6 research outputs found

    Ensemble classification and signal image processing for genus Gyrodactylus (Monogenea)

    Get PDF
    This thesis presents an investigation into Gyrodactylus species recognition, making use of machine learning classification and feature selection techniques, and explores image feature extraction to demonstrate proof of concept for an envisaged rapid, consistent and secure initial identification of pathogens by field workers and non-expert users. The design of the proposed cognitively inspired framework is able to provide confident discrimination recognition from its non-pathogenic congeners, which is sought in order to assist diagnostics during periods of a suspected outbreak. Accurate identification of pathogens is a key to their control in an aquaculture context and the monogenean worm genus Gyrodactylus provides an ideal test-bed for the selected techniques. In the proposed algorithm, the concept of classification using a single model is extended to include more than one model. In classifying multiple species of Gyrodactylus, experiments using 557 specimens of nine different species, two classifiers and three feature sets were performed. To combine these models, an ensemble based majority voting approach has been adopted. Experimental results with a database of Gyrodactylus species show the superior performance of the ensemble system. Comparison with single classification approaches indicates that the proposed framework produces a marked improvement in classification performance. The second contribution of this thesis is the exploration of image processing techniques. Active Shape Model (ASM) and Complex Network methods are applied to images of the attachment hooks of several species of Gyrodactylus to classify each species according to their true species type. ASM is used to provide landmark points to segment the contour of the image, while the Complex Network model is used to extract the information from the contour of an image. The current system aims to confidently classify species, which is notifiable pathogen of Atlantic salmon, to their true class with high degree of accuracy. Finally, some concluding remarks are made along with proposal for future work

    How automated image analysis techniques help scientists in species identification and classification?

    Get PDF
    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification incre­ased over the last two decades. Automation of data classification is primarily focussed on images while incorporating and analysing image data has recently become easier due to developments in computational technology. Research ef­forts on identification of species include specimens’ image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, mainly for categorising and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies. (Folia Morphol 2018; 77, 2: 179–193

    Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor

    Get PDF
    Over the last two decades, improvements in developing computational tools have made significant contributions to the classification of images of biological specimens to their corresponding species. These days, identification of biological species is much easier for taxonomists and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we developed a fully automated identification model for monogenean images based on the shape characters of the haptoral organs of eight species: Sinodiplectanotrema malayanum, Diplectanum jaculator, Trianchoratus pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis, Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis. Linear Discriminant Analysis (LDA) method was used to reduce the dimension of extracted feature vectors which were then used in the classification with K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN) classifiers for the identification of monogenean specimens of eight species. The need for the discovery of new characters for identification of species has been acknowledged for log by systematic parasitology. Using the overall form of anchors and bars for extraction of features led to acceptable results in automated classification of monogeneans. To date, this is the first fully automated identification model for monogeneans with an accuracy of 86.25% using KNN and 93.1% using ANN

    The use of ASM feature extraction and machine learning for the discrimination of members of the fish ectoparasite genus gyrodactylus

    No full text
    Active Shape Models (ASM) are applied to the attachment hooks of several species of Gyrodactylus, including the notifiable pathogen G. salaris, to classify each species to their true species type. ASM is used as a feature extraction tool to select information from hook images that can be used as input data into trained classifiers. Linear (i.e. LDA and KNN) and non-linear (i.e. MLP and SVM) models are used to classify Gyrodactylus species. Species of Gyrodactylus, ectoparasitic monogenetic flukes of fish, are difficult to discriminate and identify on morphology alone and their speciation currently requires taxonomic expertise. The current exercise sets out to confidently classify species, which in this example includes a species which is notifiable pathogen of Atlantic salmon, to their true class with a high degree of accuracy. The findings from the current exercise demonstrates that data subsequently imported into a K-NN classifier, outperforms several other methods of classification (i.e. LDA, MLP and SVM) that were assessed, with an average classification accuracy of 98.75%

    New fish product ideas generated by European consumers

    Get PDF
    Food lifestyles are changing; people have less time to spend on food purchase and preparation, therefore leading to increasing demand for new food products. However, around 76% of new food products launched in the market fail within the first year (Nielsen, 2014). One of the most effective ways to enhance new products’ success in the market is by incorporating consumers’ opinions and needs during the New Product Development (NPD) process (Moon et al., 2018). This study aimed to explore the usefulness of a qualitative technique, focus groups, to generate new aquaculture fish product ideas as well as to identify the most relevant product dimensions affecting consumers’ potential acceptance.Peer ReviewedPostprint (published version

    Winter School on Vistas in Marine Biotechnology

    Get PDF
    Winter School on Vistas in Marine Biotechnology, 5th to 26th October, 2010 at Marine Biotechnology Division CMFRI, Koch
    corecore