46] for the CAM.

5.1.3 Network Filter Simulation Discussion. The network filter uses a CAM

to test whether an address belongs to the trusted address list. There is some additional

logic associated with the filter that switches between filtered and unfiltered address

data. The actual filter is a large register with an output enable which is triggered by

the “Match” signal from the CAM. The filter has not been simulated at the time of

this writing.

5.2 The Benefits of Hardware Content Addressable Memory

APHID uses look up tables to perform address checking, KLA set lookup, and

network source address lookups. In this section, a hardware CAM is compared to

a software hash table as implementations of the look up tables. Both units provide

O(1) data lookup/retrieval in the average case, and both can be used to perform
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set membership tests. This comparison shows how a hardware implementation can

reduce the burden of security by exploiting hardware parallelism.

The Xilinx implementation of a content addressable memory described in Sec-

tion 2.13 has a latency of one clock cycle. That is, once the item for lookup (in our

case the address on the PC) is ready, the CAM furnishes a result of present or not

present in 1 clock cycle. For very small table sizes, one can assume that the entire look

up table resides in memory. As the table size increases, one must take into account

the access latencies incurred as hierarchical memory (from cache to ram to disk) is

accessed.

Now, examine the following hash function written in C. We assume the machine

is a 32 bit architecture, resulting in the macro INT SIZE being equal to 32.

00 /* Bitwise hash function. */

01 unsigned int bitwisehash(int address, int tsize, unsigned int seed)

02 { char c;

03 unsigned int h;

04 int i;

05

06 h = seed;

07

08 for(i=0; i<INT_SIZE;i++) //INT_SIZE = 32 (bits)

09 {

10 h^=((h<<5)+c+(h>>2));

11 }

12 return((unsigned int)((h&0x7fffffff) % tsize));

13 }

From this code we can get an instruction count per function call. Calling a

function requires the system to load all of the operands. For this function we can

assume that the function call results in five operations. For the purposes of this

exercise, variable declarations incur no operations. The following is a list of the

operations associated with each line.

• Line 01: 5 operations (per call) 3 loads + 2 overhead

• Line 06: 1 operation
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• Line 08: 2 operations (per loop iteration) + 1 operation for loop initialize

• Line 10: 4 operations (per loop iteration)

• Line 12: 4 operations (for the exit function)

To summarize, the function call overhead (call + return + miscellaneous non

loop instructions) is 10 operations. The loop initialization is 1 operation and each

loop iteration requires 6 operations. The total instruction count for one hash function

calculation is:

Total Instruction Count = 32 × 6 + 11 = 203 instructions.

Once the hash function is calculated, the hash table lookup takes around 20

operations to fetch from an address in memory. In a modern, superscalar processor,

we can safely assume an instruction issue rate of 2 instructions per clock cycle, a

hash table lookup, which includes the hash function plus the retrieval from the table,

takes ⌈1/2(32 ∗ 6 + 11 + 20)⌉ = 112 clock cycles (assuming the ideal case where

no cache misses occur). The resulting comparison is one cycle in hardware (every

time) to a minimum of 112 cycles in a software implementation, showing significant

improvement. Every branch type instruction executed in a protected code section

incurs this cost. If we were to do this check in software, on the production machine,

the overhead would be prohibitive. In hardware, the lookup on the instruction can

occur in parallel with the then next instruction fetch so the single clock cycle cost is

absorbed by the parallelism.

To be fair, the single clock cycle look up time in hardware is correct for most

driver monitors. Refer to Section 3.4.3 for justification of the KLA concepts of size.

If the monitor is larger than 15,000 lines of C code, it is likely that a 64 kByte block

ram will not be large enough to hold all of the entries in of the KLA set for the driver.

A more accurate average hardware lookup time includes the extra delay of accessing

a larger memory at a slower speeds, similar to the performance metrics of a cache

miss penalty calculation. Below is a simple equation for the average access time in

hardware, using variables.
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ATavg = p + (1 − p)[
M − C

C
∗ 10 + (1 −

M − C

C
)] (5.1)

Where p is the percentage of monitored device drivers greater than 15,000 lines

of C code, M is the size of the monitor KLA set and C is the size of the cache memory.

5.3 Comparison of the APHID Network Filter to Existing Research

Peng’s research shows that 90% of legitimate traffic is protected using only 4

megabytes of memory and 80% can be protected using only 800 kilobytes of memory

[35]. Using these numbers, we can estimate the size of the memory associated with the

monitor. Using APHID in a manner shown in Section 3.5.1 can allow us to minimize

the required memory of a specific APHID monitor by combining the histories of several

monitors protecting different sources. Each monitor then updates the firewall rules

as necessary.

In hardware we can filter out the untrusted messages in 1 clock cycle. This is

the same argument used in the hash table discussion in Section 5.2. The additional

clock cycle is incurred because the messages must wait for the CAM to trigger the

register output (Refer to Figure 4.1 for architecture).

Filtering, as done in Peng’s research, is performed in software using firewall

rules. To accomplish the filtering, the firewall must:

1. Parse the packet: Assume this can be done in constant time requiring 20 clock

cycles to find the source address. (Cost 20 clock cycles)

2. Do a rule table lookup on the address: We will assume this is similar to the

discussion of the ideal case in Section 5.2. (Cost > 120 clock cycles)

3. Perform the filtering: Assume 10 clock cycles for the decision making. (Cost

< 10 cycles)

We see that the hardware version has even more of an advantage over a firewall.

In this case the difference is around 170 to 1 in the case where the firewall does not
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have to access main memory (which is an unlikely case). The burden of processing

the firewall rules for a system already under duress (as in a DDoS) may be the final

blow to the system.

Fortunately, APHID’s layered approach allows the particular services to be pro-

tected from the immediate surge, and then the enterprise firewall can be updated

via a secure channel to include the trusted lists from the APHID monitors to reduce

the impact on the enterprise network infrastructure. This could be thought of as

buffering. The APHID monitors initially absorb the early brunt of the attack until

the heavy duty enterprise level IDS and firewall can take up the slack.

5.4 Total System Integration

Currently APHID is not integrated to a CPU. Integration with the minimal

MIPS processor is very close to completion, there are still some problems with mem-

ory interfaces and programming. Because of this, a simulation of the system is not

available. We rely on the architecture and the timing analysis to come up with an

estimate of the performance.

5.4.1 In System Performance Estimate. See Section 4.3.1 and Figure 4.2

for the description of how APHID interacts with the processor.

APHID is not active when the PPU is operating on unprotected code. There is

no performance overhead in this mode. When APHID activates, there is no perfor-

mance overhead while the actions are legitimate (no anomalous behavior, all actions

in KLA set). However, as soon as an intrusion (illegitimate action) occurs, APHID

forces the PPU into a HALT loop (for a fixed number of iterations in this context)

where state information is gathered and processed, and then pushes execution back

to the RESUME and MONITOR States.

The following equation shows the overhead as a function of the intrusion rate

and Halt State cycles, measured in terms of the ideal processor performance.
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Let A be the attack rate in terms of illegitimate actions per 100 lines of code.

Let C be the number of cycles dedicated to the Halt state.

Let I be the ideal performance.

The equation for performance under attack is:

PA =
I(1 − A)

100
+

A(C + 1)

100
. (5.2)

The (+1) component of (C + 1) is the single cycle cost for the RESUME state.

Observing the equation, it is important to keep C as small as possible and, A should

not be large. If A becomes too large then the system could experience a DoS because

APHID will constantly be processing in the HALT state. Future work could look

at the possibility of task switching to an unprotected section to perform the APHID

state saving and state correction in parallel with regular unprotected code.
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VI. Concluding Remarks and Future Research

6.1 Concluding Remarks

In this research, it has been shown that APHID primitives provide the a system

with increased security, hardening that system against attacks. Using small, fast

hardware sensors allows APHID to achieve detection of intrusions in real time by

capturing the intrusion as it executes. The APHID network monitor gives a robust

protection against DDoS attacks with the caveat that APHID can only protect the

link that it sits on. Because of this, it makes sense for the deployment of APHID

to be in place on all links in the system. Intrusions can be detected as they occur

because of the hardware level visibility made possible by APHID’s primitives.

APHID is not implemented (currently) as a full system. Many of the pieces

have been tested and simulated, and the architectures have been laid out in detail.

6.2 Contributions

This research advances the field of intrusion detection by pushing the overhead

of security monitoring down into low level hardware primitives which operate at the

same rate as the system clock. In doing so, we have shown that tremendous speedup

is possible over a notional ideal operation of key functions (Hash table lookups). The

total overhead introduced by APHID when in system is dependent on the rate of

attacks and the type of correction desired. Simple intrusion reporting will introduce

very low overhead, while intrusion correction can be significantly more expensive (per

intrusion). However, capturing the intrusion in a single clock cycle keeps the potential

damage to a minimum because the register state of the machine is not altered until

the legitimacy of the action is checked by APHID. Keeping this in mind, we can create

an implementation of APHID where the repair overhead is accomplished while known

unprotected code is in execution.

We have shown that APHID can be used to detect intrusions and also to protect

against DDoS attacks, by keeping a history in the filter memory and dropping packets

not in the history when APHID is under attack from a DDoS.
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6.3 Future Research Opportunities

The nature of this research provides many opportunities for further efforts in this

field. One area of further pursuit would be to implement and test multiple monitors

and a reconfigurable cache of monitors. Using the cache, and reconfiguration of the

cache, it may be possible to provide coverage for many of the vulnerabilities in an

operating system while keeping the overhead to a minimum. Leveraging work by

Montminy in dynamic reconfiguration of bitstreams in FPGAs may be applicable to

this work [30].

APHID’s current implementation is focused on protection of device drivers.

Future work may make the application of APHID more general and allow APHID

monitors to secure protections such as system calls, library functions, or even services

(such as a mail server) running on a processor.

One question that comes up when working with the hardware primitives is: Can

APHID state machines be used for security policy compliance monitoring relatively

small sections of code, and can these state machines work together to create a more

robust SPCM system.

Other research has proposed hashing code segments to provide verification that

the code has not been changed [2]. APHID primitives may provide a way to perform

those hashes in real time without burdening the production system. Doing this can

provide assurance that the processes have not been modified by an intrusion, or

modified themselves illegitimately.

Pipelined production processors with high issue rates may pose a difficulty for

monitoring with the current APHID implementations. More effort could be directed

to determining how pipelining affects APHID monitors, and can the APHID monitors

be pipelined themselves to maintain pace with the production system.

Finally, the concept of networking APHIDs with other APHIDs to form a hybrid

distributed network intrusion detection system (as alluded to in Section 3.5.1).
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Appendix A. APHID Primitives in VHDL

This appendix contains the VHDL source for the APHID primitives as they

exist at the time of this writing. Because this research is intended to survive

beyond this document, the most current design configurations and documentation

will be made available upon request. The APHID Network filter is currently in block

diagram/schematic format. Using Xilinx proprietary custom IP cores does not allow

one to create full VHDL sources. It is possible to create a VHDL wrapper and entity

declarations to show the VHDL interconnect. The filter was created in a schematic

form, and has not been compiled to VHDL at this point.

A.1 APHID State Machine Primitive

The code below corresponds to the first cut of the APHID state machine. It

stands alone and contains no vendor specific commands. Using this code as an example

is recommended. Make sure to name the file APHIDFSM.vhd. Alternatively, request

an electronic copy of the source files.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY APHIDFSM IS

PORT

(

clk : IN STD_LOGIC;

reset : IN STD_LOGIC;

Ready, Protected, Legitimate : IN STD_LOGIC;

halt_out, resume_out : OUT STD_LOGIC;

--cs : OUT STD_LOGIC_VECTOR(3 downto 0);

current_state : OUT integer range 0 to 3

);

END APHIDFSM;
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ARCHITECTURE rtl OF APHIDFSM IS

TYPE state_type IS (FSM_WAIT, MONITOR, HALT, RESUME);

SIGNAL state : state_type;

BEGIN

-- Sequential block to create state registers and state transitions

PROCESS (clk, reset)

BEGIN

IF reset = ’1’ THEN

state <= FSM_WAIT;

ELSIF clk’EVENT AND clk = ’1’ THEN

CASE state IS

WHEN FSM_WAIT =>

IF Protected = ’1’ THEN

state <= MONITOR;

ELSE

state <= FSM_WAIT;

END IF;

WHEN MONITOR =>

IF Protected = ’1’ THEN

IF Legitimate = ’1’ THEN

state <= MONITOR;

ELSE

state <= HALT;

END IF;

ELSE
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state <= FSM_WAIT;

END IF;

WHEN HALT =>

IF Ready = ’1’ THEN

state <= RESUME;

END IF;

WHEN RESUME =>

state <= MONITOR;

END CASE;

END IF;

END PROCESS;

-- Combinational logic to create outputs for each state

WITH state SELECT

halt_out <= ’0’ WHEN FSM_WAIT,

’0’WHEN MONITOR,

’1’WHEN HALT,

’1’WHEN RESUME;

WITH state SELECT

resume_out <= ’0’ WHEN FSM_WAIT,

’0’ WHEN MONITOR,

’0’ WHEN HALT,

’1’ WHEN RESUME;

WITH state SELECT

current_state <= 0 WHEN FSM_WAIT,

1 WHEN MONITOR,
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2 WHEN HALT,

3 WHEN RESUME;

END rtl;
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Appendix B. VHDL MIPS Processor

This appendix holds the VHDL MIPS processor as presented in the Summer 2006

AFIT course CSCE687. This processor provides a good, simple starting point

to expand and enhance APHID or other research efforts.

The source code is spread across several files, and the thesis document is not

the most useful medium to display it. Nevertheless, for the sake of completeness, here

it is. There are two versions, the first one is not pipelined, the second is pipelined.

B.1 Mips.vhd

The unpipelined version.

-- Top Level Structural Model for MIPS Processor Core

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY MIPS IS

PORT( reset, clock : IN STD_LOGIC;

-- Output important signals to pins for easy display in Simulator

PC : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 );

ALU_result_out, read_data_1_out, read_data_2_out, write_data_out,

Instruction_out : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Branch_out, Zero_out, Memwrite_out,

Regwrite_out : OUT STD_LOGIC );

END MIPS;

ARCHITECTURE structure OF MIPS IS

COMPONENT Ifetch
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PORT( Instruction : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

PC_plus_4_out : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 );

Add_result : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 );

Branch : IN STD_LOGIC;

Zero : IN STD_LOGIC;

PC_out : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 );

clock,reset : IN STD_LOGIC );

END COMPONENT;

COMPONENT Idecode

PORT( read_data_1 : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

read_data_2 : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Instruction : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

read_data : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

ALU_result : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

RegWrite, MemtoReg : IN STD_LOGIC;

RegDst : IN STD_LOGIC;

Sign_extend : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

clock, reset : IN STD_LOGIC );

END COMPONENT;

COMPONENT control

PORT( Opcode : IN STD_LOGIC_VECTOR( 5 DOWNTO 0 );

RegDst : OUT STD_LOGIC;

ALUSrc : OUT STD_LOGIC;

MemtoReg : OUT STD_LOGIC;

RegWrite : OUT STD_LOGIC;

MemRead : OUT STD_LOGIC;

MemWrite : OUT STD_LOGIC;
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Branch : OUT STD_LOGIC;

ALUop : OUT STD_LOGIC_VECTOR( 1 DOWNTO 0 );

clock, reset : IN STD_LOGIC );

END COMPONENT;

COMPONENT Execute

PORT( Read_data_1 : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Read_data_2 : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Sign_Extend : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Function_opcode : IN STD_LOGIC_VECTOR( 5 DOWNTO 0 );

ALUOp : IN STD_LOGIC_VECTOR( 1 DOWNTO 0 );

ALUSrc : IN STD_LOGIC;

Zero : OUT STD_LOGIC;

ALU_Result : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Add_Result : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 );

PC_plus_4 : IN STD_LOGIC_VECTOR( 9 DOWNTO 0 );

clock, reset : IN STD_LOGIC );

END COMPONENT;

COMPONENT dmemory

PORT( read_data : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

address : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 );

write_data : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

MemRead, Memwrite : IN STD_LOGIC;

Clock,reset : IN STD_LOGIC );

END COMPONENT;

-- declare signals used to connect VHDL components
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SIGNAL PC_plus_4 : STD_LOGIC_VECTOR( 9 DOWNTO 0 );

SIGNAL read_data_1 : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL read_data_2 : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL Sign_Extend : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL Add_result : STD_LOGIC_VECTOR( 7 DOWNTO 0 );

SIGNAL ALU_result : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL read_data : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL ALUSrc : STD_LOGIC;

SIGNAL Branch : STD_LOGIC;

SIGNAL RegDst : STD_LOGIC;

SIGNAL Regwrite : STD_LOGIC;

SIGNAL Zero : STD_LOGIC;

SIGNAL MemWrite : STD_LOGIC;

SIGNAL MemtoReg : STD_LOGIC;

SIGNAL MemRead : STD_LOGIC;

SIGNAL ALUop : STD_LOGIC_VECTOR( 1 DOWNTO 0 );

SIGNAL Instruction : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

BEGIN

-- copy important signals to output pins for easy

-- display in Simulator

Instruction_out <= Instruction;

ALU_result_out <= ALU_result;

read_data_1_out <= read_data_1;

read_data_2_out <= read_data_2;

write_data_out <= read_data WHEN MemtoReg = ’1’ ELSE ALU_result;

Branch_out <= Branch;

Zero_out <= Zero;

RegWrite_out <= RegWrite;
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MemWrite_out <= MemWrite;

-- connect the 5 MIPS components

IFE : Ifetch

PORT MAP ( Instruction => Instruction,

PC_plus_4_out => PC_plus_4,

Add_result => Add_result,

Branch => Branch,

Zero => Zero,

PC_out => PC,

clock => clock,

reset => reset );

ID : Idecode

PORT MAP ( read_data_1 => read_data_1,

read_data_2 => read_data_2,

Instruction => Instruction,

read_data => read_data,

ALU_result => ALU_result,

RegWrite => RegWrite,

MemtoReg => MemtoReg,

RegDst => RegDst,

Sign_extend => Sign_extend,

clock => clock,

reset => reset );

CTL: control

PORT MAP ( Opcode => Instruction( 31 DOWNTO 26 ),

RegDst => RegDst,
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ALUSrc => ALUSrc,

MemtoReg => MemtoReg,

RegWrite => RegWrite,

MemRead => MemRead,

MemWrite => MemWrite,

Branch => Branch,

ALUop => ALUop,

clock => clock,

reset => reset );

EXE: Execute

PORT MAP ( Read_data_1 => read_data_1,

Read_data_2 => read_data_2,

Sign_extend => Sign_extend,

Function_opcode => Instruction( 5 DOWNTO 0 ),

ALUOp => ALUop,

ALUSrc => ALUSrc,

Zero => Zero,

ALU_Result => ALU_Result,

Add_Result => Add_Result,

PC_plus_4 => PC_plus_4,

Clock => clock,

Reset => reset );

MEM: dmemory

PORT MAP ( read_data => read_data,

address => ALU_Result (7 DOWNTO 0),

write_data => read_data_2,

MemRead => MemRead,
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Memwrite => MemWrite,

clock => clock,

reset => reset );

END structure;
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B.2 MIPS Piped.vhd

The Pipelined version of MIPS.

-- Top Level Structural Model for MIPS Processor Core

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY MIPS IS

PORT( reset, clock : IN STD_LOGIC;

-- Output important signals to pins for easy display in Simulator

PC : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 );

ALU_result_out, read_data_1_out, read_data_2_out, write_data_out,

Instruction_Fetch : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Instruction_Decode : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Instruction_Execute : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Instruction_Mem : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

WriteBackRegister : OUT STD_LOGIC_VECTOR( 4 downto 0 );

Branch_out, Zero_out, Memwrite_out,

Regwrite_out : OUT STD_LOGIC );

END MIPS;

ARCHITECTURE structure OF MIPS IS

COMPONENT Ifetch

PORT(

Instruction : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

PC_plus_4_out : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 );
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Add_result : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 );

Branch : IN STD_LOGIC;

Zero : IN STD_LOGIC;

PC_out : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 );

clock,reset : IN STD_LOGIC );

END COMPONENT;

COMPONENT Idecode

PORT( read_data_1 : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

read_data_2 : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Instruction : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

read_data : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

ALU_result : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

RegWrite, MemtoReg : IN STD_LOGIC;

RegDst : IN STD_LOGIC;

Sign_extend : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

write_register_address : IN STD_LOGIC_VECTOR( 4 DOWNTO 0 );

reg_dest_mux_output : OUT STD_LOGIC_VECTOR( 4 DOWNTO 0);

clock, reset : IN STD_LOGIC );

END COMPONENT;

COMPONENT control

PORT( Opcode : IN STD_LOGIC_VECTOR( 5 DOWNTO 0 );

RegDst : OUT STD_LOGIC;

ALUSrc : OUT STD_LOGIC;

MemtoReg : OUT STD_LOGIC;

RegWrite : OUT STD_LOGIC;

MemRead : OUT STD_LOGIC;

MemWrite : OUT STD_LOGIC;
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Branch : OUT STD_LOGIC;

ALUop : OUT STD_LOGIC_VECTOR( 1 DOWNTO 0 );

clock, reset : IN STD_LOGIC );

END COMPONENT;

COMPONENT Execute

PORT( Read_data_1 : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Read_data_2 : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Sign_Extend : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Function_opcode : IN STD_LOGIC_VECTOR( 5 DOWNTO 0 );

ALUOp : IN STD_LOGIC_VECTOR( 1 DOWNTO 0 );

ALUSrc : IN STD_LOGIC;

Zero : OUT STD_LOGIC;

ALU_Result : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Add_Result : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 );

PC_plus_4 : IN STD_LOGIC_VECTOR( 9 DOWNTO 0 );

clock, reset : IN STD_LOGIC );

END COMPONENT;

COMPONENT dmemory

PORT( read_data : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

address : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 );

write_data : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

MemRead, Memwrite : IN STD_LOGIC;

Clock,reset : IN STD_LOGIC );

END COMPONENT;

-- declare signals used to connect VHDL components
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--SIGNAL PC_plus_4 : STD_LOGIC_VECTOR( 9 DOWNTO 0 );

--SIGNAL read_data_1 : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

--SIGNAL read_data_2 : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

--SIGNAL Sign_Extend : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

--SIGNAL Add_result : STD_LOGIC_VECTOR( 7 DOWNTO 0 );

--SIGNAL ALU_result : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

--SIGNAL read_data : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

--SIGNAL ALUSrc : STD_LOGIC;

--SIGNAL Branch : STD_LOGIC;

SIGNAL RegDst : STD_LOGIC;

--SIGNAL Regwrite : STD_LOGIC;

--SIGNAL Zero : STD_LOGIC;

--SIGNAL MemWrite : STD_LOGIC;

--SIGNAL MemtoReg : STD_LOGIC;

--SIGNAL MemRead : STD_LOGIC;

--SIGNAL ALUop : STD_LOGIC_VECTOR( 1 DOWNTO 0 );

--SIGNAL Instruction : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

-- Pipeline Signals

SIGNAL Instruction_IFID_IN : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL Instruction_IFID_OUT : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL Instruction_IDEX_OUT : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL Instruction_EXMEM_OUT : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL PC_plus_4_IFID_IN : STD_LOGIC_VECTOR(9 downto 0);

SIGNAL PC_plus_4_IFID_OUT : STD_LOGIC_VECTOR(9 downto 0);

SIGNAL PC_plus_4_IDEX_IN : STD_LOGIC_VECTOR(9 downto 0);

SIGNAL PC_plus_4_IDEX_OUT : STD_LOGIC_VECTOR(9 downto 0);

SIGNAL Add_result_EXMEM_OUT : STD_LOGIC_VECTOR( 7 DOWNTO 0 );
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SIGNAL M_EXMEM_OUT : STD_LOGIC_VECTOR( 2 downto 0);

SIGNAL Zero_EXMEM_OUT : STD_LOGIC;

SIGNAL read_data_1_IDEX_IN : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL read_data_2_IDEX_IN : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL read_data_MEMWB_OUT : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL ALU_result_MEMWB_OUT : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL WB_MEMWB_OUT : STD_LOGIC_VECTOR( 1 DOWNTO 0 );

SIGNAL Sign_extend_IDEX_IN : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL reg_dest_mux_output_MEMWB_OUT: STD_LOGIC_VECTOR(4 downto 0);

SIGNAL reg_dest_mux_output_IDEX_IN : STD_LOGIC_VECTOR(4 downto 0);

SIGNAL EX_IDEX_IN : STD_LOGIC_VECTOR(2 downto 0);

SIGNAL WB_IDEX_IN : STD_LOGIC_VECTOR(1 downto 0);

SIGNAL M_IDEX_IN : STD_LOGIC_VECTOR(2 downto 0);

SIGNAL read_data_1_IDEX_OUT : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL read_data_2_IDEX_OUT : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL Sign_extend_IDEX_OUT : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL EX_IDEX_OUT : STD_LOGIC_VECTOR( 2 DOWNTO 0 );

SIGNAL Zero_EXMEM_IN : std_logic;

SIGNAL ALU_Result_EXMEM_IN : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL Add_Result_EXMEM_IN : STD_LOGIC_VECTOR( 7 DOWNTO 0 );

SIGNAL read_data_MEMWB_IN : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL ALU_Result_EXMEM_OUT : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL read_data_2_EXMEM_OUT : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL reg_dest_mux_output_IDEX_OUT : STD_LOGIC_VECTOR(4 downto 0);

SIGNAL reg_dest_mux_output_EXMEM_OUT : STD_LOGIC_VECTOR(4 downto 0);

SIGNAL M_IDEX_OUT : STD_LOGIC_VECTOR(2 downto 0);

SIGNAL WB_IDEX_OUT : STD_LOGIC_VECTOR(1 downto 0);

SIGNAL WB_EXMEM_OUT : STD_LOGIC_VECTOR(1 downto 0);
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BEGIN

-- copy important signals to output pins for easy

-- display in Simulator

Instruction_Fetch <= Instruction_IFID_IN;

Instruction_Decode <= Instruction_IFID_OUT;

Instruction_Execute <= Instruction_IDEX_OUT;

Instruction_Mem <= Instruction_EXMEM_OUT;

ALU_result_out <= ALU_Result_EXMEM_IN;

read_data_1_out <= read_data_1_IDEX_OUT;

read_data_2_out <= read_data_2_IDEX_OUT;

write_data_out <= read_data_MEMWB_OUT WHEN WB_MEMWB_OUT(1) = ’1’ ELSE ALU_result_MEMWB_OUT;

Branch_out <= M_EXMEM_OUT(0);

Zero_out <= Zero_EXMEM_OUT;

RegWrite_out <= WB_IDEX_IN(1);

MemWrite_out <= M_IDEX_IN(1);

WriteBackRegister <= reg_dest_mux_output_MEMWB_OUT;

--Branchne <= M_EXMEM_OUT(2);

-- connect the 5 MIPS components

IFE : Ifetch

PORT MAP ( Instruction => Instruction_IFID_IN,

PC_plus_4_out => PC_plus_4_IFID_IN,

Add_result => Add_result_EXMEM_OUT,

Branch => M_EXMEM_OUT(0),

Zero => Zero_EXMEM_OUT,

PC_out => PC,

clock => clock,

reset => reset );
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ID : Idecode

PORT MAP ( read_data_1 => read_data_1_IDEX_IN,

read_data_2 => read_data_2_IDEX_IN,

Instruction => Instruction_IFID_OUT,

read_data => read_data_MEMWB_OUT,

ALU_result => ALU_result_MEMWB_OUT,

RegWrite => WB_MEMWB_OUT(1),

MemtoReg => WB_MEMWB_OUT(0),

RegDst => RegDst,

Sign_extend => Sign_extend_IDEX_IN,

clock => clock,

write_register_address => reg_dest_mux_output_MEMWB_OUT,

reg_dest_mux_output => reg_dest_mux_output_IDEX_IN,

reset => reset );

CTL: control

PORT MAP ( Opcode => Instruction_IFID_OUT(31 DOWNTO 26),

RegDst => RegDst,

ALUSrc => EX_IDEX_IN(2),

MemtoReg => WB_IDEX_IN(0),

RegWrite => WB_IDEX_IN(1),

MemRead => M_IDEX_IN(2),

MemWrite => M_IDEX_IN(1),

Branch => M_IDEX_IN(0),

ALUop => EX_IDEX_IN(1 downto 0),

clock => clock,
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reset => reset );

EXE: Execute

PORT MAP ( Read_data_1 => read_data_1_IDEX_OUT,

Read_data_2 => read_data_2_IDEX_OUT,

Sign_extend => Sign_extend_IDEX_OUT,

Function_opcode => Sign_extend_IDEX_OUT( 5 DOWNTO 0 ),

ALUOp => EX_IDEX_OUT(1 downto 0),

ALUSrc => EX_IDEX_OUT(2),

Zero => Zero_EXMEM_IN,

ALU_Result => ALU_Result_EXMEM_IN,

Add_Result => Add_Result_EXMEM_IN,

PC_plus_4 => PC_plus_4_IDEX_OUT,

Clock => clock,

Reset => reset );

MEM: dmemory

PORT MAP ( read_data => read_data_MEMWB_IN,

address => ALU_Result_EXMEM_OUT (7 DOWNTO 0),

write_data => read_data_2_EXMEM_OUT,

MemRead => M_EXMEM_OUT(1),

Memwrite => M_EXMEM_OUT(0),

clock => clock,

reset => reset );

Pipeline_Updates: PROCESS ( clock, reset)

BEGIN

if reset=’1’ then

Instruction_IFID_OUT <= (others=>’0’);
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elsif clock’event and clock=’1’ then

Instruction_IFID_OUT <= Instruction_IFID_IN;

Instruction_IDEX_OUT <= Instruction_IFID_OUT;

Instruction_EXMEM_OUT <= Instruction_IDEX_OUT;

-- reg dest mux output trail

reg_dest_mux_output_IDEX_OUT <= reg_dest_mux_output_IDEX_IN;

reg_dest_mux_output_EXMEM_OUT <= reg_dest_mux_output_IDEX_OUT;

reg_dest_mux_output_MEMWB_OUT <= reg_dest_mux_output_EXMEM_OUT;

-- pc_plus4_ trail

PC_plus_4_IFID_OUT <= PC_plus_4_IFID_IN;

PC_plus_4_IDEX_OUT <= PC_plus_4_IFID_OUT;

-- Control signals

M_IDEX_OUT <= M_IDEX_IN;

M_EXMEM_OUT <= M_IDEX_OUT;

WB_IDEX_OUT <= WB_IDEX_IN;

WB_EXMEM_OUT <= WB_IDEX_OUT;

WB_MEMWB_OUT <= WB_EXMEM_OUT;

EX_IDEX_OUT <= EX_IDEX_IN;

--

read_data_2_IDEX_OUT <= read_data_2_IDEX_IN;

read_data_2_EXMEM_OUT <= read_data_2_IDEX_OUT;

read_data_1_IDEX_OUT <= read_data_1_IDEX_IN;
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--

Sign_extend_IDEX_OUT <=Sign_extend_IDEX_IN;

--

ALU_Result_MEMWB_OUT <= ALU_Result_EXMEM_OUT;

ALU_Result_EXMEM_OUT <= ALU_Result_EXMEM_IN;

--

read_data_MEMWB_OUT <= read_data_MEMWB_IN;

--

Add_result_EXMEM_OUT <= Add_result_EXMEM_IN;

Zero_EXMEM_OUT <= Zero_EXMEM_IN;

end if;

END PROCESS;

END structure;
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B.3 control.vhd

-- control module (implements MIPS control unit)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY control IS

PORT(

Opcode : IN STD_LOGIC_VECTOR( 5 DOWNTO 0 );

RegDst : OUT STD_LOGIC;

ALUSrc : OUT STD_LOGIC;

MemtoReg : OUT STD_LOGIC;

RegWrite : OUT STD_LOGIC;

MemRead : OUT STD_LOGIC;

MemWrite : OUT STD_LOGIC;

Branch : OUT STD_LOGIC;

ALUop : OUT STD_LOGIC_VECTOR( 1 DOWNTO 0 );

clock, reset : IN STD_LOGIC );

END control;

ARCHITECTURE behavior OF control IS

SIGNAL R_format, Lw, Sw, Beq, Bne : STD_LOGIC;

BEGIN

-- Code to generate control signals using opcode bits

R_format <= ’1’ WHEN Opcode = "000000" ELSE ’0’;
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Lw <= ’1’ WHEN Opcode = "100011" ELSE ’0’;

Sw <= ’1’ WHEN Opcode = "101011" ELSE ’0’;

Beq <= ’1’ WHEN Opcode = "000100" ELSE ’0’;

Bne <= ’1’ WHEN Opcode = "000101" ELSE ’0’; -- Added for BNE

RegDst <= R_format;

ALUSrc <= Lw OR Sw;

MemtoReg <= Lw;

RegWrite <= R_format OR Lw;

MemRead <= Lw;

MemWrite <= Sw;

Branch <= Beq OR Bne; -- Added BNE

ALUOp( 1 ) <= R_format;

ALUOp( 0 ) <= Beq OR Bne; -- Added BNE

END behavior;
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B.4 Ifetch.vhd

-- Ifetch module (provides the PC and instruction

--memory for the MIPS computer)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

LIBRARY altera_mf;

USE altera_mf.altera_mf_components.all;

ENTITY Ifetch IS

PORT( SIGNAL Instruction : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL PC_plus_4_out : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 );

SIGNAL Add_result : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 );

SIGNAL Branch : IN STD_LOGIC;

SIGNAL Zero : IN STD_LOGIC;

SIGNAL PC_out : OUT STD_LOGIC_VECTOR( 9 DOWNTO 0 );

SIGNAL clock, reset : IN STD_LOGIC);

END Ifetch;

ARCHITECTURE behavior OF Ifetch IS

SIGNAL PC, PC_plus_4 : STD_LOGIC_VECTOR( 9 DOWNTO 0 );

SIGNAL next_PC, Mem_Addr : STD_LOGIC_VECTOR( 7 DOWNTO 0 );

BEGIN

--ROM for Instruction Memory

inst_memory: altsyncram

GENERIC MAP (

operation_mode => "ROM",
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width_a => 32,

widthad_a => 8,

lpm_type => "altsyncram",

outdata_reg_a => "UNREGISTERED",

init_file => "program.mif",

intended_device_family => "Cyclone"

)

PORT MAP (

clock0 => clock,

address_a => Mem_Addr,

q_a => Instruction );

-- Instructions always start on word address - not byte

PC(1 DOWNTO 0) <= "00";

-- copy output signals - allows read inside module

PC_out <= PC;

PC_plus_4_out <= PC_plus_4;

-- send address to inst. memory address register

Mem_Addr <= Next_PC;

-- Adder to increment PC by 4

PC_plus_4( 9 DOWNTO 2 ) <= PC( 9 DOWNTO 2 ) + 1;

PC_plus_4( 1 DOWNTO 0 ) <= "00";

-- Mux to select Branch Address or PC + 4

Next_PC <= X"00" WHEN Reset = ’1’ ELSE

Add_result WHEN ( ( Branch = ’1’ ) AND ( Zero = ’1’ ) )

ELSE PC_plus_4( 9 DOWNTO 2 );

PROCESS

BEGIN

WAIT UNTIL ( clock’EVENT ) AND ( clock = ’1’ );

IF reset = ’1’ THEN

92



PC( 9 DOWNTO 2) <= "00000000" ;

ELSE

PC( 9 DOWNTO 2 ) <= next_PC;

END IF;

END PROCESS;

END behavior;
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B.5 Idecode.vhd

-- Idecode module (implements the register file for

LIBRARY IEEE; -- the MIPS computer)

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Idecode IS

PORT( read_data_1 : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

read_data_2 : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Instruction : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

read_data : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

ALU_result : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

RegWrite : IN STD_LOGIC;

MemtoReg : IN STD_LOGIC;

RegDst : IN STD_LOGIC;

Sign_extend : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

clock,reset : IN STD_LOGIC );

END Idecode;

ARCHITECTURE behavior OF Idecode IS

TYPE register_file IS ARRAY ( 0 TO 31 ) OF STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL register_array : register_file;

SIGNAL write_register_address : STD_LOGIC_VECTOR( 4 DOWNTO 0 );

SIGNAL write_data : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL read_register_1_address : STD_LOGIC_VECTOR( 4 DOWNTO 0 );

SIGNAL read_register_2_address : STD_LOGIC_VECTOR( 4 DOWNTO 0 );
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SIGNAL write_register_address_1 : STD_LOGIC_VECTOR( 4 DOWNTO 0 );

SIGNAL write_register_address_0 : STD_LOGIC_VECTOR( 4 DOWNTO 0 );

SIGNAL Instruction_immediate_value : STD_LOGIC_VECTOR( 15 DOWNTO 0 );

BEGIN

read_register_1_address <= Instruction( 25 DOWNTO 21 );

read_register_2_address <= Instruction( 20 DOWNTO 16 );

write_register_address_1 <= Instruction( 15 DOWNTO 11 );

write_register_address_0 <= Instruction( 20 DOWNTO 16 );

Instruction_immediate_value <= Instruction( 15 DOWNTO 0 );

-- Read Register 1 Operation

read_data_1 <= register_array(

CONV_INTEGER( read_register_1_address ) );

-- Read Register 2 Operation

read_data_2 <= register_array(

CONV_INTEGER( read_register_2_address ) );

-- Mux for Register Write Address

write_register_address <= write_register_address_1

WHEN RegDst = ’1’ ELSE write_register_address_0;

-- Mux to bypass data memory for Rformat instructions

write_data <= ALU_result( 31 DOWNTO 0 )

WHEN ( MemtoReg = ’0’ ) ELSE read_data;

-- Sign Extend 16-bits to 32-bits

Sign_extend <= X"0000" & Instruction_immediate_value
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WHEN Instruction_immediate_value(15) = ’0’

ELSE X"FFFF" & Instruction_immediate_value;

PROCESS

BEGIN

WAIT UNTIL clock’EVENT AND clock = ’1’;

IF reset = ’1’ THEN

-- Initial register values on reset are register = reg#

-- use loop to automatically generate reset logic

-- for all registers

FOR i IN 0 TO 31 LOOP

register_array(i) <= CONV_STD_LOGIC_VECTOR( i, 32 );

END LOOP;

-- Write back to register - don’t write to register 0

ELSIF RegWrite = ’1’ AND write_register_address /= 0 THEN

register_array( CONV_INTEGER( write_register_address)) <= write_data;

END IF;

END PROCESS;

END behavior;
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B.6 Execute.vhd

-- Execute module (implements the data ALU and Branch Address Adder

-- for the MIPS computer)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY Execute IS

PORT( Read_data_1 : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Read_data_2 : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Sign_extend : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Function_opcode : IN STD_LOGIC_VECTOR( 5 DOWNTO 0 );

ALUOp : IN STD_LOGIC_VECTOR( 1 DOWNTO 0 );

ALUSrc : IN STD_LOGIC;

Zero : OUT STD_LOGIC;

ALU_Result : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

Add_Result : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 );

PC_plus_4 : IN STD_LOGIC_VECTOR( 9 DOWNTO 0 );

clock, reset : IN STD_LOGIC );

END Execute;

ARCHITECTURE behavior OF Execute IS

SIGNAL Ainput, Binput : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL ALU_output_mux : STD_LOGIC_VECTOR( 31 DOWNTO 0 );

SIGNAL Branch_Add : STD_LOGIC_VECTOR( 7 DOWNTO 0 );

SIGNAL ALU_ctl : STD_LOGIC_VECTOR( 2 DOWNTO 0 );

BEGIN

Ainput <= Read_data_1;
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-- ALU input mux

Binput <= Read_data_2

WHEN ( ALUSrc = ’0’ )

ELSE Sign_extend( 31 DOWNTO 0 );

-- Generate ALU control bits

ALU_ctl( 0 ) <= ( Function_opcode( 0 ) OR Function_opcode( 3 ) ) AND ALUOp(1 );

ALU_ctl( 1 ) <= ( NOT Function_opcode( 2 ) ) OR (NOT ALUOp( 1 ) );

ALU_ctl( 2 ) <= ( Function_opcode( 1 ) AND ALUOp( 1 )) OR ALUOp( 0 );

-- Generate Zero Flag

Zero <= ’1’

WHEN ( ALU_output_mux( 31 DOWNTO 0 ) = X"00000000" )

ELSE ’0’;

-- Select ALU output

ALU_result <= X"0000000" & B"000" & ALU_output_mux( 31 ) -- When CTL is 111

WHEN ALU_ctl = "111"

ELSE ALU_output_mux( 31 DOWNTO 0 );

-- Adder to compute Branch Address

Branch_Add <= PC_plus_4( 9 DOWNTO 2 ) + Sign_extend( 7 DOWNTO 0 ) ;

Add_result <= Branch_Add( 7 DOWNTO 0 );

PROCESS ( ALU_ctl, Ainput, Binput )

BEGIN

-- Select ALU operation

CASE ALU_ctl IS

-- ALU performs ALUresult = A_input AND B_input
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WHEN "000" =>ALU_output_mux <= Ainput AND Binput;

-- ALU performs ALUresult = A_input OR B_input

WHEN "001" =>ALU_output_mux <= Ainput OR Binput;

-- ALU performs ALUresult = A_input + B_input

WHEN "010" =>ALU_output_mux <= Ainput + Binput;

-- ALU performs --Unwritten code?

WHEN "011" =>ALU_output_mux <= X"00000000";

-- ALU performs --Unwritten code?

WHEN "100" =>ALU_output_mux <= X"00000000";

-- ALU performs --Unwritten code??

WHEN "101" =>ALU_output_mux <= X"00000000";

-- ALU performs ALUresult = A_input -B_input

WHEN "110" =>ALU_output_mux <= Ainput - Binput;

-- ALU performs SLT

WHEN "111" =>ALU_output_mux <= Ainput - Binput ;

WHEN OTHERS =>ALU_output_mux <= X"00000000" ;

END CASE;

END PROCESS;

END behavior;
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B.7 Dmemory.vhd

This is the data memory module. The current implementation uses Altera

specific memory devices. It will need to be rewritten for Xilinx specific memories.

-- Dmemory module (implements the data

-- memory for the MIPS computer)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_SIGNED.ALL;

LIBRARY altera_mf;

USE altera_mf.altera_mf_components.all;

ENTITY dmemory IS

PORT( read_data : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );

address : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 );

write_data : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );

MemRead, Memwrite : IN STD_LOGIC;

clock,reset : IN STD_LOGIC );

END dmemory;

ARCHITECTURE behavior OF dmemory IS

SIGNAL write_clock : STD_LOGIC;

BEGIN

data_memory : altsyncram

GENERIC MAP (

operation_mode => "SINGLE_PORT",

width_a => 32,
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widthad_a => 8,

lpm_type => "altsyncram",

outdata_reg_a => "UNREGISTERED",

init_file => "dmemory.mif",

intended_device_family => "Cyclone"

)

PORT MAP (

wren_a => memwrite,

clock0 => write_clock,

address_a => address,

data_a => write_data,

q_a => read_data );

-- Load memory address register with write clock

write_clock <= NOT clock;

END behavior;
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B.8 Control.vhd

-- control module (implements MIPS control unit)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY control IS

PORT(

Opcode : IN STD_LOGIC_VECTOR( 5 DOWNTO 0 );

RegDst : OUT STD_LOGIC;

ALUSrc : OUT STD_LOGIC;

MemtoReg : OUT STD_LOGIC;

RegWrite : OUT STD_LOGIC;

MemRead : OUT STD_LOGIC;

MemWrite : OUT STD_LOGIC;

Branch : OUT STD_LOGIC;

ALUop : OUT STD_LOGIC_VECTOR( 1 DOWNTO 0 );

clock, reset : IN STD_LOGIC );

END control;

ARCHITECTURE behavior OF control IS

SIGNAL R_format, Lw, Sw, Beq, Bne : STD_LOGIC;

BEGIN

-- Code to generate control signals using opcode bits

R_format <= ’1’ WHEN Opcode = "000000" ELSE ’0’;
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Lw <= ’1’ WHEN Opcode = "100011" ELSE ’0’;

Sw <= ’1’ WHEN Opcode = "101011" ELSE ’0’;

Beq <= ’1’ WHEN Opcode = "000100" ELSE ’0’;

Bne <= ’1’ WHEN Opcode = "000101" ELSE ’0’; -- Added for BNE

RegDst <= R_format;

ALUSrc <= Lw OR Sw;

MemtoReg <= Lw;

RegWrite <= R_format OR Lw;

MemRead <= Lw;

MemWrite <= Sw;

Branch <= Beq OR Bne; -- Added BNE

ALUOp( 1 ) <= R_format;

ALUOp( 0 ) <= Beq OR Bne; -- Added BNE

END behavior;
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B.9 Decode.vhd

-- Dmemory module (implements the data

-- memory for the MIPS computer)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_SIGNED.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY dmemory IS

PORT( read_data : OUT STD_LOGIC_VECTOR( 7 DOWNTO 0 );

address : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 );

write_data : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 );

MemRead, Memwrite : IN STD_LOGIC;

clock,reset : IN STD_LOGIC );

END dmemory;

ARCHITECTURE behavior OF dmemory IS

SIGNAL lpm_write : STD_LOGIC;

BEGIN

data_memory: lpm_ram_dq

GENERIC MAP (

lpm_widthad => 8,

lpm_outdata => "UNREGISTERED",

lpm_indata => "REGISTERED",

lpm_address_control => "UNREGISTERED",

-- Reads in mif file for initial data memory values
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lpm_file => "dmemory.mif",

lpm_width => 8 )

PORT MAP (

data =>write_data, address => address,

we =>lpm_write,inclock => clock, q => read_data );

-- delay lpm write enable to ensure stable address and data

lpm_write <= memwrite AND ( NOT clock );

END behavior;
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