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A B S T R A C T

This thesis presents an investigation into Gyrodactylus species recognition, making use of

machine learning classification and feature selection techniques, and explores image feature

extraction to demonstrate proof of concept for an envisaged rapid, consistent and secure

initial identification of pathogens by field workers and non-expert users. The design of

the proposed cognitively inspired framework is able to provide confident discrimination

recognition from its non-pathogenic congeners, which is sought in order to assist diagnostics

during periods of a suspected outbreak. Accurate identification of pathogens is a key to their

control in an aquaculture context and the monogenean worm genus Gyrodactylus provides

an ideal test-bed for the selected techniques. In the proposed algorithm, the concept of

classification using a single model is extended to include more than one model. In classifying

multiple species of Gyrodactylus, experiments using 557 specimens of nine different species,

two classifiers and three feature sets were performed. To combine these models, an ensemble

based majority voting approach has been adopted. Experimental results with a database of

Gyrodactylus species show the superior performance of the ensemble system. Comparison

with single classification approaches indicates that the proposed framework produces a

marked improvement in classification performance. The second contribution of this thesis is

the exploration of image processing techniques. Active Shape Model (ASM) and Complex

Network methods are applied to images of the attachment hooks of several species of

Gyrodactylus to classify each species according to their true species type. ASM is used to

provide landmark points to segment the contour of the image, while the Complex Network

model is used to extract the information from the contour of an image. The current system

aims to confidently classify species, which is notifiable pathogen of Atlantic salmon, to their

true class with high degree of accuracy. Finally, some concluding remarks are made along

with proposal for future work.
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1
I N T R O D U C T I O N

As wild fish stocks decline through the effects of over-fishing, anthropogenic activities and

more insidious environmental changes, the importance of aquaculture in maintaining global

food supply increases. Since 1970, the aquaculture sector has expanded by over 9% per annum,

the highest current growth profile in any agricultural1 sector (c.f. 1.2% for capture fisheries and

2.8% for land meat production) [91]. Accompanying this increase in aquaculture2 production

is a tendency towards intensification of aquaculture practices, with higher stocking densities

and greater utilisation of available water resources. Such developments almost unavoidably

lead to an increase in disease3 problems including those associated with parasitic pathogens4.

Amongst fish parasites, ectoparasitic 5 monogenetic platyhelminths remain a particularly

intransigent economic burden for the global freshwater6 and marine aquaculture industries.

One of the most widespread groups of monogenean7 parasites is the genus Gyrodactylus8,

whose members are common ectoparasitic9 of fish within aquaculture and wild capture

fisheries, with more than 409 species identified to date [61].

One of the key challenges for disease management and control in cultured and wild

fish populations in the 21st Century is that of achieving secure and consistent pathogen

identification. The rapid expansion of fish culture into new environments and fisheries

1 Key development in the rise of sedentary human civilization, the farming of domesticated created food surpluses

that nurtured the development civilization. the study of agriculture is known as agricultural science.

2 it involves cultivating freshwater and saltwater populations under controlled conditions, and can be contrasted with

commercial fishing, which is the harvesting of wild fish.

3 Disorder of structure or function in a human, animal, or plant, especially one that produces specific signs or symptoms

or that affects a specific location and is not simply a direct result of physical injury.

4 A pathogen is anything that causes a disease.

5 A parasite that lives on the surface of a host organism.

6 Naturally occurring water on the Earth’s surface in ice sheets, ice caps, glaciers, icebergs, bogs, ponds, lakes, rivers

and streams, and underground as groundwater in aquifers and underground streams.

7 Group of largely ectoparasitic members of the flatworm phylum Platyhelminthes, class Monogenea.

8 Small monogenean ectoparasite (about 0.5 mm long) which mainly lives on the skin of freshwater fish, especially

Atlantic salmon.

9 A parasite that lives on the surface of a host organism.

1
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management operations more broadly, has overtaken our ability to recognise certain individual

species of parasite pathogens. Recent evidence has also demonstrated that the international

translocation of fish has increased the rate of introduction of exotic parasite species into

indigenous fish stocks, with serious economic consequences. In the U.K., which is one of the

best studied regions for exotic fish pathogen introduction, the documentation of 14 relatively

recently introduced metazoan parasites has been of major concern, with ten of these parasite

species already being well established [56]. For this reason and because of the widely varying

pathogenicity seen between closely related species, accurate pathogen identification is of

paramount importance. Whilst molecular techniques have, in recent years, offered much in

the way of species discrimination, species definitions often continue to rely on morphological

characteristics (attachment hook morphology10), which may correlate to pathogenicity but

not necessarily to recognised discriminatory molecular markers [33]. Thus some pathogenic

species can only be classified from non-pathogenic relatives by morphological characterisation.

This is particularly true for many monogeneans, whose discrimination from congeners is

compounded by a limited number of morphological discrete characteristics, which makes

identification difficult. These characteristics include often small size, slight morphological

differences in key taxonomically important features, lack of patterning or colouration and

fragility, which requires specimens to be live or immediately fixed or preserved.

Accurate classification of parasitic pathogens to the correct specimen group can be a difficult

and time consuming task. In the event of an outbreak of serious disease, the demand for

identification may significant exceed the available supply of suitable expertise and facilities. In

order to reduce the death rate of fish infected with G. salaris and certain Gyrodactylus species, it

is vital to correctly diagnose infections and the species present as early as possible. If suitable

measures of parasite control are not developed, then this can have a negative impact on fish

production. In recent years, there has been a research focus in determining solutions to tackle

these issues and various experiments have been conducted by domain experts to find the best

solutions to contain disease outbreak without any detrimental impact on the environment.

There are several reasons for potential difficulty in defining the parasite category among

10 Branch of biology dealing with the study of the form and structure of organisms and their specific structural features.

This includes aspects of the outward appearance (shape, structure, colour, pattern) as well as the form and structure

of the internal parts like bones and organs.
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Gyrodactylus specimen group. This task is heavily reliant on a limited number of domain

experts available to analyse and determine specimen groups. Additionally, Kay et al. [76]

describe in detail the challenge associated with parasite specimen classification by shape due

to the small nature of the difference between each one.

This study focuses on the discrimination of Gyrodactylus species commonly infecting sal-

monids. These include G. derjavinoides Malmberg, Collins, Cunningham et Jalali, 2007, G.

kherulensis Ergens, 1974, G. salaris Malmberg, 1957, G. thymalli Žitňan, 1960 and G. truttae

Gläser, 1974. In addition, species that could accidentally parasitise salmonids such as G.

arcuatus Bychowsky, 1933 and G. gasterostei Gläser, 1974 were included, as well as species that

may be confused with G. salaris, species such as G. lucii Kulakovskaya, 1952. Other potentially

problematic species including G. sommervillae Turgut, Shinn, Yeomans et Wootten, 1999 were

also considered. Finally G.cichlidarum Paperna, 1968, a parasite of Nile tilapia, Oreochromis

n. niloticus (L.) was included as an outlying group. Gyrodactylus salaris and G. thymalli were

identified as the most difficult to classify since they are closely related and morphologically

similar. Shinn et al. [130] explains that the morphometric discrimination of Gyrodactylus

species can be difficult due to the small size of taxonomically important structures i.e. the

haptoral attachment hooks. A range of alternative techniques have been explored to assess

their utility in discriminating and identifying species, these techniques include chaetotaxy,

probe hybridization, and multivariate analysis [88], [130].

To assist and to provide accurate classification for Gyrodactylus species, a number of com-

puter techniques are explored in this thesis for their potential usefulness. There are several

methods that can make the computer more intelligent and to give it enough intelligence to

recognise and to understand the images that the user gives to it. One of this ways is using the

Artificial Intelligence (AI) approach. Using AI techniques such as machine learning will help

us to recognise and classify the entered image, which will provide a big contribution in the

aquaculture domain, especially in parasite recognition and classification.

Thus computer-assisted analysis becomes quite necessary in practice. To date, many auto-

mated detection algorithms have been developed, such as detection of the IHHN virus in

shrimp tissue by digital color correlation [12], parasite detection in fish [25], identification
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of mammalian species [110], and leaf species recognition [44]. These reference approaches

provide the inspiration to develop such system for Gyrodactylus species recognition.

1.1 problem statements

Classification of the Gyrodactylus species group poses a range of substantial interdisciplinary

challenges: Firstly, the accumulation of enough expert knowledge to reliably distinguish

between similar species, say, G. arcuatus, G. salaris and so on; Secondly, manual classification

is highly labour intensive and time consuming; and thirdly, the most formidable challenge

occurs when the required point-to-point measurements are not accurately taken, which lead

to inaccurate species classifications. Finally, at the last stage of classification, only specialist

domain experts can determine the correct species based on their own vision and experience.

To improve the correct identification of G. salaris, a number of morphometric techniques

based on statistical classification techniques [76], [104], [126] and molecular techniques

[32],[33], [105], [60] have been developed to classify this pathogen from its close relatives on

salmonid hosts. Whilst expert taxonomists may be able to classify G. salaris from other closely

related species, morphometric speciation and molecular characterisation of the Gyrodactylus

species is frustrating and difficult for the reasons described earlier. For this reason, this project

aims to develop novel computational intelligence techniques involving intelligent signal image

capture, processing, and analysis and employing cutting edge Artificial Intelligence (AI)

algorithms and technologies to provide automated or semi-automated species identification,

initially to classify G. salaris from other European gyrodactylids but with the eventual ob-

jective of developing tools to classify Gyrodactylus generally. It is hoped that the techniques

developed as a result of this work will be of practical relevance and effective for identification

or classification of a range of aquatic and indeed terrestrial pathogens, and for taxonomic

identification more widely.

1.2 thesis motivations

The following justifications are provided for the study:
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1. Aquaculture continues to expand worldwide but this expansion has been accompanied

by increased disease problems including those associated with ectoparasitic monogenean

worms.

2. Discrimination of pathogenic from non-pathogenic species is a key current requirement

to allow expertise, industry and government level control and management of pathogens

of wild and cultured fish. However, shortage of taxonomic experts and the shortcomings

of molecular methods often make this difficult to achieve in practice.

3. Use of a combination of intelligent signal image processing including those nominally

described as AI, provide the opportunity to develop state-of-the-art automated or

semi-automated intelligent systems for pathogen recognition. These will allow rapid,

consistent and secure initial identification of pathogens by field workers and non-expert

users.

1.3 aims and objectives of research

The following are the main objectives for this research project:

1. To investigate the application of novel signal image processing based intelligent systems

approaches to aquatic parasite recognition.

2. To provide a quantitative and qualitative assessment of the best current intelligent signal

image processing techniques and technologies that can be applied to the classification of

Gyrodactylus species in general and Gyrodactylus salaris in particular, specifically those

based on hook morphology.

3. To develop an intelligent automated or semi-automated system, employing advanced

intelligent signal image processing and image recognition technologies that can be

utilised by non-expert users for local and global Gyrodactylus species recognition.
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1.4 significance and benefits of research

The outcome of this study will assist pathogen management in wild and cultured fish stocks

with attendant improvements in fish health and welfare and accompanying economic benefits.

The intelligent systems and intelligent signal image processing techniques to be developed in

the course of this project are hoped to have wide utility for species recognition within and

outside the field of aquatic sciences. Additionally, there may be attendant intellectual property

benefits within these fields and potentially in other fields where real-time image recognition

or classification is important.

1.5 contributions of thesis

The following are the original contributions of this interdisciplinary research project:

1. In the aquaculture domain, the main contribution is in development of an intelligent

system that will assist technical workers and research scientists to perform rapid,

secure, and accurate prediction of multiple species of Gyrodactylus. The proposed feature

extraction and classification methods will reduce the required staff and management

resource requirements for species analysis and identification.

2. With regards to the ensemble methodology, this work has provided a novel contribution

by proposing and applying this approach to a completely new research domain, i.e.

the application of the ensemble technique in the context of aquaculture. Specifically,

in the proposed ensemble based majority voting approach, two classifiers (e.g. Linear

Discriminant Analysis (LDA) and K-nearest Neighbor (K-NN)), and three feature sets

(e.g. 25 features, 21 features and 20 features) have been utilised and evaluated and found

to accurately classify nine different species of Gyrodactylus.

3. Intelligent signal image processing techniques have been explored in order to identify

the potential of different methods for implementation, with regard to the extraction of

valuable and suitable features for the purpose of classification. Active Shape Models

(ASM) were identified as being capable of delivering good results, when applied previ-
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ously by other researchers to the domain of medical image processing. Therefore, we

developed ASMs that could be applied to the domain of aquaculture (Gyrodactylus body

shapes). Specifically, in this novel aquaculture research domain, our results demonstrate

that ASM has significant potential for extracting Scanning Electron Microscope (SEM)

images. Further, instead of applying ASM alone, the potential of integrating a Complex

Network model is also explored, for the first time. A Complex Network model can be

described as the intersection between graph theory and statistical mechanics, which

confers a truly multidisciplinary nature upon this research, since it integrates computer

sciences, mathematics and physics. Here, ASM and a Complex Network model have

been combined to develop an innovative approach for segmentation and extraction of

features. This new contribution has resulted in an improvement over using a Complex

Network model alone, since in this proposed method, the automated process of con-

tour segmentation is performed by ASM, compared to previous work, where contour

segmentation is carried out manually.

1.6 structure of the thesis

The structure of the remainder of this thesis is as follows. Chapter 2 describes background

research concerning the Gyrodactylus species. Rather than focusing on the entire monogenean

group, this thesis focuses on the Gyrodactlus species. In this chapter, the history, morphology,

mortality, species distinction, and identification are discussed in depth.

Chapter 3 discusses and reviews a number of machine learning classifiers and feature

selection techniques. In addition to a detailed review of these techniques and classifiers, these

research components are then used as part of further classification research. This chapter

presents experimental results of using a number of techniques to classify 557 specimens

from nine different species of Gyrodactylus. The positive findings of this research have been

published as part of the proceedings of Intelligent Systems Design and Applications in 2011

[8]. Also in this chapter, the initial results presented in section of morphometric classification

have been enhanced and improved by proposing and implementing an ensemble classification

technique based on majority voting.
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Chapter 4 focuses on image processing. The chapter introduces and discusses the approach

used to extract the most suitable features from Scanning Electron Microscope (SEM) images

of three different species of Gyrodactylus. In this chapter, the Active Shape Model (ASM)

technique has been introduced and described in depth. This approach is used in this thesis

to extract features that can be used in order to improve species classification. This feature

extraction methodology and the subsequent classification results presented in the thesis

chapter are published in Neural Information Processing [9]. Instead of applying ASM alone,

the potential of a Complex Network model is also explored. Here, ASM and a Complex

Network model have been combined for segmentation and extraction of features. This new

contribution has resulted in the improvement over using a Complex Network model alone,

as in this method, the automated process of contour segmentation was performed by ASM,

compared to previous work, where contour segmentation was carried out manually. This

research was published at the Neural Processing Conference in Kuching, Malaysia [10].

Finally, chapter 5 summarises this thesis, provides some concluding remarks, and recom-

mends a number of directions for future work.
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2
B A C K G R O U N D O F G Y R O D A C T Y L U S

2.1 introduction

Before the overall aim of this thesis, the development of an intelligent signal image processing

ensemble classification system for Gyrodactylus species identification, can be presented, it is

important that the background to this work is discussed. This chapter discusses the species

which is the focus of this research, Monogenea of Gyrodactylus. Monogenea of the genus

Gyrodactylus may occur in fresh water, and brackish and marine environments. To be precise,

G. salaris lives and reproduces in fresh water, and can tolerate brackish water for short or

longer periods depending on salinity levels [1]. Gyrodactylus salaris is known as the salmon

killer in several countries due to the impact on mortality rates. According to Bakke et al. [18],

many researchers have ignored or avoided studying this area due to the complexity of their

taxonomy. The mortality effect on the production of Atlantic salmon, has created a Gyrodactylus

salaris epidemic, which has stimulated research to such an extent that gyrodactylids are now

the best studied of all monogeans.

After a summary of the history of this species, the remainder of this chapter presents the

morphology of Gyrodactylus parasite species. In this section, the characteristics of the species

are described. This information will be used for measurement and prediction of the class label

of multiple species of Gyrodactylus. These are: G. arcuatus, G. cichilidarum, G. derjavinoides, G.

kherulensis, G. salaris, G. sommervillae, G. thymalli and G. truttae. In this research, three parts of

the haptoral hooks are used to provide informative features for species identification; hamuli,

marginal hook and ventral bar.

The reproduction of this species has caused a huge impact on the ecological system and

world food supply. This species has been demonstrated to be responsible for the decline in

salmon stocks in Norway, where it has caused damage to salmon stocks in more than 40 rivers

9

[ 2nd March 2015 at 0:00 ]



resulting in the near extermination of the salmon population in five of these rivers [18]. This

will be discussed in Section 2.4. To solve the problem of damage in salmon stocks, various

techniques have been introduced, and are used for controlling and preventing the spread of

infected rivers. These are presented in Section 2.5. Finally, the chapter will be summarised in

the last section.

2.2 history

Gyrodactylids are ubiquitous monogenean ectoparasites on the skin and gills of teleost fish

both in marine and fresh water ecosystems. The most recent species compilation lists some

400 gyrodactyids species [61]. Gyrodactylus species Malmberg 1957, is a species of genus found

on fins and skin of Atlantic and Baltic salmon in its freshwater phase. The small (0.5-1mm)

parasite was first described by Malmberg (1957) from salmon parr (scientific name of Salmon)

in a hatchery situated at the river Indalsalven in Sweden. Since then, there have been a

growing number of observations of G. salaris from several countries both on wild fish and on

fish in hatcheries and freshwater fish farms [1].

There are three species that are categorised as being part of the Monogeneans group [2].

These are Dactylogyrus, Benedeniella and Gyrodactylus, as shown in Figure 2.1. Dactylogyrus

is usually attached to the gills of freshwater fish. It reproduces by laying eggs, which are

often resistant to chemical treatment, therefore weekly treatment over a period of 34 weeks is

recommended. The second type is Benedenielle, which is a large monogenea that can cause

chronic problems in marine systems and is difficult to eliminate from a system once established.

The last type, which is the species focused on in this research, is Gyrodactylus. It is usually

found on the skin and fins of freshwater fish and produces live young, so one treatment may

be adequate to control an infestation.

Gyrodactylus has become a common infected species on fish farms and wild fish populations.

200 species have been identified as part of the Gyrodactylus species group and mostly it comes

from North America and Eurasia [18].

The systematics of G. salaris and its closest relatives is complex. For example, there is no

support for the morphology of either G. salaris or its closest relative G. thymalli. G. salaris has
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Figure 2.1: The three type of monogeneans: (a) Dactylogyrus; (b) Benedenielle; and (c) Gyrodactylus.

been introduced in recent years to rivers in Norway, to rivers on the Swedish west coast, and

to a Russian river draining into the White Sea. Until 2007, G. salaris was not found in Poland

[1].

Monogenea of the genus Gyrodactylus have been known for almost 180 years for their

retention of fully grown offspring in utero 1 until they themselves contain developing embryos.

Gyrodactylus was first described as being found in bream (Abramis brama) by von Nordmann

(1832). Gyrodactylids were particularly useful to early microscopists as they are flatworms

without an impervious egg shell. The enclosure of several embryos inside each other also

represented an attractive model for the study of germ cell lineages, a paradigm which was

just becoming established at this time [18].

In Norway in 1975, an infestation of G. salaris [18] caused extensive damage to salmon

stocks at the Akvaforsk fish hatchery in Sunndalφra, Mφre and Romsdal Country. Meanwhile,

in the UK, there have been no reported infections from G. salaris. According to Shinn et al.

[124], fish health authorities operate and execute extensive screening of several species of

salmonid to avoid mortality damage from G. salaris.

Monogeneans are a class of parasitic flatworms that are commonly found on fish and lower

aquatic invertebrates. Most monogeneans are browsers that move about freely on the fish

body surface, feeding on mucus and epithelial cells of the skin and gills; however a few

adult monogeneans will remain permanently attached to a single site on the host. Some

monogenean species invade the rectal cavity, ureter, body cavity and even the blood vascular

1 The state of an embryo or fetus - embryo.
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system. Between 4,000 and 5,000 species of monogeneans are found on fish in fresh and salt

water and in a wide range of water temperatures [2].

Until the mid-1990s, most Gyrodactylus species were identified by the comparing the mor-

phology of the hard parts in the attachment organ, the opisthaptor 2 [1]. Over recent years, the

application of molecular markers in the taxonomy and systematics of Gyrodactylus species has

increased. A description of G. salaris identification routines is given by the World Organisation

for Animal Health (OIE, Manual of Diagnostic Tests for Aquatic Animals). Today, identification

of G. salaris is predominantly based on the sequence of the mitochondrial gene Cytochrome

Oxidase 1 (CO1) 3 [1]. From the computer scientist point of view, the aim is to provide a tool

or system that will automatically and systematically predict the class species. Achieving the

correct, rapid and secure prediction will help to save infected species or rivers from damage.

2.3 morphology

These types of ectoparasite have only been found on the skin but they are often present in

significant numbers. They have viviparous or live offspring. Gyrodactylus are up to 2mm in

length and can readily be distinguished from other monogeneans in skin smears under the

microscope. Bakke et al. [18] stated that Gyrodactylus species are the smallest species among

monogeneans. The Gyrodactylus species are widely known as a unique species as they carry

babies during their development; they are known as viviparous fish parasites. This type of

species does not have any specific transmission stage; the viviparous worms give birth to

fully grown adults, which during the birth process to the same host as the parent and only

subsequently may transfer to a new host [1].

Affected fish, of any age, but generally young fast growing stock, have dark patches over

the body surface, with sloughing areas of skin. They generally do not feed, and the parasites

can be readily seen in skin scrapings, often accompanied by trichodinids (Figure 2.2).

These small (<1mm) viviparous flatworms are ubiquitous, as shown on the fish in Figure

2.3, can infect cephalopods and aquatic tetrapods, and also may be pathogenic and kill their

hosts. Some are economically important pathogens of wild and cultured finfish. Gyrodactylids

2 The posterior and usually complex adhesive organ of a monogenetic.

3 Protein that in humans is encoded by the MT-CO1 gene.
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Figure 2.2: Gyrodactylus salaris clustered on the fin of a small salmon.

are maintained easily in the laboratory and display short, direct life cycles, making them

ideal models to provide insights into a variety of key parasitology questions [61]. Because

of their small size, researchers have investigated making use of the hamuli, marginal hooks

and ventral bars for species recognition and identification. These features will be described in

more depth in Chapter 3, and are shown in Figure 3.1. A detailed explanation of the extraction

features from haptoral hooks will be provided in Chapter 3.

Figure 2.3: Gyrodactylus (Monogenea) from the skin of Clarias batrachus fry.
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Figure 2.4: Gyrodactylus (Monogenea) skeleton hooks morphology; (a) ventral bar, (b) hamulus, and (c)

marginal hook.

G. salaris is spread through anthropogenic movement of infected fish between hatcheries or

fish farms, between hatcheries or fish farms and rivers, and by migration of infected fish in

rivers and in brackish water in fjords 4 [1]. G. salaris can survive and reproduce on rainbow

trout. Rainbow trout have been capable of sustaining G. salaris infections over time (in fish

farms and in wild populations, respectively). Introduction of the parasite to habitats in which

one or more of these species are found is thus a potential range extension. The remaining

species can act as transport hosts within their respective maximum capacity for sustaining an

infection.

2.4 mortality

A key example of the problems described earlier is that the quick reproduction of this species

has caused a huge impact on the ecological system and world food supply. The classification

of a highly pathogenic monogenean species associated with wild and cultured fish mortalities,

from other closely related non-pathogenic species, Gyrodactylus salaris Malmberg, 1957 [18],

which is considered to be very highly pathogenic to Atlantic salmon, (Salmo salar L) is

essential. This species was responsible for the catastrophic decline in salmon stocks in Norway,

where it has caused damage to salmon stocks in more than 40 rivers [18]. Dolmen [42] and

Mo [108] have estimated the impact of G. salaris on juvenile salmon in Norway and found G.

4 Deep, narrow and elongated sea or lakedrain, with steep land on three sides.
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salaris to be responsible for a decline of up to 520 tonnes (20% of the total catch) per year in

catches of adult salmon returning to the rivers to spawn. Gyrodactylus salaris is known to be

present in 11 European countries, and was most recently identified in Italy, where it has been

found in multiple rainbow trout sites. Analysis of archive material from Italy would suggest

that it has been there for many years but has been overlooked [111].

Gyrodactylids monogeneans are widespread parasites of freshwater and marine fishes.

Olstad et al. [1] reported that the disease resulting from Gyrodactylus infections, gyrodactylosis,

has responsible for losses in a wide variety of captive fish species. Little is known about the

disease Gyrodactylosis and the cause of death in infected individuals. In Norway, G. salaris

has caused epidemics that have devastated stocks of Atlantic salmon in many rivers. The

density of salmon in infected rivers has been reduced by an average of 86% and the catch of

salmon in infected rivers is reduced on by an average of 87% [1], [68].

An indirect effect of G. salaris may be the negative effect upon the freshwater pearl mussel

Margaritifera margaritifera caused by reductions in salmon populations. This may cause

reductions in the populations of the fresh water pearl mussel because the larvae (glochidiae)

of the pearl mussel are dependent on Atlantic salmon in certain aspects of their life [1]. Studies

have revealed that freshwater pearl mussel larvae in many water courses have an obligatory

period either in the gills of salmon or trout [84].

In Norway the catch of salmon in infected rivers is reduced by an average of 87%. Total

yearly loss in a river fishery caused by G. salaris is estimated to be about 45 tons [1]. Social

effects occur specially in the area of large salmon rivers with G. salaris due to loss of income

and lost recreational fishery opportunities as the salmon populations is reduced to a very low

level [109].

With these problems, it is important to have a mechanism to predict the identification of

this species. In this study, the focus is on Gyrodatylus species that infect Atlantic salmon. Many

studies have been carried out with regard to species identification. A number of existing

applications of species classification and identification are discussed in the following section.
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2.5 species identification

Many methods and strategies have been explored for classification and identification of true

species of Gyrodactylus. The monogenean Gyrodactylus contains many individual species

including G. salaris and G. thymalli. These two species are the most difficult species to

distinguish between, due to having a very close physical resemblance. Shinn et al. [130]

explain that the morphometric discrimination of Gyrodactylus species can be difficult due to

the small size of taxonomically important structures of key features of the haptoral attachment

hooks.

The main taxonomy for the recognition of the Gyrodactylus species is based on morphology,

predominantly upon the morphometric features of the attachment hooks, as will be described

in more depth in Chapter 3 and shown in Figure 3.1. Referring to Shinn et al. [128], the

opisthaptor of the attachment hook is the main organ of attachment to the host that is used

for identification of the species of the monogenean of Gyrodactylus Malmberg. Additionally,

Bakke et al. [18] have stated that hamuli and ventral bars represent a remarkable taxonomic

resource for carrying out species recognition and identification.

Taxonomic identification is frequently impeded by a multiplicity of problems because of the

need for over-simplification and the use of morphometric descriptors. Boundaries between

species are often poorly defined because of: (1) the simplicity of the forms under study;

(2) the existence of few distinguishable morphometric features; (3) the natural, often large,

variation of these features within the species; and (4) the overlaps between the species in

morphometric space. Some pathogens cause particularly serious damage in host populations,

and to minimise their effects, it is essential to find a method that unequivocally detects their

presence in any given populations. It is desirable that such a method is simple, rapid and

widely available for use in non-specialist laboratories [76].

In addition to this, Shinn et al. [125] have mentioned that to provide taxonomically useful

information, the measurement of the attachment hook must be carried out precisely, despite

the difficulties presented by these hooks being small in size and complex. The predominant

feature for recognition of the Gyrodactylus species is through the ventral bar shape. In critical
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species, like, G. salaris and G. thymalli, the examination of marginal hook and hamuli hooks is

necessary due to the finer points of relationship of a Gyrodactylus [18].

In Norway, measures in hatcheries and fish farms have proved to be effective in extermin-

ating G. salaris. This includes measures like construction of migration barriers and rotenone

treatment, which has been proven to be effective in rivers [67]. Olstad [1] reported that by

2013, 33 of 48 infected rivers had been treated with rotenone. Among these, 20 have been

declared free of the parasite. The remaining 13 were tested within the last 5 years and have

not to date been officially declared parasite free. Olstad [1] also added that in recent years,

treatments with acid aluminium to kill the parasite but not the host have also proven to be

successful. This was tested in the river of Rover Laerdalselva in 2011 and 2012 in an attempt

to get rid of the parasite without killing the host.

Routine screening for the presence of G. salaris as part of national surveillance monitoring

programmes has the potential to generate huge volumes of samples, particularly during

periods of a suspected outbreak, which must be identified rapidly and correctly. Amongst

fish parasites, certain monogeneans such as species belonging to the genera Dactylogyrus,

Gyrodactylus and Benedenia, remain a particularly intransigent economic burden for the global

freshwater and marine aquaculture industries [116]. Gyrodactylus salaris is notoriously difficult

to classify from closely related and morphologically similar species present on European

salmonids. If government policy worldwide is to maintain high standards of fish health and

welfare in cultured and wild stocks, it is vital to have in place techniques to facilitate the

inspection and diagnosis of serious fish parasites such as G. salaris.

Classification of the Gyrodactylus species group poses several difficulties: Firstly, the accu-

mulation of enough expert knowledge to reliably distinguish between species, say, G. arcuatus,

G. salaris and so on; Secondly, manual classification is labour intensive and time consuming;

and thirdly, the most formidable challenge occurs when the point to point measurements are

not accurately taken, which will result in inaccurate species classifications. Finally, at the last

stage of classification, only a domain expert can determine the correct species with their own

vision and experience.

In earlier work, various classification morphometric techniques based on statistical classi-

fication techniques; such as Linear Discriminant Analysis, Nearest Neighbor, Feed-Forward
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Neural Network and Projection Pursuit Regression [76], [104], [126] and molecular techniques;

like a 18S rRNA sequence, Ribosomal RNA and mitochondrial cytochrome c oxidase I [32],[33],

[105], [60] have been developed. These techniques have been proven to work successfully for

species identification. Unfortunately, none of these methods can promise to identify many

species by using a single specific method.

Whilst expert taxonomists may be able to classify G. salaris from other closely related species

(using learned human expertise), the morphometric speciation and molecular characterisation

of the Gyrodactylus species is frustrating and difficult for the reasons described previously. For

this reason, this project aims to develop novel techniques involving intelligent signal image

capture, processing and analysis, and employing state-of-the-art Artificial Intelligence (AI)

algorithms and technologies to provide automated or semi-automated species identification.

The AI related techniques employed in this project will be discussed in greater depth

in chapter 3 of this thesis. Initially, the work proposed in this research project will aim

to successfully classify G. salaris apart from other European gyrodactylids, but with the

eventual objective of developing tools that are capable of accurate generalised Gyrodactylus

classification. It is hoped that the techniques developed as an outcome of this work will be

of practical relevance for identification or classification of a range of aquatic and indeed

terrestrial pathogens, and to taxonomic identification more widely.

2.6 conclusions

This chapter provided an introduction to the problem this research project aims to solve,

to identify the true species of the ectoparasites of monogenean of Gyrodactylus that infect

Atlantic salmon. Firstly, the history of this species is introduced. Monogenean of the genus of

Gyrodactylus have been known for almost 180 years [18]. In Norway, in 1975, G. salaris was

reported [18] to heavily impact on salmon stocks at several fish hatcheries. However, in the

UK, there have been at present no reported G. salaris infections. According to Shinn et al. [124],

fish health authorities have operated and executed extensive screening programmes of several

species of salmonid to avoid mortality damage from G. salaris.
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This chapter also discussed the unique transformation of the species. Gyrodactylus species

are the smallest species among monogenean, and carry babies during their development; being

a viviparous fish parasite [18]. This type of species does not have any specific transmission

stage; the viviparous worms give birth to fully grown adults, which during the birth process

attach to the same host as the parent and only subsequently may transfer to a new host [1].

The Gyrodactylus species are only can be found on the skin. They have a very small body

shape (up to 2mm in length) and can only be seen using a microscope. The main taxonomy

for the recognition of the Gyrodactylus species is based on morphology, predominantly upon

the morphometric features of the attachment hooks; marginal hook, ventral bar and hamuli.

With regard to species identification, this is not an easy task since these hooks are very small

in size and preparation is very time consuming. In addition, identification relies heavily on

domain experts.

The wide range of the Gyrodactylus species was discussed in the mortality section. Gyro-

dactylids monogeneans are widespread parasites of fresh water and marine fishes. Olstad

et al. [1] reported that the disease resulting from Gyrodactylus infections, gyrodactylosis, is

responsible for losses in a wide variety of captive fish species. Finally, the techniques available

for identification of the studied Gyrodactylus species were discussed. Domain experts are

researching the best method for classification and identification of the correct species, which

enables the most appropriate specific treatment to be provided for an infected river. Towards

solving the problem described above, this research objective is to provide a mechanism to

accurately identify the multiple species of Gyrodactylus by applying the state-of-the-art of AI

algorithms and technology.
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3
G Y R O D A C T Y L U S M O R P H O M E T R I C I D E N T I F I C AT I O N

3.1 introduction

As stated in chapter 1, the ultimate aim of this research is to develop an accurate prediction

framework for ectoparasites of Monogenea genus of Gyrodactylus species, which infects

freshwater Atlantic salmon, with a focus on reducing the reliance on the biologist / domain

expert for identification of the correct species. Accurate identification of the species is a must

in order for the appropriate chemical treatment to be provided to the infected river. Chapter

1 introduced the thesis and presented the motivation and goals of this research. Chapter 2

presented the background and description of the species that is the focus of this research, and

also investigated the mortality effect of this species on the eco-system and food supply.

This chapter presents the application of machine learning classifiers and feature selection

techniques for predicting multiple Gyrodactylus species. To improve the accuracy of identifica-

tion of the correct species, an ensemble based majority voting approach has been proposed;

with the application of multiple classifiers and feature selection methods. Firstly, the descrip-

tion of the dataset being utilised has been provided, including a review of the collection and

preparation of the data. This dataset has been collected and prepared by the Parasitology

team of the Institute of Aquaculture, University of Stirling.

Also covered in this chapter is the wrapper technique of feature selection. Here, it has been

decided to apply three well-known methods. These are Sequential Forward Selection (SFS),

Sequential Backward Selection (SBS) and Sequential Forward Floating Selection (SFFS). Feature

selection has been considered because it is a process of transforming the existing features into a

lower dimensional space. It will select a subset of the existing features without transformation.

The, following section will then introduce machine learning classification. Various machine

learning classification approaches are widely available and have been studied in various types
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of application problems [23], [58], [94], [149]. The application of these techniques has been

demonstrated and results presented.

As the objective of this research project is to classify and identify multiple species of

Gyrodactylus accurately using machine learning classifiers and feature selection techniques,

multiple classifiers and feature sets are considered for constructing an ensemble classification

approach for Gyrodactylus species identification. In this study, the Linear Discriminant Analysis

(LDA) and K-Nearest Neighbor (K-NN) approaches form the classifier base; while three

different feature sets are considered in order to classify the multiple species. These are the 25

full feature set, 21 selected features using the SFS method and 20 selected features from the

SBS method.

The remainder of this chapter covers a number of different areas. Firstly, section 3.2

describes the morphometric dataset. This dataset will be used in the demonstration of the

results arising from this research project. This is followed by a review of feature selection

techniques, where the wrapper feature selection approaches have been further discussed and

applied to the morphometric features of the Gyrodactylus dataset. In the next section, machine

learning classification techniques have been reviewed, along with experiments that have been

conducted in applying the various machine learning methods to the Gyrodactylus specimens.

This is followed in section 3.5 by the propose ensemble classification and feature selection

methods being carried out. In this section, the proposed method for identifying multiple

specimens has been proposed. This chapter is summarised in section 3.6.

3.2 morphometric dataset

In this chapter, the morphometric dataset based on point to point feature extraction has

been used for analysis and classification. All the specimens were collected and prepared by

researchers within the Parasitology Laboratory at the Institute of Aquaculture, University of

Stirling, United Kingdom. Those species were collected from various countries and places. In

this study, nine species of Gyrodactylus of morphometric dataset were considered. There are G.

arcuatus, G. derjavinoides, G. kherulensis, G. gasterostei, G. salaris, G. sommervillae, G. thymalli, G.

truttae and G. cichilidarum.
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3.2.1 Data Collection

A total of 557 species from nine different group of ectoparasites of Gyrodactylus were sampled

for studies using light microscopy. The description of the sites sampled is given in Table

3.1. For this study, samples were collected from wild and farmed salmonids over a wide

geographical range.

Referring to Shinn et al. [128], the opisthaptor of the attachment hook is the main organ

of attachment to the host in identification of the species of the monogenean of Gyrodactylus

Malmberg. In this study, the feature information was extracted from the tree part of opisthaptor

attachment hooks; hamuli, ventral bar and marginal hook.

Data preparation is involved because once the data has been cleaned and processed, only

then can the process of point-to-point measurement be performed. In data collection, only the

authorised person who has the license is allowed to catch and process the infected fish. In

this study, the preparation before the point to point measurements was carried out either by

masters students or scientists from the parasitology lab of Stirling University.

Specimens of Gyrodactylus species were removed from their respective fish hosts and fixed

in 80% ethanol until required. Individual specimens were subsequently rinsed in distilled

water, transferred to a glass slide, had their posterior attachment organ excised with a scalpel

and the attachment hooks released using a proteinase-K based digestion fluid (i.e. 100 µg/ml

proteinase K (Cat. No. 4031-1, Clontech UK Ltd., Basingstoke, UK), 75 mM Tris-HCl, pH 8, 10

mM EDTA, 5% SDS). The digestion process was stopped through the addition of 3 µl of a

50:50 formaldehyde:glycerine solution. A coverslip was added to the preparation, which was

sealed using a commercial nail varnish.

An image of the attachment hooks from each specimen was captured using an AxioCam

MRC (Zeiss) 1.5 megapixel camera fitted with a MicroCam Olympus LB Neoplan D-V C

mount 0.75× interfacing lens attached to an Olympus BX51 compound microscope. The

specimens were viewed under 100× oil immersion objective using MRGrab v. 1.0.0.0.4 (Carl

Zeiss Vision GmbH, Munchen, Germany) software.

The image for each specimen was then loaded into the Point-R software (ver. 1.0 © University

of Stirling, 2003) running within the KS300 v3.0 image analysis environment (Carl Zeiss Vision
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Table 3.1: Location of data sampling of the nine species of Gyrodactylus

True Species (Gyrodactylus) Site Location Num. Of sites sampled

arcuatus L. Airthrey, Scotland 24

derjavinoides Gd Denmark 135

gasterostei L. Airthrey, Scotland 30

kherulensis Gs Norway 30

salaris Gs Norway 2

salaris Gs Denmark 1

salaris Finland RT fins Jyvaskyla 2

salaris Gs Norway 6

salaris Lierelva, Norway 30

salaris Rauma, Norway 30

sommervillae Blenheim Palace Lake 30

thymalli Poland 44

thymalli UK 45

thymalli Rena, Norway 40

truttae Czech Republic 50

truttae Scotland 27

truttae Denmark 3

cichlidarum Thailand 14

cichlidarum Stirling 16

cichlidarum Philippines 12

cichlidarum Ecuador 13

cichlidarum Colombia 15
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Figure 3.1: Gyrodactylus (Monogenea) skeleton hooks morphology; (a) hamuli, (b) marginal hook, and (c)

ventral bar were measured using point-to-point measurement.

GmbH, Munchen, Germany) which permitted 25 point to point measurements to be made on

the attachment hooks of each specimen. This application was used for measuring the point-to-

point values of the attachment hook, such as angles etc. Only then can the classification be

performed to predict the true species of Gyrodactyllus. Figure 3.1 illustrates the points that are

measured during the point-to-point measurement procedure.

This study focuses on the discrimination of Gyrodactylus species commonly infecting sal-

monids and other key fish species which are regularly assessed as part of statutory national

surveillance programmes throughout the UK. These include G. derjavinoides Malmberg, Collins,

Cunningham et Jalali, 2007, G. salaris Malmberg, 1957, G. thymalli Žitňan, 1960 and G. truttae

Gläser, 1974. In addition, species that could accidentally parasitise salmonids such as G.

arcuatus Bychowsky, 1933 and G. gasterostei Gläser, 1974 were included, as well as species that
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may be confused with G. salaris, species such as G. lucii Kulakovskaya, 1952. Other potentially

problematic species including G. kherulensis Ergens, 1974 and G. sommervillae Turgut, Shinn,

Yeomans et Wootten, 1999 were also considered. Finally G. cichlidarum Paperna, 1968, a parasite

of Nile tilapia, Oreochromis n. niloticus (L.) was included as an outlying group. Gyrodactylus

salaris and G. thymalli were identified as the most difficult to classify since they are closely

related and morphologically similar. Shinn et al. [130] explains that the morphometric dis-

crimination of Gyrodactylus species can be difficult due to the small size of taxonomically

important structures i.e. the haptoral attachment hooks.

Morphometric data (25 point of measurements) were collected from glass slide mounted

specimens prepared for light microscopy. Of the 25 features, 11 were extracted from one

of the paired central hamuli (anchors), 6 from the ventral bar which spans the two hamuli,

and 8 from one of the 16 peripheral marginal hooks. The 25 points are: hamulus: total

length (HTL), point length (HPL), shaft length (HSL), root length (HRL), aperture distance

(HAD), proximal shaft width (HPSW), inner angle (HIA), distal width (HDSW), inner curve

length (HICL), aperture angle (HAA), point curve angle (HHPCA); ventral bar: total length

(VBTL), total width (VBTW), process-to-mid length (VBPML), median length (VBML), process

length (VBPL), membrane length (VBMBL); and marginal hook: total length (MHTL), shaft

length (MHSHL), sickle length (MHSL), sickle proximal width (MHSPW), sickle distal width

(MHSDW), sickle toe length (MHSTL), sickle aperture (MSHAD), instep height (MHIH). All

25 points are categorised as scale type data and are measured in micrometers (µm).

In this research project, only monogenea of Gyrodactylus species are focused on for correct

identification of their true classes. In Gyrodactylus species, there are nine collectable species

available to be used in experiments. The total number of specimens for this purpose of study

is 557. The breakdown of numbers for each species is presented in Table 3.2.

3.3 feature selection techniques

Feature selection is performed before classification, and is not the same as feature extraction.

Feature selection is a process of transforming the existing features into a lower dimensional

space. This involves selecting a subset of the existing features without transformation. A

25

[ 2nd March 2015 at 0:00 ]



Table 3.2: Detailed breakdown of the Gyrodactylus species and their number of specimens.

Species name (Gyrodactylus) Number of specimen

G. arcuatus 24

G. derjavinoides 137

G. gasterostei 30

G. kherulensis 30

G. salaris 71

G. sommervillae 30

G. thymalli 85

G. truttae 80

G. cichilidarum 70

Total 557

common justification for the application of feature selection is to remove redundant features

and thus improve classification performance. The problem of object classification normally

involves the difficulty of extremely high dimensional feature space which sometimes makes

learning algorithms intractable [43]. This section discusses the opportunities in the application

of feature selection, and also defines a number of specific feature selection techniques that are

used in this research project. Original experiment results of using these techniques to perform

feature selection using the training database are then presented.

A standard procedure to reduce the feature dimensionality is called feature selection (FS).

There are various FS methods, such as wrapper and filter techniques [4], [43], [55]. The filter

method does not require the use of a classifier to select the best subset of features, while in

the wrapper feature selection approach, it uses a classifier to evaluate the classification error

rate as the evaluation function. These two highlighted approaches are the main categories of

the available feature selection techniques, and these are divided into sub-categories that will

be reviewed in further detail in the following section.

A range of FS approaches have been proposed for the task of making object classification

more efficient and accurate. Given a feature set of X = (Xp | p = 1...B), find a subset EC =
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(Xp1,Xp2, ...,XpC), with B > C, that optimises an objective function Z(E). This will maximise

the ability of the system with regards to classifying object instances. Many researchers make

use of FS methods because of the benefits gained from this application. FS techniques are

not limited only to specific applications such as classification, but have been applied to other

areas such as amongst others, bioinformatics [121], text categorisation [35] and healthcare

[49]. In clinical decision support, the FS technique has also been successfully applied to

automated cancer diagnosis based on histopathological images [39] and also ultrasound and

mammography images [145].

There are many potential benefits gained from performing FS methods on a dataset,

especially if the numbers of features present are large. According to Acuňa et al. [4], there are

two main reasons to justify FS in order to perform classification: (1) A saving of computing

time and (2) An easy interpretation of the model. Following on from these reasons, it is hoped

that classification performance and accuracy will be improved. The goal of FS is to reduce

dimensionality by removing redundancy and less significant features; and improving the

classification rate. Certain datasets might consist partially of redundant features that will

negatively affect classification performance. In general, FS methods search through subsets of

features, and try to find the best one among all the competing candidate subsets according to

some evaluation function.

Another proponent of the FS method is Doraisamy et al. [43], who found that when the best

feature subset has been selected, it will result in better classification accuracy, as proven when

it was implemented with regard to Traditional Malay Music (TMM). In addition, reducing

the feature set before the classification stage may result in the improvement of the quality of

knowledge extracted and increases the speed of computation [5]. Saeys et al. [121] also point

out the objective of feature selection. These are: (1) to avoid overfitting and improve model

performance; (2) to provide faster and more cost-effective models; and (3) to gain a deeper

insight into the underlying process that generated the data.

In selecting the optimum features, the item properties may depend strongly on each

other and a subset of individually bad features may prove to be rather good because of

positive interaction effects. Because of this uncertainty, the only apparent way of searching

for optimal subsets is simply to evaluate all the possible item combinations. However, testing
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all subsets is a combinatorial problem that requires an exponential of computational time

[133]. According to Dasgupta et al. [35], feature selection is the process of selecting a subset of

features available for describing the data before applying a classification or prediction. It has

been widely observed that feature selection can be a powerful tool for simplifying or speeding

up computations.

FS methods depend on the way that the subsets are generated and on the evaluation

function used to evaluate the subset under examination. There are many FS techniques that

have been discussed and reviewed. For example, Doraisamy et al. [43], discuss the differences

between the main categories of FS methods. The wrapper method generally provide better

results than the filter method, due to the selection process being optimised for one specific

classification algorithm, while the filter method works faster than the wrapper method, and

this type of approach is highly recommended for high dimensional datasets that have a large

number of features. For example, bioinformatic data [121].

The following section will review multiple types of feature selection techniques available,

such as forward selection and correlation based feature selection. In the filter model type

search, the way they evaluate the informative features is by looking only at the intrinsic

properties of the data [121]. All the features are calculated and the features with the lowest

score are removed. The advantages of this type of selection are that it can easily be scaled

to very high-dimensional datasets, and that it is computationally fast and simple. This type

of classifier is most recommended when the dataset used has a large number of features

[43]. According to Gheyas & Smith [55], filter methods are fast but lack robustness against

interactions among features and feature redundancy. They also added that it is not clear how

to determine the cut-off point for rankings in order to select only truly important features and

exclude noise.

The wrapper technique will identify good features based on the classification performance.

A search procedure in the space of possible feature subsets is defined and various subsets

of features are generated and evaluated. To search the space of all feature subsets, a search

algorithm is then wrapped around the classification model [121]. Although it is computation-

ally expensive to execute, it has the ability to take into account feature dependencies, unlike
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the filter method. The wrapper approach is generally better than the filter technique because

it uses the classification model in the evaluation [43], [55].

In addition to filter and wrapper techniques, there is also the embedded technique. This

technique will search for an optimal subset of features as part of the classifier construction,

and can be seen as a search in the combined space of feature subsets and hypotheses. This type

of selection also relies on classification performance for evaluating the best features and is less

computationally expensive to execute. However, general theoretical performance guarantees

are modest and it is often difficult to claim more than a vague intuitive understanding of why

a particular feature selection algorithm performs well when it does [35].

Wrapper methods can be divided into two groups based on search strategy: (1) greedy;

and (2) randomised or stochastic. Greedy wrapper methods use less computer time than

other wrapper approaches. Sequential Forward Selection (SFS) [26] and Sequential Backward

Selection (SBS) [31] are the two most commonly used wrapper methods that use a greedy

hill-climbing search strategy.

In this study, only the wrapper method has been used for experiments and implementation.

The selection of wrapper method is because the accuracy of the classifier can be estimated

through the selection of the feature subset. The found optimum feature subset will be used

for training the classifier. As stated by Inza et al. [65], the wrapper approach obtains better

predictive accuracy estimates than the filter approach. This fact was also supported by Hall &

Smith [59], the wrappers often achieved better results due to the fact that they are tuned to

the specific interaction between an induction algorithm and its training data.

There are a number of wrapper techniques, such as Forward Selection, Backward Selection,

Sequential Forward Floating Selection and Sequential Backward Floating Selection. According

to Somol et al. [134], Li et al. [86], this method requires one predetermined learning algorithm

in feature selection, and its performance is then used to evaluate and determine which

features are selected. In other words, the classifier is used to control the selection of features.

Unfortunately, this method is more computationally expensive in comparison to the filter

method. Figure 3.2 [78] shows the outline of how the wrapper method procedure is conducted.

The feature subset selection algorithm exists as a wrapper around the induction algorithm.

The feature subset algorithm conducts a search for a good result using the induction algorithm
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Figure 3.2: The procedure in the wrapper method for selecting informative features.

itself as part of the function evaluating feature set, while the task of the induction algorithm is

to induce a classifier that will be useful for classifying future cases. In this study, the logistic

regression model has been used as the induction tool for the selection of the best features

for species identification. This is an iterative process, repeated until the optimum number of

features has been acquired.

The selection of Logistic regression as the induction tool in feature selection is because it

requires fewer restrictive assumptions [24]. The characteristic of logistic regression is that it

has the ability to perform classification or selection when the distribution is not equal within

the group variance covariance. As discussed previously, the number of available specimen in

different species groups is unequal, therefore, the logistic regression has been considered to

be more suitable. This is also supported by Komarek and Moore [80], who state that logistic

regression is often faster to train than more complex models like Random Forest and SVM. In

many problems it is the preferable method to deal with high dimensional data sets.

For selecting optimum features, it is not a requirement to have a unique set of feature if they

result in the same accuracy using different sets of features. By this it is meant that if the set of

features has been added to or removed from, and this does not cause any significant affect to

the classification performance, then it will not be relevant for feature selection. The objective

is to have a set of features that can boost classification performance and thus minimise the

misclassification error. In the wrapper technique, a black box approach has been applied to

feature selection through an induction algorithm. In the black box approach (i.e. no knowledge

of the model is needed, just the interface), it will keep searching and evaluating the best of
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features amongst the available features using a specified induction method [78]. In selection

of the optimum features, a feature X is strongly relevant if removal of X alone will result in

performance decrement of a classifier.

3.3.1 Sequential Forward Selection (SFS)

Sequential Forward Selection (SFS) starts with an empty set and greedily adds attributes one

at a time. At each step, SFS adds the attribute that when added to the current set, yields the

learned structure that generalises best [72]. Once a feature is added, it is never removed [55].

SFS is robust to multicollinearity problems but sensitive to feature interaction.

Kolodyazhniz et al. [79], Liu & Wang [89], Somol et al. [134] explain that SFS is an algorithm

that starts with an empty set of features. The criterion in selecting a subset of features is based

on the minimum value of the resulting classification errors when utilising the subset. This

procedure is implemented for the classification process, where it was used for training. The

selection process will be terminated once it is found that there is no more improvement in

model performance that can be achieved. For example, if adding a new feature, does not

increase the accuracy, then the model of selection will be stopped.

It starts from an empty set, and sequentially adds the feature A+ that maximises E(Bj+A+)

when combined with the features Bj that have already been selected.

1. Start with empty set B0 = φ.

2. Select the next best feature A+ = argmaxA/∈Bj E(Bj +A).

3. Update Bj +A+; j = j+ 1.

4. Go to 2 (repeat until the optimum set of features is acquired).

3.3.2 Sequential Backward Selection (SBS)

SBS starts with all attributes in the attribute sets and greedily removes them one at a time

[72]. It begins with a candidate matrix and sequentially eliminates the least important row

at each step until the desired number of rows remains. This explanation is also supported
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by Kolodyazhniv et al. [79], who state that the model will start to eliminate features one

by one from the full basket of features. It will only stop this selection process when the

optimum features are found. SBS often finds difficulties in identifying the separate effect

of each explanatory variable on the target variable. In SBS, once a feature is removed, it is

removed permanently [55].

SBS starts from the full set and sequentially removes the feature A− that least reduces the

value of the objective function F(B−A−).

1. Start with full set B0 = A.

2. Remove the worst feature A− = argmaxA∈Bj E(Bj −A).

3. Update Bj+1 = Bj −A
−; j = j+ 1.

4. Go to 2 (repeat until the optimum set of features is acquired).

3.3.3 Sequential Forward Floating Selection (SFFS)

SFFS is characterised by the changing number of features included or eliminated at different

stages of the procedure [72]. SFFS works in a similar manner to the SFS, but for every new

subset it enters a backtracking loop that attempts to find a better subset than that of its

predecessor by removing one feature at a time. This is repeated until no better subset is

found and the backtrack loop is then exited. This algorithm has been found to have near

optimal results on some experiments [114]. This definition is also supported by Vervedis et

al. [144], who describe SFFS of consisting of a forward step and a conditional backward step.

This means that at every step, feature insertion and deletion will be involved throughout the

process until the optimum feature subset has been achieved.

The floating search algorithm attempts to improve the feature subset after every step by

means of backtracking. Consequently, the resulting dimensionality in respective intermediate

stages of the algorithm is not changing monotonically but is actually floating up and down

[133].

SFFS starts from an empty set. After each forward step, SFFS performs backward steps for

as long as the objective function increases.
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1. B0 = 0.

2. Select the best feature

A+ = argmaxA/∈BjG(Bj +A).

Bj = Bj +A
+; j = j+ 1.

3. Select the worst feature

A− = argmaxA∈BjG(Bj −A)

4. If G(Bi −A−) > G(Bj) then

Bj+1 = Bj −A
−; j = j+ 1.

Else

Go to step 2 (repeat until the optimum set of features are obtained).

3.3.4 Results and discussion

Considering too many features in classification may result in difficulties in the prediction and

interpretable capabilities of the model due to redundancy, non-informative features and noise

[120]. Hence, it is usually necessary to apply feature selection. In general, feature selection

has two components, which are the generated proposed feature subsets; and the evaluation

algorithm that determines how good a proposed feature subset is.

Table 3.3 shows feature selection implemented with the original 25 features of morphometric

data. As mentioned earlier, these 25 features were identified by domain experts from the

School of Aquaculture in Stirling. Three feature selection techniques have been used; SFS, SBS

and SFFS. Using the SFS method, instead of 25 features, SFS selects only the best 21 features

to classify the Gyrodactylus species. On the other hand, SBS extracted 20 features. Finally,

when applying the SFFS method to the original 25 features, 7 features were identified. These

features are then considered for identification of the nine species of Gyrodactylus.

Floating search was suggested by Pudil et al. [114] to reduce the problems faced by SFS and

SFS methods. Floating search methods such as SFFS perform greedy search, but as discussed,

have additional provision for backtracking. However, a study [55] found that SFFS did not
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Table 3.3: Feature selection. A wrapper method which uses Sequential Forward Selection (SFS), Sequen-

tial Backward Selection (SBS) and Sequential Forward Floating Selection (SFFS) to select new

sets of morphometric features extracted from the attachment hooks of Gyrodactylus. The full

name of each structure (abbreviation) is given in Section 3.2.

Features SFFS SBS SFS

(n=7) (n=20) (n=21)

HAD x

HPSW x x x

HPL x x x

HDSW x x x

HSL x

HICL x x

HAA x x x

HPCA x x

HIA x x

HRL x x

HTL x x

VBTW x x

VBTL x

VBPML

VBML x x

VBPL x x

VBMBL x x

MHTL x

MHSL x x x

MHSickL x x x

MHSPW x x

MHToe x x

MHSDW x x

MHAD x x

MHIH
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produce superior performance to SFS because the effect of sequentially adding or removing

features is that the utility of an individual feature is often not apparent on its own, but only in

combinations including just the right other features, and deleting individual features without

taking this into account can negatively affect results. When performing selection of 25 features

of Gyrodactylus species with SFFS, using the 557 specimens of nine different species, only

7 features are selected as consisting of the optimum feature subset, whereas, using the SFS

method, only four features are eliminated from the total number of features in the full set.

These sets of features will be used as part of experimental work with various types of

machine learning for the purpose of species identification. These results will then be compared

with each other in order to identify the best classifier for classifying the multiple species of

Gyrodactylus. From there, the strength of each feature subset will be determined, by comparing

results to those found using the original full set of features.

3.4 machine learning classification

Machine learning has been utilised in this research project for Monogenea of Gyrodactylus

species identification. Identification of the mortality of the species is a requirement in order

for the specific treatment to be provided to control the spread of the species from an infected

region to the entire river. Currently, there are many applications of machine learning classifier

techniques available including road traffic sign detection [150], face identification [153] and

bioinformatic [50]. Classification is defined as a way of grouping together objects or classes

that share some properties in same class entities, while distinct classes are assigned to entities

having distinct classes [32]. Classification functions by assigning an object to a specific class,

where the classes or groups have already been established with the aid of a training set. Basic

information is required to perform analysis using classifiers, regardless of the type of classifier

to be used. The first step is to acquire the data vector, which either uses data gathered from

observations or from analysis. In addition to the data vector, features are another mechanism

that is required to describe the class for each data vector [147, 47].

Machine learning classification techniques, can be divided into main categories, supervised

and unsupervised learning. These two categories have the same goal, which is to assign an
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input feature vector X = X1, ...,Xn in D (a feature set), representing an object, to a member

of the class set Y = Y1, ...,Ym. This goal can be accomplished by inducing a classifier from a

given set of training examples [57].

Any classifier that has been trained first with the pattern of the problem, then processed

using real data is categorised as being a supervised learning classifier [46]. Take an example

of digit recognition. The objective of this classification is to assign each input vector to one of

the class label; as providing using training examples. Examples of supervised learning include

Linear Discriminant Analysis, K-Nearest Neighbor, and Naive Bayes.

Non-linear classifiers have non-linear, and possibly discontinous decision boundary [46],

[53]. Non-linear classifier has manage to perform and provide good classification performance

in many areas. According to Zhouyu et al. [52] the non-linear of Support Vector Machine

(SVM) can handle linearly inseparable data but is not as efficient as linear classifier. This is

due of their complexity with the number of support vectors. Another example of non-linear

classifier is Multi-layer Perceptron (MLP).

McHugh et al. [104] reported on research where LDA and K-NN were used with morpho-

metric data to discriminate the notifiable pathogen Gyrodactylus salaris from G. thymalli

(Monogenea). In their analysis, when comparing between these two classifiers, LDA produced

better classification performance, even though another two species (G. derjavinoides and G. trut-

tae) were added to the system,with LDA continuing to show a higher accuracy performance

in comparison to the K-NN classifier.

A statistical classification was also demonstrated by Kay et al. [76] for discriminating a

notifiable pathogen of Atlantic salmon from its benign close relatives. In their research, they

evaluated four types of classifiers: Linear Discriminant Analysis (LDA), K-Nearest Neighbor

(K-NN), Feed-Forward Neural Networks (FFNN) and Projection Pursuit Regression (PPR).

Among these classifiers, the K-NN was found to achieve better performance compared to the

others when they were implemented using 470 specimens for discriminating between three

species groups (G. salaris, G. derjavinoides and G. truttae).

For this project, it was decided to evaluate four different classification approaches to

perform species identification using the dataset of 557 specimens from the nine different

species of Gyrodactylus with the original feature set of 25 features. The four chosen classifier
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types are LDA, K-NN, MLP, and SVM. The selection of these classifiers was according to the

performance shown in previous experiments using the Gyrodactylus dataset. While the SVM is

a relatively recent model, it was found to have good performance [19], [57]. These classifiers

are then comparatively evaluated to define the best classifier for minimising the classification

error with regard to species determination. Next, the four classifiers used in this study are

reviewed in further detail.

3.4.1 Linear Discrimination Analysis

This is the standard and the oldest method used for classification. Linear Discriminant Analysis

(LDA) [115] is a method used in statistical and machine learning techniques to find a linear

combination of features which best characterise or separate two or more classes of objects or

events. LDA is trained using continuous feature variables from different classes of items to

highlight aspects that distinguish the classes, and uses these measurements to classify new

items [93].

The purpose of LDA in the context of this research is to classify objects (Gyrodactylus

specimen) into one or more classes based on a set of features (11 features extracted from

hamulus, six from ventral bar, and 16 from marginal hook) that describe the objects (G.

arcuatus, G. derjavinoides, G. gasterostei, G. kherulensis, G. salaris, G. sommervillae, G. thymalli, G.

trutte and G. cichilidarum). In general, an object is assigned according to a set of features that

have unique discrimination characteristics. LDA is highly recommended [147], [113] when the

classes are linearly separable. Linearly separable suggests that the classes can be separated

by a linear combination of features that describe the objects. The LDA score or discriminant

function of an observation N̂ is given by

N̂i =W0 +Wi1D1 +Wi2D1 + ... +WinDn (3.1)

The subscript i denotes the respective class, while subscript 1, 2, ...,n(p) denotes the n

features. N̂i is constant for the ith class. Dp is the observed value for the respective case for

the pth feature. N̂i is the prediction classification score.
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It will compute the mean of each dataset and the mean of entire dataset. Let D1 and D2

be the mean of set 1 and set 2 respectively and D3 be the mean of the entire data, which is

obtained by merging sets 1 and 2. Then, within-class and between-class are used as the criteria

for class separability.

The basic idea of LDA is to find the linear transformation that best discriminates between

classes, and the classification is then performed in the transformed space based on some

metric such as Eucidean distance. Mathematically, a typical LDA implementation is carried

out via scatter matrix analysis [87].

If the number of classes is more than two, then a natural extension of Fisher Linear Discrim-

inant exists using multiple discriminant analysis. As in the two class case, the projection is

from high dimensional space to a low dimensional space and the transformation still aims to

maximize the ratio of intra-class scatter to the inter-class scatter. But unlike the two-class case,

the maximization should be performed among several competing classes.

For performing classification using the LDA model, three components are involved. These

are known as the test set, the training dataset, and the classification labels. The procedure

involved is to classify each row of the data in the test set (with each row corresponding to a

single row of features, into one of the classification labels contained in the training set using

the trained classifier. Both the test and training datasets must be matrices with the same

number of columns (i.e. the same number of features). The classification label is an example

of a grouping variable used for training. Groups are defined by unique classification values,

with each element in the training set corresponding to a labelled group. When using the test

dataset, the classifier will make use of the features to determine which classification label

each row of the test data matrix is assigned to, based on one of the groups identified during

training. This implementation is based on the Statistical Toolbox in MATLAB.

3.4.2 K-Nearest Neighbours

The K-Nearest Neighbor (K-NN) classification algorithm is the simplest method and categor-

ised as a lazy-learning algorithm [107], where it delays the induction or generalisation process

until classification is performed. Kotsiantis [81] stated that K-NN is based on the principle
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that instances within a dataset will generally exist in close proximity to other instances that

have similar properties. The way classes are determined is by observing the class of its nearest

neighbours [135], [62].

K-NN finds the K nearest neighbour and uses a majority vote to determine the class label.

The way K is determined is through prediction by testing each K value one by one. From the

list of K, the K with the maximum accuracy is then selected. The training data are computed

first, the similarities of one sample from the testing data to the K-NN can then be calculated

according to the class of the neighbours [34]. In this study, k = 3 is identified as the best

nearest neighbour for predicting species class, while Euclidean distance has been chosen for

calculating the distance.

Suppose that two vectors Xp and Xu, Xt = X1p,X2p,Xmp , Xu = X1u,X2u,Xmu , the distance

between Xp and Xu is

(Xp,Xu) =

√√√√ m∑
mm=1

(Xmmp −Xmmu )2 (3.2)

Referring to Cunningham et al., [34], the advantage of K-NN classifiers is their robustness

to noisy training data and that is why most many recognition systems, such as offline

handwritten signature identification [131], classification for unbalanced dataset [152] and

analysing received signals [13] use this type of classifier in their analysis. Yazdani et al. [148]

mentioned that K-NN is a good tool for dealing with problems in which the number of classes

are larger than two.

The procedure for performing K-NN classification is similar to the LDA approach. This

type of machine learning classifier is implemented using the Statistical Toolbox in MATLAB.

It also involves the same three components as in LDA; test and training datasets, and the

classification labels. In this model, the classifier assigns each row of the test dataset to a

particular label, based on the labels determined by the labelled training data. Again, similar

to the LDA approach, the training and test datasets must be matrices with the same number

of columns. The classifier will assign each row of the test data matrix to the classification

label that corresponds to the closest match, based on the training data. The output of this

classification will provide a classification label for each row of the test dataset.
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Figure 3.3: K = 3 has been identified to be the best k value in the K-NN model.

The selection of k = 3 is due to preliminary experimental results. As shown in Figure 3.3, a

number of different values for k were experimented with for classifying nine different species

of Gyrodactylus using the full 25 feature set. It can be seen Figure 3.3 that the highest average

value was found when k = 3. It was therefore decided that in further experiments and analysis

in the remainder of this research, it would be appropriate to consistently use the K-NN with

the value of k set to 3.

3.4.3 Multi-layer perceptron

The multi-layer perceptron (MLP) is one of the most popular types of Artificial Neural Network

classifier (ANN). An ANN is a set of connection models inspired by the behaviour of the

human brain. It is a mathematical or computational model that tries to simulate the structure

or functional aspects of biological neural networks. An ANN consists of an interconnected

group of artificial neurons, and processes information using a connectionist approach to

computation [140]. This type of classifier is a kind of non-linear statistical data modelling tool.

It can be used with a complex model to find patterns or / of data. In a MLP, the neurons are
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grouped in layers (an input layer, one or more hidden layers, and an output layer) and only

forward connections are involved. A MLP provides a powerful base-learner, with advantages

such as non-linear mapping and noise tolerance. This type of classifier has been increasingly

used in data mining due to its good behaviour in terms of prediction of objects.

In order to classify objects, MLP uses the backpropagation function. Backpropagation is a

like mapping system for organising the input/output of the objects. For a pp dimensional

input vector and a qq dimensional output vector, the MLP input/output relationship defines

a mapping from a pp dimensional Euclidean space to a qq dimensional Euclidean output

space, which is infinitely continuously differentiable [139].

MLP are formed by Z̆ number of neurons in the hidden layer, with Vrs representing the

weight between the neuron B̆ (hidden layer) and the neuron R̆ (output layer). Vsc is the weight

between the neuron Ă (input layer) and the neuron B̆, ϕR̆ is the non-linear activation function

in the output layer and ϕs is the non-linear activation function in the hidden layer. In sample

p, the input vector is Xp = (X1p,X2p, ...,XBp), the MLP output of the neuron is R̆ (where

R̆ = 1, 2, ...,k); and these are expressed through [139]:

R̂j(Xp) = ϕR̆

(
z∑
s=0

Vrsϕs

(
zz∑
c=0

VscDcn

))
(3.3)

Albuquerque et al. [36] discusses the advantages and disadvantages of the MLP algorithm.

This type of non-linear classifier, offers a reduction in segmentation time and promises a higher

quality of results. However, the drawback with this algorithm is that it is time-consuming,

especially in scenarios where the initial weights are randomly defined, which may result in

considerable training time if a lot of training is needed.

This type of classifier uses back propagation to classify instances. The network can be

monitored during training. The nodes in this network are all unthresholded units because the

classification label is numeric. Table 3.4 shows the parameter settings used in this work for

MLP based classification. The implementation and running of the MLP uses WEKA [101].

The MLP model we use involves three types of layers; an input layer for features, an output

layer for classification, and a hidden layer. The number of neurons in the hidden layer for this

model is based on the number of features and classes. In this case, if 25 features is given as

the input layer and nine species or classifications as the output layer, then the hidden layer is
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Table 3.4: Parameter settings for MLP classification model

Parameter Value

Hidden layer number of features + number of species

Learning rate 0.3

Momentum 0.2

Training time 500

Validation threshold 20

the sum of these two layers. The learning rate parameter represents the amount the weights

are updated during the training process. Momentum is applied to the weights during the

updating process. Another parameter shown in Table 3.4 is the validation of the threshold. It

is used to terminate validation testing. The value here dictates how many times in row the

validation set error can get worse before training is terminated.

3.4.4 Support Vector Machine

The Support Vector Machine (SVM) was introduced by Vladmir Vapnik in early 1970 [112].

This type of classifier was said to outperform many well other known classification algorithms

[57], [66]. SVM are based on the Structural Risk Minimisation (SRM) principle, and their goal

in the context of this research is to produce a model which predicts a species classification

of data instances in the testing set when are given only the input features [57], [94]. From

the definition given by Vapnik, a SVM has support vectors, which are the data points that

lie closest to the decision margin (hyperplane). They have a direct bearing on the optimum

location of the decision margin. Given labelled training data, the algorithm outputs an

optimal hyperplane which can be used to categorise new examples. The operation of the SVM

algorithm is based on finding the hyperplane that gives the minimum distance to the training

examples.
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A trained SVM has a scoring function which computes a score for a new input. The

following equation is the scoring function that is used to compute the score for an input vector

x,

ii∑
i=1

YiK̆(Xi,X) + b̆ (3.4)

where Xi, Yi represents the ith training example that consists of the features and class

information. Here, K̆ is what is known as a kernel function, while b̆ is the scalar value. In this

study, it was decided to use the polykernel or polynominal function [66], since it is a standard

kernel function in SVM implementation.

In the same way as the MLP, classification with the SVM is implemented using WEKA [101].

In WEKA, the SVM model implements sequential minimal optimisation by John Platt [105]

for training a SVM. The parameter setting of the SVM model is defined in Table 3.5.

Table 3.5: Parameter setting for SVM classification model

Parameter Value

Complexity 1.0

Kernel Polykernel

The complexity parameter is used to build the hyperplane between any target classes, which

can be used for classification. Intuitively, a good separation is achieved by the hyperplane that

has the largest distance to the nearest training data points of any class. While, as stated above,

the type of kernel used in the SVM model is the polykernel function.

3.4.5 Evaluation strategy

Typically the data would be divided or allocated into three subsets, i.e. training, testing

and validation data, however, given the unbalanced number of specimens per species, we

abandon the traditional training strategy in favour of 10-fold cross validation which has been

demonstrated to be an appropriate approach under such circumstances (see Refaeilzadeh et al.

[117]). Here, the samples were randomly divided into K(10) subsets, where k− 1 subsets were
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used for training and the remaining subset was used as the test set. This process was repeated

10 times with a different test set being used on each run, and then an average classification

performance being computed. For statistical classification, 10-fold cross validation is applied

by 10− fold = accuracy/k, where the accuracy is the number of correctly classified samples

in k experiments.

3.4.5.1 Overall accuracy

The overall accuracy is calculated in order to define the proportion of the total number of

predictions that were correct. Given the following example:

• a is the number of true negative predictions;

• b is the number of false positive predictions;

• c is the number of false negative predictions;

• d is the number of true positive predictions;

the prediction accuracy can be obtained from this matrix as follows; accuracy = a+d
a+b+c+d .

3.4.5.2 Confusion matrix

The confusion matrix table shows the class distribution for each truth class. It contains

information about actual and predicted classifications performed by a classification system.

The performance for such system is evaluated using the data in the matrix. A confusion matrix

of size nxn associated with a classification shows the predicted and actual classification,

where n is the number of different classes present in the data [51], [132]. Table 3.6 shows the

entities involved in the confusion matrix table of two class problems.

There are two possible predicted classes: "yes" and "no". For example, in predicting the

presence of disease, "yes" would mean they have the disease and "no" would mean they do

not have the disease. The classifier made a total of 165 predictions. Which mean the 165

patients were being tested for the presence of that disease. Out of those 165 cases, the classifier

predicted "yes" 110 times and "no" 55 times.

The basic terms of the confusion matrix can then be identified as follows. True Positive

(TP) is where there are cases in which "yes" is predicted and the patient has the disease
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Table 3.6: Example of a confusion matrix for a two class problem.

Predicted Predicted SUM

NO YES

Actual TN = 50 FP = 10 60

NO

Actual FN = 5 TP = 100 105

Yes

55 110 165

(therefore detecting the presence of disease correctly). The True Negative value (TN) is where

the classifier predicts as "no" and the patient does not have the disease (again, detecting no

disease correctly). The False Positive (FP) value is where the predicted value is "yes", but the

patient does not have the disease (meaning that the prediction is incorrect). Similarly, the

False Negative (FN) value is where the output is predicted to be "no", but the patient has the

disease (again, an incorrect prediction).

3.4.5.3 Other performance criteria

In this work, while the optimization of an algorithm is obviously of interest, we are not

focused on finding the optimisim for one single algorithm, but looking at the classification

of multiple types of species, which is slightly different from time based optimisation. In this

work, we have therefore focused on this, as precision is much more important than training

time in the context of this research. The criteria we have made use of as a comparison are

precision and recall, as discussed:

• Precision it is also referred to as the true positive rate is a measure indicating the

probability that the classifier has labelled a prediction into class A given that the ground

truth is class A. The precision is the proportion of the predicted positive cases that were

correct. It is defined by precision = TP/(TP+ FP).

• Recall or user accuracy, is a measure indicating the probability that a prediction is class

A given that the classifier has labelled it as being class A. Recall is the proportion of
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positive cases that were correctly identified. Recall may also be referred to as sensitivity,

and corresponds to the true positive rate. It is defined by recall = TP/(TP+ FN).

3.4.6 Results and discussions

The morphometric point to point measurement dataset of Gyrodactylus specimen from nine

different classes discussed in Section 3.2 has been used for all the results discussed in

this section. Three parts of the skeleton hook morphology (e.g. hamuli, marginal hook and

ventral bar) have been used as features. For extracting these features, the point-to-point

measurement approach discussed previously has been applied. Then, using this set of features

(25 features), classification has been performed for predicting the true class of multiple

species of Gyrodactylus (G. arcuatus, G. derjavinoides, G. gasterostei, G. kherulensis, G. salaris, G.

sommervillae, G. thymalli, G. truttae and G. cichilidarum).

The 557 examples of morphometric point to point measurement data from nine classes has

been used in all the following feature selection and classification experiments. Three types

of feature selection approaches have been chosen for selecting the best features to correctly

predict the Gyrodactylus species. In addition, for the classification strategy, four machine

learning classifiers have been used for classifying the 557 specimens with four different

feature sets. These results will be compared to each other to define the best model to use for

identification of the species.

To determine the classifier performance with four different feature sets, as discussed

before, we use two classifiers. These are, Linear Discriminant Analysis (LDA), K-Nearest

Neighbor (K-NN), Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM). Each

of these classifiers will use three different feature sets for classifying the multiple species

of Gyrodactylus. The classification performance is then assessed classification accuracy and

confusion matrices to determine the best model for species identification.

Table 3.7 summarises the results of the individual classifiers with the different feature sets.

Classification is first performed using the original feature set of 25 features. To investigate and

attempt to achieve the highest accuracy by reducing the classification error, feature selection

has been applied to the original features (as discussed in Section 3.3). These results are
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Table 3.7: Average of species identification between individual classification.

Feature set
Individual classifier

LDA (%) K-NN (%) MLP (%) SVM (%)

Original feature (25F) 96.38 ±1.95 95.32 ±2.71 97.67 ±2.33 96.41 ±2.34

SFS (21F) 96.74 ±1.69 95.34 ±2.55 96.59 ±2.37 96.59 ±2.16

SBS (20F) 96.55 ±1.95 93.89 ±2.11 97.13 ±2.17 96.95 ±2.12

SFFS (7F) 94.81 ±2.57 91.71 ±4.35 95.44 ±2.41 79.13 ±2.47

compared for the best Gyrodactylus species identification performance. The three feature sets

tested consist of the full 25 features (the original features from point-to-point measurement

extraction), 21 features (selected features from the SFS method) and 20 features (selected

features from the SBS method), and seven features only (selected from the SFFS method).

In addition to the accuracy in classifying the species, we are also interested in exploring the

misclassification error through the confusion matrix. The following tables (Tables 3.8 to 3.23)

are the confusion matrices of four feature sets for each classifier that were implemented with

data from the Gyrodactylus fish parasite species. For LDA, the highest rate of classification

was achieved using 21 features, which correctly allocated 96.41% of specimens to their true

class (Table 3.12). The K-NN classifier, by comparison, also performed well using 21 features,

correctly classifying 94.97% (see Table 3.13). The two non-linear methods MLP and SVM were

also able achieve high rates of correct classification. Among the four different feature sets,

MLP with 25 original features has achieved the highest classification at 97.67% (Table 3.10).

This rate is also the highest accuracy achieved amongst all compared models. Even the SVM

classifier only has 96.95% (Table 3.19), when considering with 20 features. It is not a surprise

that the MLP classifier with 25 features has achieved the highest accuracy, since it is a power

classifier model and this method has excellent results in many fields [28], [70], although it is

time-consuming in execution as it need to train the initial weight set [36].

Although the LDA method is the oldest and the simplest classifier considered here, its

performance in correctly classifying the Gyrodactylus specimen is impressive. LDA is, of course,

only applicable when labelled training data exists and the classes are linearly separated. Table

3.8, Table 3.9, Table 3.11, Table 3.13, Table 3.14, Table 3.15, Table 3.16, Table 3.17 and Table 3.18

47

[ 2nd March 2015 at 0:00 ]



show the confusion matrices generated by the LDA and K-NN classifiers respectively using

25, 21 and 20 features respectively.

After consideration and comparison of the SFS, SBS, and SFFS methods, the results showed

that although SFFS identified the least features (seven features were identified, compared to

a much larger number using the other methods), it also produced the poorest classification

results. Tables 3.20, 3.21, 3.22, and 3.23 present the confusion matrices of results achieved

using the features identified using the SFFS approach with the same classifiers as used for

the other feature selection approaches. It can clearly be seen in these results that although it

has managed to reduce the number of key features to seven, the classifier performances have

dropped, leading to poorer species identification results. This shows that SFFS is clearly not

superior to the other feature selection approaches covered in this thesis.

The consideration of FS in multiple species is not easy to predict well. Certain classifier

managed to well classify certain species with different feature sets. Therefore the varieties

of the number of features identified by feature selection are investigated. Certain features

obscure the boundaries between species and could be rejected from future analysis, therefore

justifying the use of FS. Table 3.2 suggests that the features of VBPML and MHIH (see Section

3.3), contribute almost nothing to the separation of species as these two features were not

used by any of the feature selection methods.

Table 3.24 presents a summary of the correct identification of the multiple species of

Gyrodactylus. Among the nine species, three of them remain misclassified (not achieving full

classification). None of the experimental models manage to provide full identification of

G. derjavinoides, G. thymalli and G. truttae. And surprisingly, the focused species [76], [104],

[130], [129], G. salaris, manages to achieve true classification using the MLP classifier when

considering the 25, 21, 20 and 7 features. While the K-NN classifier performance is also good

for classifying the focused species, where it manages to classify correctly with the 21 features.

The SFFS method with 7 features is the worst feature selection method for classifying the nine

species of Gyrodactylus. Reducing the number of features has clearly eliminated important

attributes for discriminating between the true species.

Due to the remaining species that are not fully classified, an ensemble method is proposed

in the following section. An ensemble is proposed motivated by the requirement to provide
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accurate and trusted identification. By combining multiple models in one system, it aims to

provide a reliable model for species prediction.

3.5 ensemble classification

The Gyrodactylus classification methods described previously make use of a single feature set

in conjunction with a single classifier for pattern recognition. The main drawback of these

approaches is that a single feature or classifier only captures the true identification for certain

species. To maximise the accuracy in classification, it is necessary to apply different feature

sets and different classifier sets. This is the motivation for the use of multiple features and

classifiers to identify the Gyrodactylus species. In previous research [8], a variety of single

classifiers and different set of features have been experimented with. It was found that none

of these approaches produced significantly better results with regard to accurately classifying

different types of Gyrodactylus species.

Ensemble based methods have recently enjoyed great attention [22] due to their reported

superiority over single method based system generalisation performance [63], [21]. The aim

of classification is to combine multiple models (classifiers or features) to solve particular

problems [40]. Ensemble methods can be divided into a number of categories, such as

ensemble classifiers [118]; ensemble features [69]; and ensemble feature and classifiers [45]. To

demonstrate the full and practical importance of using a multiple classifier system, an analogy

can be made with decision making in everyday life. When making an important decision, an

expert is likely to ask opinions from several other experts before the final decision is made. In

such a situation, the final decision is made by combining the individual decisions of several

experts. The idea behind all ensemble based systems is that if individual classifiers or features

are diverse, then they can make different errors, and combining these models can reduce the

error through averaging.

Ensemble learning is primarily used to improve classification or prediction performance,

where a single model does not have these capabilities, especially in dealing with multiclass

problems. According to Yu and Xu [149], ensemble classification is considered due to the

difficulty in acquiring full classification accuracy using traditional classification approaches,
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Table 3.24: Summary of the correct identification of Gyrodactylus (e.g: a = G. arcuatus, c = G. cichilidarum,

d = G. derjavinoides, g = G. gasterostei, k = G. kherulensis, s = G. salaris, m = G. sommervillae, t =

G. thymalli, r = G. truttae) species by the different models.

Feature set / Classifier a c d g k s m t r

25 features

LDA x x x x x

K-NN x x x

MLP x x x x x

SVM x x x x x

21 features

LDA x x x x x

K-NN x x x x

MLP x x x x

SVM x x x x

20 features

LDA x x x x x

K-NN x x x

MLP x x x x x

SVM x x x x x

7 features

LDA x x x x x

K-NN x x

MLP x x x

SVM x
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due to large datasets (such as those containing a large number of features or data points).

In their paper, SREC (Simple Rule-based ensemble classifiers) was proposed. In SREC, the

final classification is identified with weighting voting. Weighting voting is one example of an

ensemble method. In weighting voting, a certain weight is given to a specific classifier, where

this classifier is a good classifier compared to other classifier models also used in the same

model. Results indicate that the proposed method is effective and feasible, and produces less

classification errors than many other classifiers [149].

There is a need for methods that can learn interpretable multi-target models to predict

several target classes simultaneously. A study by Aho et al. [7], introduced the FIRE (Fitted

Rule Ensembles) method that can learn multi-target regression rule ensembles. Results show

the general trend of larger models having better accuracy. In the scenario of inter-disciplinary

research, one example is field line proteomic mass spectra classification [54], which proposed

a systematic approach based on decision tree ensemble methods. This is used to automatically

determine proteomic biomarker and predictive models. The framework [54] relies on a toolbox

of generic supervised machine learning algorithms, consisting of decision tree induction and

several decision tree based ensemble methods. This proposed technique improves processing

time and provides promising results for predictive models and for the identification of

biomarkers.

The success of an ensemble system depends on its ability to correct the errors of some of

its members; classifiers and feature sets. This is dependent on the diversity of the classifiers

that make up the ensemble. If all classifiers provide the same output, correcting a possible

mistake is not possible. Therefore, individual classifiers in an ensemble system need to make

different errors on different instances [71]. If each classifier makes different errors, then a

strategic combination of these classifiers can reduce the total error. Specially, an ensemble

system needs classifiers whose decision boundaries are adequately different from those of

others. To classify various species of Gyrodactylus, a single feature format or classifier is not

sufficient for correctly classifying the true species. This was shown by the results discussed in

Section 3.4.6, where, for example, the LDA classifier with 25 features performed well with

regard to the identification of G. sommervillae, but poorly with regard to G. salaris.
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More than one method is then combined using two different ensemble combination tech-

niques. To classify various species of Gyrodactylus (nine species to be specific), it is not an

easy task, as mentioned in earlier sections. To produce accurate and efficient performance of

species identification, more than one technique is required. Multiple classifiers which consider

different sets of features have been implemented to achieve the objective of this study. The

motivation of this work is due to the high misclassification rate identified in previous research

[8].

3.5.1 Majority voting

As the objective of this research project is to classify and identify accurately multiple species

of Gyrodactylus using machine learning classifiers and feature selection techniques, in addition

to attempting to minimise misclassification errors through individual classification and

reducing the number of features using feature selection techniques, an ensemble based

majority voting approach has been proposed here. Ensemble learning is primarily used to

improve classification prediction performance, where a single model does not have these

capabilities, especially in dealing with multiclass problems [40], [149].

The main idea with ensembles of several classifiers is that several classifiers are created and

then combined into one model [41]. The ensemble method is usually categorised into two

categories, fixed rules and trained methods. Fixed rules combine the individual outputs in

a fixed manner, such as the same rule and majority voting [119]; whereas trained methods,

including the weighted combination and meta-classifier [77], combine outputs via training on

validation dataset.

In emerging ensemble models, majority voting has been applied. According to Kainulainen

[71], if the output consists of class labels, then majority voting is recommended. For the

purpose of this study, it was decided to apply majority voting to classification and identification

of multiple type of Gyrodactylus species. Simple majority voting is a decision rule that selects

one of many alternatives, based on the predicted classes with the most votes [77]. For example,

a hypothetical ensemble could consist of three classifiers, h1, h2 and h3. If h1(x) is wrong,

h2(x) and h3(x) may be correct, and the majority vote will correctly classify the sample x.

68

[ 2nd March 2015 at 0:00 ]



Majority vote counts the votes each class over the input classifiers and selects the majority

class. Theoretically, if the classifier makes independent errors, the majority vote outperforms

the best classifier.

The classification of an unlabelled instance by the ensemble is obtained by combining

the predictions of the individual classifiers [102]. In majority voting, each classifier in the

ensemble predicts the class label of the instance consider. Once all the classifiers have been

queried, the class that received the greatest number of votes is returned as the final decision

of the ensemble. The time needed to classify an instance increases linearly with the size of the

ensemble.

In work by Bouziane [21], majority voting has been applied to combine K-Nearest Neighbor,

Artificial Neural Networks and Multi-class Support Vector Machines for predicting the

Secondary Structure of globular proteins. They implement three voting strategies; Simple

Majority Voting (SMV), Influence Majority Voting (IMV) and Weighted Majority Voting

(WMV), and these techniques are compared. IMV gives better results than SMV but the results

given by WMV are best. In this study, two widely used datasets have been used, these are:

RS126 and CB513.

Ensemble voting system for multiclass protein fold recognition [23] is another example of

work that applies majority voting for combining more than one model. In this research, three

type of homogenous ensemble classifiers are first evaluated (feature selection methods and

classifiers), and then a heterogeneous ensemble voting system was introduced for multiclass

protein fold classification. The results show an improvement in prediction accuracy with this

proposed method of ensemble classifier with different features.

3.5.2 Ensemble classification for Gyrodactylus species identification

In this work, more than one classifier and feature set have been considered for constructing

an ensemble classification for Gyrodactylus species identification. In this research, Linear

Discriminant Analysis (LDA) and K-Nearest Neighbor (K-NN) form the classifier base; while

three different feature sets have been considered for classifying multiple species. In this work

it was decided to make use of LDA and K-NN because when comparing these approaches to
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the MLP and SVM techniques, the misclassification errors are similar, meaning that there was

little additional value from their integration. In addition, as these are non-linear classifiers, it

was felt that the implementation of the chosen classifiers was less complex than the additional

integration of non-linear approaches. The success of an ensemble system depends on its ability

to correct the errors of some of its members [71]. If all classifiers provide the same output,

correcting a possible mistake is not possible. Therefore, individual classifiers in an ensemble

system need to make different errors on different instances.

The chosen features are the 25 full feature set, 21 selected features using the SFS method and

20 selected features from SBS. For the decision making in combining the classifiers and three

different feature sets, majority voting is applied. Majority voting is often used to combine the

decisions of the classifiers that make up an ensemble [77].

This section discusses the construction of an ensemble model by combining several single

LDA and K-NN models to learn the same data with different subsets of morphometric

Gyrodactylus features. In Fig. 3.4, the main structure of an ensemble classifier is depicted. The

model contains N single classifiers; each single model has D inputs. Thus, the whole model

can input D ∗N features. The output strategy for the model is majority voting. The classifier

of an ensemble model consists of different individual classifiers with different feature sets; 25

features, 21 features and 20 features.

The proposed ensemble voting system is composed of a feature selection system, a number

of individual classifiers and a voting system. The framework is presented in Fig. 3.4 and

contains:

(1) Feature selection. 25 features were extracted from SEM images using manual point-to-

point measurement techniques from three parts of Gyrodactylus hook features. From these 25

features, a number of feature selection techniques have been applied to acquire the optimum

features for correctly classifying the species.

(2) Classification. Two classifiers are defined for classifying the Gyrodactylus species. These

are Linear Discriminant Analysis (LDA) and K-Nearest Neighbor (K-NN).

(3) Voting system. Different results will be obtained from the different classifiers by using

different features sets. These results are input into the voting system. These classifiers do not
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Figure 3.4: Framework of an ensemble based majority voting classifier and feature selection model in

classifying multiple species of Gyrodactylus.
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have any specific weight to adjust the contributions of the classifier to the voting system but

are weighted equally.

Following the statistical step, to maximise the accuracy of classifying each specimen, an

ensemble based method of majority voting was applied to combine the results from the

multiple models (classifiers of features). The voting based method, as defined by Zhang and

Yunqian [151], operates on the output from the statistical step and is defined by:

arg max
y

T∑
t=1

I(Ĥt(D) = y),yεY (3.5)

where Y is the number of Gyrodactylus species outcomes defined by Y is 1, 2, ..., k. The

ensemble T classifiers are given by (Ĥ(D)i)
T
i = 1. The class assigned to an unlabelled sample

is given by D. Ĥ(D) is the prediction of the t-th ensemble member, I is an indicator function

and Y = y1, ...,yk, where Ti is the number of members in the ensemble that predict the class

yi for the sample to be classified.

The entire methodological process pipeline for the identification of species of Gyrodactylus

is summarised in 3.4 and is given by the following algorithm:

1. Given D = X1Y1, ...,XnYn where Yj ∈ (1, 2, ..., 9).

2. Perform the feature selection step. In addition, the original 25 features are retained for

use later on in the classification of Gyrodactylus specimens.

a) Sequential forward selection (select the 21 features of the 25 original features).

Starting from an empty set, sequentially add the feature A+ that maximises E(Bj +

A+) when combined with the features Bj that have already been selected.

i. Start with an empty set B0 = (∅).

ii. Select the next best feature A+ = arg maxA 6εBj E(Bj +A).

iii. Update Bj +A+;j = j+ 1.

iv. Go to ii (repeat until the optimum set of features is acquired).

b) Sequential backward selection (select the 20 features of the 25 original features).

Starting from the full set, sequentially remove the feature A− that least reduces the

value of the objective function F(B−A−).
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i. Start with the full set B0 = A.

ii. Remove the worst feature A− = arg maxAεBj F(Bj −A).

iii. Update Bj+1 = Bj −A
−;j = j+ 1.

iv. Go to ii (repeat until the optimum set of feature is obtained).

3. Then, performs ensemble classification (LDA and K-NN classifiers) to the different

feature sets (i.e. all 25 features, 21 features as determined by SFS and 20 features as

determined by SBS). Four classifiers are applied to each set of features, where:

a) Linear Discriminant Analysis (LDA)

N̂i =W0 +Wi1D1 +Wi2D2 + ... +WinDn

b) K-Nearest Neighbor (K-NN)

(Xt,Xu) =
√∑m

mm=1(X
mm
t −Xmmu )2

4. The results from the statistical classification step are then combined within an ensemble

system which then applies a majority voting model expressed by:

Q = arg maxy
∑T
t=1 I(Ĥt(D) = y),yεY

5. In the event of an equal split in the voting calculation, then the result from SFS-LDA is

added to the system (the technique outperforming all others in an earlier study by [8]).

6. The identity of the specimen Q is determined i.e. as being G. arcuatus, G. cichilidarum,

G. derjavinoides, G. gasterostei, G. kherulensis, G. salaris, G. sommervillae, G. thymalli, or, G.

truttae.

3.5.3 Results and discussion

Combining the outputs of several predictors can improve performance over a single generic

one [63], [21]. Good ensemble members must be both accurate and diverse [71], which poses

the problem of generating a set of predictors with reasonably good individual performances

and independently distributed predictions for the test points .
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To demonstrate the proposed algorithm using ensemble based majority voting, the experi-

ment used 557 specimens of the morphometric point to point measurement dataset of nine

classes in all the following experiments. Three sets of point to point measurement features are

selected, where three of them are selected using the feature selection techniques (e.g. SFS and

SBS).

As combining the outputs of several predictors improves the performance of a single model,

formal support to enable this is provided by majority voting. Majority vote is a decision rule

approach that selects one of many alternatives, based on the predicted classes with the most

votes [77], as discussed previously. To prevent voting conflicts, the best single model accuracy

will be added to the ensemble system for determining the true species.

Two classifiers are used in the ensemble voting system. For each feature set, two classifiers

are used and then the result put into the voting system. The overall classification accuracy of

the ensemble model is 97.29% ±1.98, demonstrating that the ensemble system has improved

overall classification performance, compared to single classification approaches. Although the

accuracy of classification is not improved significantly, the numbers of species misclassifica-

tions is improved in comparison to the best single model. This result is presented through the

confusion matrix of the ensemble system (Table 3.25). Here, seven species in total are shown

to be misclassified. Overall, in the ensemble system, 15 specimens have been misclassified.

For comparison, amongst the experimental classification using a single model and feature

set, the best performing models are the MLP classifier (Table 3.10) and the LDA classifier

(Table 3.12). Referring to the confusion matrices, the MLP model has eight misclassified species

and total number of individual misclassification instances is 13. Similarly, using the LDA

model, eight species in total show examples of misclassification, and 18 individual specimens

from 557 have been misallocated to the wrong species. Although the MLP model has a slightly

smaller number of misclassified species, and appears to be very suitable for use as part of the

ensemble model, it was ultimately decided that it was more suitable to make use of different

approaches.

The MLP approach was considered as a potential component of the ensemble method,

however, the results of the MLP method were not found to be significantly better than the LDA

and the K-NN classifiers, and do not provide robust variation with regard to performance of
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classification on different species. By this it is meant that as discussed previously, the ensemble

method should be made up of classifiers that produce different errors, in order to be as robust

as possible, and there is more difference in the errors between the LDA and K-NN classifiers

than between those and the MLP, making the former two classifiers more suitable for use. In

addition, the MLP is more complex to create, optimise and train than the simpler classifiers,

and so in summary, it was felt that despite the individual results, the overall ensemble method

not found to lead to an enhancement in the ensemble classification performance.

When ensemble based majority voting is applied, we can see that 68 from 71 specimens of

G. salaris would be classified correctly as being G. salaris and 83 from 85 of G. thymalli would

be classified correctly as being G. thymalli. In ensemble based majority voting, the G. salaris

has been misclassified as G. tnymalli for two specimens out of the total of 71. While G. thymalli

was misclassified as G. derjavinoides and G. truttae with every one having one misclassification

score out of 85 specimens. Misclassifications, particularly in the case of G. salaris, would have

serious consequences should they allow this species to slip through undetected [18].

Among these nine species of Gyrodactylus, G. derjavinoides and G. truttae remain misclassified.

Overall, the comparison between an ensemble approach with individual classifiers and feature

sets shows that an ensemble approach based on majority voting performs consistently better

than any individual classifier and feature set and across all other classifier and other feature

sets. It is thus concluded that an ensemble of classifier and feature sets together is more

effective than only combining features sets.

Although the LDA and MLP classifiers with the set of 21 features have demonstrated good

performance in classifying species, the objective of the study is still not achieved, which is to

reduce the misclassification error in classifying the Gyrodactylus species. For those reasons, an

ensemble LDA and K-NN with three different set of features was proposed and experimented

with. The evidence clearly supports the conclusion that combining varieties of classifiers (LDA

and K-NN) and different feature sets (25 features, 21 features and 20 features) is of benefit to

solving this problem. Although the misclassification errors are not improved significantly, the

minimising of the number of errors has been achieved.
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3.6 conclusions

Morphometric data taken from the sclerotized structures of G. salaris and related species

that co-occur on salmonids were subjected to analysis. Statistical methods provided the

function for a rapid automated diagnostic system that was robust enough to allow for the

perfect discrimination of G. salaris. These results suggest that it is now feasible to develop an

automated system for the identification of G. salaris and its discrimination from other closely

related gyrodactylids that occur on the same hosts [76]. We believe that this methodology will

find successful applications within other biological systems, not only for the identification of

the monogenean G. salaris discussed here in detail but the discrimination of other pathogens

such as Myxosporea cerebralis. Organisms bearing hard parts in the form of sclerotized hooks,

copulatory structures or skeletal body components, all of which represent a challenge to

taxonomic discrimination, equally lend themselves to identification by statistical classification.

Indeed, any organism, free-living or parasitic, possessing a structure of constant size and

shape in the key stages of its life cycle could be subjected to classification [76].

In this chapter, four machine learning classifiers and three feature selection methods were

used to assess their performance in correctly classifying nine species of Gyrodactylus using

morphometric data extracted from their attachment hooks. The correct identification of one

species, G. salaris, a notifiable pathogen of salmonids throughout Europe, however is para-

mount. It is essential, therefore, to employ a method that does not generate misclassifications

where G. salaris is concerned. From the results presented here, it can be seen that a single

classifier is not sufficient for the accurate classification of all Gyrodactylus species to their true

class and an ensemble approach has been proposed.

This chapter also presented the application of an ensemble method based on majority

voting. In the application of an ensemble based majority voting strategy, the 557 image

morphometric dataset was used. In this dataset, the nine different species and 25 original

features were provided. An ensemble model has been constructed for classification. The LDA

and K-NN classifiers have been applied with three different feature sets for morphometric

Gyrodactylus species identification. The results indicate that a single classifier with different

feature sets cannot achieve higher performance than an ensemble approach, which correctly
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identifies multiple type of Gyrodactylus species. In order to target the problem, a new ensemble

model, which combines the classifiers and feature sets for classification and identification, and

majority voting, is applied to assign the class label. Experimental results demonstrate that

using the ensemble technique is an effective way to combine different classifiers and feature

sets for better classification performance. In this research, it is shown that it is possible to take

advantage of an ensemble framework for combining different classifiers and feature sets to

boost overall performance.

This work continues in the subsequent chapter, exploring a very pertinent and realistic

research problem of classifying specimens based on Scanning Electron Microscope (SEM)

images, which necessitates image pre-processing. Instead of performing classification using

morphometric data manually extracted from slide mounted specimens, it is hoped that the

data extraction process can be automated, accelerating the process of species identification.
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4
G Y R O D A C T Y L U S S E M I M A G E S I D E N T I T I F C AT I O N

4.1 introduction

In the previous chapter, a morphometric dataset has been used in classification and identifica-

tion using machine learning classifiers and feature selection techniques. The data preparation,

including the feature set, is prepared by the domain expert using a point to point measure-

ment approach to the three parts of the sickle hooks of the Gyrodactylus species. Later, these

experimental results will be compared with an image processing based feature extraction

method, applied to Scanning Electron Microscope (SEM) images of Gyrodactylus.

Image analysis involves the use of image processing methods that are often designed in an

attempt to provide a machine interpretation of an image, in a form that allows some decision

criterion to be applied [20]. Pattern recognition uses a range of different approaches that

are not necessarily based on any one particular theme or unified theoretical approach. In

this chapter, an image processing technique has been introduced to apply to SEM images to

predict the various classes of Gyrodactylus species groups.

The overall aim of this thesis is to find a potential method or model to be used to discriminate

between multiple species of Gyrodactylus using Scanning Electron Microscope (SEM) images.

The aim is to solve the same problem as discussed in the previous chapter, that of finding the

best solution for identification of these species. In this chapter, SEM images types have been

used, and of these images it was decided to use only the section of the image containing the

marginal hook of the sickle attachment.

The reminder of this chapter is divided into a number of sections. In section 4.2, a review of

a number of potential feature extraction techniques is presented, with the motivation and the

framework summarised. After discussion of the various possible models for image feature

extraction, the potential of Active Shape Model (ASM) and classification for separating species
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is then described in section 4.3. Section 4.4 discusses the topic of materials and methods

for extracting the SEM images of three species of Gyrodactylus. Results and discussion are

provided in section 4.5, While in the section 4.6, the new potential feature extraction tool is

investigated. The Complex Network model is explored to find the potential in extracting the

SEM of Gyrodactylus species. Finally, the last section will concludes this chapter.

4.2 image processing

Much research has been devoted to the recognition of digital images, especially microscope

images, but so far it is still an unresolved problem [110], [83], due to distortion, noise,

segmentation errors, overlap and occlusion in colour images. Recognition and classification

techniques have gained a lot of attention in recent years due to many scientists utilising these

techniques in order to enhance their own problem domains.

Computerised parasite recognition and classification is still a new area with regard to the

aquaculture domain, and is considered to have much potential application for encouraging and

pushing aquaculture research ahead. Improved software and hardware technical advancements

offer the chance and opportunity to apply recognition and classification technology to this

domain, where it can help to improve the efficiency and accuracy of parasite identification. In

the classification of parasite fish species it is important to achieve good accuracy, so that the

correct particular treatment may be provided to prevent destruction to human health.

To provide a potential solution to the problem described above, image analysis is explored.

Image analysis is a field of science which allows scientists to explore a complex assortment

of images and effectively predict structure from the images autonomously. According to

Kasturi [75], image analysis refers to algorithms and techniques that are applied to images to

obtain a computer readable description from a pixel data. Instead of image analysis, image

processing techniques have also been developed. In contrast with image analysis, image

processing involves the use of electronic tools which allow the user to define changes within

the parameters of the electronic signal [154]. This approach is needed to increase the pictorial

information for human interpretation. One example of image processing is removing the

illumination from images.
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In terms of image analysis, feature extraction has been explored. Recognising the species

group from the hook features makes the species recognition process more accurate and

effective. Feature extraction is the key to both object segmentation and recognition, as it

is to any pattern classification task. Examples of the features that might be of interest to

extract include length, width, shape and angle. In the manual measurement of features, these

tasks heavily depend on the concentration of the person taking the measurement; otherwise,

the result of morphometric analysis will be false. And of course, the temporal duration of

the manual measurement process is substantial. With state-of-the-art computer processing

techniques, it is possible for this process to be performed efficiently and effectively, and thus,

provide the prediction in a shorter time, and more accurately.

The final task for an image processing system is to take an object region in an image and

classify or identify it. In other words, it needs to generate a collection of classes or objects,

such as ’G. arcuatus’, ’G. salaris’, and then be able to take a region in an image and determine

which, if any, of the classes that region falls into.

Before the class is determined, the information required for the purpose of classification, i.e.

the extracted mathematical measurements (features) from that objects need to be provided.

There are two categories of features: shape features (geometry measurements captured by

both boundary and the interior region) and texture features (intensity of images). In this study,

only shape feature information is considered due to providing more informative features than

texture features. For identification of Gyrodactylus species, the shape information provides

more unique features than texture. A number of related studies [76], [104], [126], [129], [130]

also use only the shape features, but different information (different part of the hooks).

4.2.1 Review of image processing techniques

In recent decades, digital image processing, image analysis and machine vision have been sig-

nificantly developed, and they have become a very important part of artificial intelligence and

the interface between human and machine grounded theory, and applied technology. These

technologies have been applied widely in industry, but rarely in the realm of aquaculture.
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The identification of the edges or shapes of an object in an image scene is an important

aspect of the human visual system because it provides information on the basic topology of the

object from which an interpretative match can be achieved. Shape detection or segmentation

is a pre-requisite for object identification in order to then perform further processing, feature

extraction and classification.

Feature extraction is essential in many vision and biometric applications. The performance

of feature-based face recognition algorithms relies heavily on the quality of the feature

extraction. Selection of a feature extraction method is probably the single most important

factor in achieving high recognition performance [142], [82]. In this study, accuracy in feature

extraction is a must, since the majority of the Gyrodactylus species have a similar shape to each

other, especially G. salaris and G. thymalli [130].

In human communication, shape description (features) have been used. It is one of the most

important visual attributes of an object and the first used to perform object classification and

identification [90], [141]. Specifically, in classification and identification of multiple species of

Gyrodactylus, shape information has been used, although different methods of identification

have been applied [104], [126], [129], [127].

Active contour modelling or snakes [74] is a feature shape extraction method that is mostly

applied to medical image processing problems. The snake model has the ability to freely

deform to fit the images instead of having a rigid shape application. Unfortunately, it has

limitations that mean it is very challenging to apply to the case of SEM Gyrodactylus images.

The physical appearance of the images that have been surrounded with the tissue make the

segmentation procedure become complicated. It will therefore result in inaccuracy with regard

to contour measurement.

Fish recognition based on the combination between robust features selection, image seg-

mentation and geometric parameter techniques [11] has been demonstrated, using the scanned

images for recognition of fish species. Measurements have also been done by measuring the

size, shape, colour and geometrical parameters. In this study, the colour information plays

the main part in fish species identification. Neural networks and decision trees have been

used as their classifier tools to perform the subsequent classification after the initial image

processing. Another paper that also considered colour information is by Du [44]. Here, the

82

[ 2nd March 2015 at 0:00 ]



colour information has been used to recognise 20 different types of plant species, using

extracted features such as geometrical features and invariable moment features. Using the

Move Median Centres (MMC) as classifier, their method was said to be more robust and an

improvement on other approaches.

In addition, 2D gabor filter image processing has been successfully applied in the identifica-

tion of mammals through the use of their hair [110]. The selection of this technique is due to

the ability to perform rapid matching, carried out using either Hamming or Euclidean distance

measures. This type of problem considers the whole object for performing identification.

Protozoan parasite extraction using basic techniques has achieved good performance in

discriminating between species of protozoan [83]. When working with microscope images,

there are similar problems that need to be overcome, such as illumination, noise, and the size

of the target object in the image. In addition, there is also the complexity of the image content

to be considered. Similar to the difficulties presented with Gyrodactylus, the different species of

ectoparasites have different forms according to their maturity, or in the context of Gyrodactylus,

their location and season. In classification of protozoan species using microscope images

[83], the following methods have been applied sequentially: (a) color space transforming;

(b) gamma-equalization; (c) two-mean filter; (d) two-classes edge enhancement; (e) two-

means clustering filter; (f) morphological opening operation; and (g) largest independent

component detection. Many steps have involved in extracting the valuable features for input

to classification, and this procedure needs to be repeated each time for every image. Such a

complex procedure is not efficient for detection and extraction of the object.

A similar problem to the Gyrodactylus species identification problem can be found in insect

species recognition [92]. Recognition of species is not the same as recognition of objects.

This is because in identification of the species, biologist expert knowledge is required for

species recognition. In addition, object recognition is rather simple compared to human face

recognition. In recognition of insect species, class specific sparse representation has been

proposed [92]. In this study, the sparse representation is an expression of the input signal as a

linear combination of base elements in which many of the coefficients are zero. In addition,

SVM has been used as a classifier tool for classifying the species. Although this technique

is dealing with a similar problem to Gyrodactylus species identification, it has the limitation
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of not having the ability to perform scaling and rotation variance to the input images. SEM

images of Gyrodactylus may come in varieties of rotation, with a particularly significant issue

being the range of different scales for the same species.

Previously, it has been considered impossible to implement automated image processing

for identification of parasite species due to several reasons. Firstly, the physical appearance

of the scan images; the focused object has been overlapped with the tissue. Secondly, the

recognition and identification of the fish parasite shape is made difficult because there are no

clear boundaries defining the actual shape of the parasite species. As a result, Gyrodactylus

species identification using image processing techniques is an area in need of significant

development.

Many segmentation or feature extraction methods have been proposed and proved to be

successful in implementation of a number of research problems. It is possible to apply many

of these methods to the extraction of SEM Gyrodactylus images. Unfortunately, there are many

criteria that might not exist in their problems, but do with regard to this specific challenge that

need to be taken into consideration when applying image extraction techniques. The main

contrast in SEM images of Gyrodactylus compared to images of other species is the brightness

of the image quality and the interconnectedness of the focused object with surrounding tissue.

Fig. 4.1 shows an example of images that have tissue surrounding of the object of focus.

Figure 4.1: Example of images where the object of focus has been surrounded by tissue.

One of the objectives of this research is to identify and utilise an image processing technology

that has ability to extract noisy images with similar pattern representation. For these reasons,

the Active Shape Model (ASM) technique has been explored to evaluate the suitability of
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using it for extracting informative features of multiple species of Gyrodactylus. In the case of

SEM images of the fish parasite, only the shape features are considered, since, it was found

that the texture information does not increase the accuracy of species prediction. Shape or

contour refers to the boundary of the object, and that represents the shape of the object.

Devijver and Kittler [142] have highlighted that different feature extraction methods have

been designed to take account of specific recognition problems and available data. Certain

feature extraction methods may be found to perform successfully in one application domain,

but might be not useful in another domain. In this research project, the Active Shape Model

(ASM) technique has been identified as the most suitable to be adopted for recognising and

identifying multiple Gyrodactylus species. Further discussion about this potential application

is presented in the following section.

The shape model in ASM is given by the principal component of a vector of landmark

points [143]. The principal component method has been used for extracting the most valuable

features. Using the grey appearance model methodology proposed in ASM, it will ensure that

the segmentation places the object at a location where the image structure around the border

or within the object is similar to what is expected from the training images. While the fitting

procedure is an alteration of landmark displacements.

4.2.2 Existing methods of parasite identification and classification

As discussed previously, identification and classification techniques have gained a lot of

attention in recent years. Fish recognition and classification is an active area in the agricul-

ture domain [11], while fish parasite identification using artificial intelligence techniques is

considered to be a new area to explore and has much potential research application in this

domain.

A number of statistical classification based approaches have been applied to morphological

data [104], [130], [129], [126], and molecular-based techniques targeting specific genomic

regions [32], [60], [105], have been developed to discriminate the pathogenic species, G. salaris,

from other non-pathogenic species of Gyrodactylus that co-occur on salmonid hosts. While

each technique is able to detect G. salaris within a population of specimens and to discriminate
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it from its congeners with high levels of correct classification, the techniques can be time

consuming [130]. If a system consisting of an image recognition model can be constructed and

proposed to extract key discriminatory features from the attachment hooks of each species,

then it is anticipated that the identification process could be accelerated with equivalent or

better rates of correct identification.

4.3 the potential of active shape models (asm) for species classification

The ASM method has been successfully utilised for understanding of factors underlying

morphologic and pitch-related functional variations affecting vocal structures and the airway

in health and disease [106]. In addition, the ASM method was found to be the best method

that can account for the varieties in variation [136].

Another successful application of ASM is for face recognition, as shown by [85]. In this

study, ASM was applied to the alignment of the face, with four major improvements. These

are: (1) a model combining a Sobel filter [122] and the 2D profile in searching for a face in an

image; (2) application of the Canny [73] method for edge enhancement; (3) use of a SVM to

classify the landmark points; and (4) automatic adjustment of the 2D profile according to the

size of the input image. The introduction of these improvement has improved the process of

finding landmarks and thus will save time during the training and testing of images.

ASM was also implemented for extracting features for plant recognition based on the leaf

shape [136]. In this study, ASM was applied for recognising weed species, and due to using

the ASM, it was found to be possible to not only take leaf shapes into account, but also the

overall geometry of the seedlings.

With statistical shape models, shape can be characterised in terms of independent modes

of variation. Variation in the image presentation is a key point that needs to focused on in

this work. This is because a single species may come with much variation present, yet still

be part of the same species. For example, location and water temperature can contribute to

differences within the same species, although despite these variations, the overall shape of the

hook remains the same.
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The ASM technique permits users to construct a general shape model which is subsequently

applied to all images in order to landmark the image area for every given image, providing a

pattern that encapsulates the variation seen across the range of shape images. The subsequent

ability (classification rate) of the developed model to separate "image classes" is in part based

on the number of images used in the training set - in theory, the greater the number of

images that are used in training and constructing the models, the better the classification

ability of the resultant model. Given the success of ASM in resolving image-based shape

recognition problems within the biomedical sphere, the research presented in this chapter

aims to determine its utility when applied to SEM images of Gyrodactylus hooks.

The application of the ASM method to the analysis of Gyrodactylus attachment hooks is

presented in Fig. 4.3. The input for the classification system is the specimen images, where a

pre-processing step is applied to the required images. Once hooks have been processed to a

common orientation, the ASM approach is then applied to extract informative features. These

features are then reduced by a subsequent PCA step to select key features to be used as input

features for each machine learning classification technique. Four machine learning classifiers

have been used to evaluate the ASM performance. The breakdown of this framework will be

presented at section 4.4.

The selection and consideration of the ASM method for feature extraction of SEM images is

based on the following benefits. These are: (1) a shape model that ensures that the segmentation

can only produce plausible shapes; (2) a gray-level appearance model is applied in ASM to

ensure that the segmentation places the object at a location where the image structure around

the border or within the object is similar to what is expected from the training images; (3) an

algorithm for fitting the model by minimizing some cost function. With these advantages it

can help the domain expert by aiding the processing and analysis of species immediately and

accurately.

According to Ginneken et al. [143], [37], the main advantages of ASM compared to other

model is its speed. It can save time during the image training, especially for those images that

are considered to be noisy images. In the case of genus Gyrodactylus (Monogenea) species,

most of the attachment hook (marginal hook) has been surrounded with tissue. Proper and
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Figure 4.2: The methodological approach used in the current study. Specimens of Gyrodactylus were

picked from the skin and fins of salmonids and their attachment hooks released by proteolytic

digestion. Images of the smallest hook structures, the marginal hook sickles which are the

key to separating species and typically measure less than 0.007 mm in length, were captured

using a scanning electron microscope. The images were pre-processed before being subjected

to an Active Shape Model feature extraction step to define 45 or 110 landmark points and to

fit the model to the training set of hook images. This information is then used to train four

classifiers (K-NN, LDA, MLP, SVM) and separate the three species of Gyrodactylus which

includes the notifiable pathogen, G. salaris. Abbreviations: K-NN, K Nearest Neighbors; LDA,

Linear Discriminant Analysis; MLP, Multi-Layer Perceptron; SVM, Support Vector Machine.

precise management with regard to image segmentation is needed since these hooks look

very similar to each other.

4.4 materials and methods

The focus of this research was on the genus of the Gyrodactylus species group. Specimens of

Gyrodactylus (G. derjavinoides n = 25; G. salaris n = 34; G. truttae n = 9) were removed from their

respective salmonid hosts and fixed in 80% ethanol. Subsequently specimens were prepared

for scanning electron microscopy (SEM) by transferring individually, rinsed with distilled

water, and the specimen were then mounted onto 13 mm diameter round glass coverslips,
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where they had their posterior attachment organ excised using a scalpel, and the attachment

hooks released using a proteinase-K based digestion fluid (i.e. 100 µg/ml proteinase K, 75 mM

Tris-HCl, pH 8, 10 mM EDTA, 5% SDS). Once the hooks were freed from enclosing tissue, the

preparations were flushed with distilled water, air-dried, sputter-coated with gold and then

examined and photographed using a JEOL JSM5200 scanning electron microscope operating

at an accelerating voltage of 10 kV. This data was collected and prepared by the parasitiology

team, Institute of Aquaculture, Stirling, Scotland.

The study by Shinn et al. [127] has proven that in discrimination of the Gyrodactylus species,

only marginal hook or hamuli information of features are useful enough sections of the

specimen to be used for species classification. In this study, marginal hook of attachment hook

will use in extraction and thus classify the species.

4.4.1 Pre-processing

In the pre-processing step, an image may need adjustment of its rotation to standardise the

form of fish parasite object. As a number of the initially supplied images are provided in

different rotation, to minimise the complexity of ASM implementation, all the images must

have the same pose. For this purpose, image flipping has been applied to pre-process the

images.

4.4.2 ASM construction

ASM were originally developed for the recognition of landmarks on medical x-rays. Landmark

points can be acquired by applying a sample template to a "problem area", which appears

to represent a better strategy over edge-based detection approaches [95], as any noise or

unwanted objects within the image can be ignored in the selection of the shape contour. The

shape variations in a training set are described using a Point of Distribution Model (PDM).

The shape model is used to generate new shapes, similar to those found in the training set,

which are fitted to the data using a model of the local gray value structure [37], [106], [138].
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In the study presented in this chapter, the shape of each attachment hook image is presented

by a vector of the position of each landmark, G = (g1,h1, ...,gr,hr), where (dshs) denotes

the 2D image coordinate of the sth landmark point. The shape vector of the hook is then

normalised into a common coordinate system. Procrustes analysis [64] is then applied to align

the training set of images. This aligns each shape so that the sum of distances of each shape

to the mean F̂ =
∑

|Gs − Ḡ|
2 is minimised. For this purpose, one hook image is selected as an

example of the initial estimate of the mean shape and scaled so that |Ḡ| = 1, which minimises

the F̂.

Assuming Ĝ sets of landmark points Gs which are aligned into a common shape pattern

for each species, if this distribution can be modelled, then new examples can be generated

similar to those in the original training set s, and then these new shapes can be examined

to decide whether they represent reasonable examples. In particular, G = M(b) is used to

generate new vectors, where b is a vector of the parameters of the model. If the distribution

parameters can be modelled, p(b), these can then be limited such that the generated G’s are

similar to those in the training set. Similarly it should be possible to estimate p(G) using the

model. To simplify the problem, principal Component Analysis (PCA) is applied, to reduce

the dimensionality of the data. PCA summarizes the variation seen across the data, allowing

one to approximate any of the original points using a model. The model constructed here was

based on 68 SEM hook images, each with 45 points and 110 points determined as the optimal

number of landmark points to effectively characterise the shape of each hook. The subsequent

PCA step reduced the number of extracted shape features to 22 and 49, removing redundant

features and retaining those that best characterise morphological differences between the true

species of Gyrodactylus.

PCA is used to find the major axes of a cloud of point in high dimensional space. PCA

attempts to find a linear subspace of lower dimensionality than the original feature space,

where the new features have the largest variance [146].

Consider a dataset Gi where i = 1, 2, ...,N and each Gi is a D dimensional vector. The

goal is to project the data onto an M dimensional subspace, where M < D. We assume the

projection is denoted as y = AG, where A = [uT1 , ...,uTM], and uTkuk = 1 for k = 1, 2, ...,M. We

aim to maximise the variance of yi, which is the trace of the covariance matrix of yi.
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Thus, the aim is to find A∗ = argmax
A tr(Sy), where Sy = 1

N

∑N
i=1 (

y
i − ȳ) (

y
i − ȳ)

T , and

ȳ = 1
N

∑N
i=1Gi. Let SG be the covariance matrix of Gi. Since tr(Sy) = tr(ASGAT ), by using

Lagrangian multiplier and taking the derivative, we get SGuk = λkuk, which means that uk

is an eigenvector of SG. Now Gi can be presented as Gi =
∑D
k=1

(
GTi uk

)
uk. Gi can be also

approximated by G̃i =
∑M
k=1

(
GTi uk

)
uk, where uk is the eigenvector of SG corresponding

to the kth largest eigenvalues.

The shape model in the ASM is given by the principal components of vectors of landmark

points. The grey-level appearance model is limited to the border of the object and consists of

the normalised first derivative of profiles centred at each landmark that run perpendicular to

the object contour.

The use of the ASM method with regard to extraction of marginal hook features has been

explored. One key point behind ASMs is that the landmark points need to be initially defined

during the creation of the model and the training process. In this study, the initial landmark

points are defined using a manual approach. During the initial creation of the model, the

points are placed one by one. These points can then be extracted when new shapes are

presented to the model. This use of randomly chosen landmark points is also utilised in other

related work by others [38], [48].

It was decided to experiment with two different numbers of points, 45 points, and 110

points, both chosen arbitrarily through a trial and error basis. These two different numbers

of points are then extracted and used as features, with the two sets compared to each other

in order to provide the best prediction of the Gyrodactylus species group. This evaluation is

performed by using the extracted features as inputs into a number machine learning classifier.

4.4.3 ASM fitting

Once the ASM model has been constructed, it is important to fit the defined model to a series

of new input images to determine the parameters of the model that are the best descriptors of

hook shape. ASM finds the most accurate parameters of the defined model for the new hook

images. The ASM fitting attempts to "best fit" the defined model parameter to each image.

Cootes et al. [27] explained that adjusting each model parameter from the defined model will
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permit an extraction pattern of the image series to be created. Ginneken et al. [143] explain

that, the fitting procedure is an alteration of landmark displacements and model fitting in a

multiresolution framework. During the model fitting process, it measures newly introduced

images and uses this model to correct the values of current parameters, leading to a better fit.

4.4.4 Texture extraction

In Active Appearance Model (AAM) only the texture information is observed and imple-

mented. The texture means the pattern of intensities or colours across an image patch [27].

The texture extraction in AAM is refer as gray level appearance [143]. It describes the typical

image structure around each landmark is obtained from pixel profiles, samples around each

landmark, perpendicular to the contour. The texture eigenspace is spanned by the ` principle

modes of T̂i. The texture model is T̂ = T̄ + Vt, where V is the matrix consisting of ` principal

orthogonal modes of the variance in T̂i. While the T̄ is the main texture and t is the vector of

texture parameters.

4.4.5 Machine learning classifiers

Following ASM based feature extraction, the data was assessed using four models of machine

learning classifiers. Selection of the models was based on the performance achieved in

classifying the Gyrodactylus species using 25 feature morphometric dataset. The explanation of

the machine learning classification used in separating the SEM images species was previously

discussed in section 3.4.

The aim here is to evaluate classification with image recognition. Therefore, for consistency,

the same classifiers are used as in section 3.4. The difference is that rather than the time

consuming measurements used in the previous chapter, these measurements are entirely

automated, and so much less time consuming. The time spent for feature extraction will be

significantly shorter and reliance on the domain expert during the analysis will be reduced.

Although the comparison cannot be precisely carried out, since the number of species used
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are different, the results presented here aim to show that automated feature extraction and

identification of multiple species of Gyrodactylus is possible.

4.5 results and discussion

Although the attachment apparatus of Gyrodactylus consists of three main elements (i.e two

larger centrally positioned anchors or hamuli; two connecting bars between the hamuli; and,

16 peripherally distributed marginal hooks), this study sets out to classify species based on

features extracted from the sickles of the marginal hooks only. As the study is based on the

analysis of biological structures, these require subsequent in order to standardise the position

and format of the image. Processing to standardise the orientation of the image is applied

to reduce processing time and complexity during the training and construction of the ASM

model.

There are several methods that can make the computer able to recognise and to understand

the images that the user presents to it. One approach for this is by using Artificial Intelligence

(AI) techniques. Using an AI approach such as machine learning classification will help

to augment parasitology expertise in identification and classification of images, which will

provide a big contribution in the aquaculture domain, particularly Gyrodactylus recognition

and identification.

The ASM is used in feature extraction from SEM images of the Gyrodactylus species. Four

types of machine learning classifiers are then implemented for classification and identification

in order to separate the three different species. For each approach, a 10-fold cross validation

was used i.e. the data were divided into k(10) subsets, where k− 1 subsets were used for

training and the remaining subset used as the test set. This process was repeated 10 times

using a different test set on each run and the average classification performance computed.

Four types of machine learning classifiers have been used for classifying and identifying the

three different species of ectoparasite of genus Gyrodactylus.

Feature extraction information is a fundamental basis of image processing, it is necessary to

point out the true information in feature extraction to get the best results from the classification

process. That is why it is important to choose the right feature information. In this study, the
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two features (e.g shape and texture) are compared to determine the best features to identify

the multiple species of Gyrodactylus. Table 4.1 shows the comparison results between shape

and texture feature information.

Table 4.1: Classification rate for multiple species of Gyrodactylus using ASM approach based on the

texture feature extraction.

Classifier / Features information Shape Texture

LDA 95.71% ±6.90 79.76% ±10.68

KNN 98.33% ±5.27 81.25% ±7.39

MLP 97.06% ±4.87 92.65% ±9.01

SVM 95.59% ±5.79 94.12% ±8.66

When comparing shape and texture feature information, overall performance has shown

that shape information results in better performance for all the identified classifiers. None of

the classifiers used for texture information exhibit a higher performance when compared to

the equivalent using shape information. These results confirm that texture features have only

limited information for predicting SEM of Gyrodactylus species. Other research has confirmed

this, as only shape information have been used in species identification [104], [126], [129],

[127].

Therefore it has been decided to use shape feature information throughout this study. Two

different defined number of points have been used for experimentation. This is to see if there

is any difference in classification performance when varying the number of defined points

during model construction. For measuring the classification and identification of the true

species, four machine learning classifiers have been used in the classification procedure. The

classifiers are LDA, K-NN, MLP and SVM. The results are shown in Table 4.2.

The results in Table 4.2 show that using 110 points performs better than 45 defined points.

The biggest accuracy was achieved by the LDA classifier at 98.57%. Using the extracted data

from 45 points, the best results were presented by the K-NN classifier at 98.33%. These results

have demonstrated that the ASM method is a successful application for extraction of accurate

features. The breakdown of the misclassification for every single model has been presented

through confusion matrix tables.
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Table 4.2: Classification rate for multiple species of Gyrodactylus using ASM approach.

Feature set / Classifier LDA KNN MLP SVM

45 points 95.71% ±6.90 98.33% ±5.27 97.06% ±4.87 95.59% ±5.79

110 points 98.57% ±4.52 93.57% ±8.33 98.53% ±4.64 97.06% ±5.95

The LDA classifier, using 45 defined points, was able to correctly classify the G. truttae to

their true species, except for one specimen of G. derjavinoides which was classified as G. salaris).

This is similar to G. salaris, where two species have been misclassified to G. derjavinoides (Table

4.3). The K-NN classifier improved upon the classification of G. salaris and G. derjavinoides

specimens with all being correctly classified (Table 4.4), however, one of the nine G. truttae

specimens was misallocated as G. salaris. The two non-linear approaches MLP (Table 4.5) and

SVM (Table 4.6) were also able to achieve high rates of correct classification, both with 97.06%

and 95.59% but they were not able to improve upon the results obtained using the K-NN

approach i.e. a correct classification rate of 98.53%. Typically, MLP and SVM classifiers provide

good results if their parameters are chosen carefully. K-NN by comparison is a non-parametric

approach requiring less training than MLP and SVM, which is easy to use and works well

with both linear and non-linear datasets.

The equivalent confusion matrixes of classification performance using 110 defined points

is presented in Table 4.7, 4.8, 4.9 and 4.10. Using the LDA classifier, almost all specimen are

correctly identified (G. derjavinoides and G. truttae). Only one specimen from G. salaris was

identified as G. truttae using the LDA classifier. The same goes to the K-NN performance

where two species have fully correct classification. These are G. derjavinoides and G. salaris. Two

specimens of G. truttae have been misclassified as G. derjavinoides and three specimens have

been identified as G. salaris. There is very little difference in the confusion matrixes for MLP

and SVM (shown in Table 4.9 and 4.10 respectively). Each one has only one species that has

been misclassified. Using the MLP classifier, one specimen of G. truttae has been misallocated

to G. derjavinoides. Using SVM classifier, two species are also fully correctly classified, similarly

to the MLP classifier. However, in the SVM classifier, two specimens of G. truttae have been

misclassified as G. salaris. Among these machine learning methods, LDA classifier has the best

performance, with the MLP classifier also producing good results.
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Table 4.3: A confusion matrix of Gyrodactylus species

identification applied to the ASM extrac-

ted features implemented with the LDA

classifier using 45 points. The three spe-

cies are G. derjavinoides (d), G. salaris (s)

and G. truttae (r).

G. der G. sal G. tru Sum

G. der 24 1 0 25

G. sal 2 32 0 34

G. tru 0 0 9 9

Sum 26 33 9 68

Table 4.4: A confusion matrix of Gyrodactylus species

identification applied to the ASM extrac-

ted features implemented with the K-NN

classifier using 45 points. The three spe-

cies are G. derjavinoides (d), G. salaris (s)

and G. truttae (r).

G. der G. sal G. tru Sum

G. der 25 0 0 25

G. sal 0 34 0 34

G. tru 0 1 8 9

Sum 25 35 8 68

Table 4.5: A confusion matrix of Gyrodactylus species

identification applied to the ASM extrac-

ted features implemented with the MLP

classifier using 45 points. The three spe-

cies are G. derjavinoides (d), G. salaris (s)

and G. truttae (r).

G. der G. sal G. tru Sum

G. der 25 0 0 25

G. sal 1 33 0 34

G. tru 0 1 8 9

Sum 26 34 8 68

Table 4.6: A confusion matrix of Gyrodactylus species

identification applied to the ASM extrac-

ted features implemented to the SVM clas-

sifier using 45 points. The three species

are G. derjavinoides (d), G. salaris (s) and G.

truttae (r).

G. der G. sal G. tru Sum

G. der 24 1 0 25

G. sal 1 33 0 34

G. tru 0 1 8 9

Sum 25 35 8 68
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Table 4.7: A confusion matrix of Gyrodactylus species

identification applied to the ASM extrac-

ted features implemented with the LDA

classifier using 110 points. The three spe-

cies are G. derjavinoides (d), G. salaris (s)

and G. truttae (r).

G. der G. sal G. tru Sum

G. der 25 0 0 25

G. sal 0 33 1 34

G. tru 0 0 9 9

Sum 25 33 10 68

Table 4.8: A confusion matrix of Gyrodactylus species

identification applied to the ASM extrac-

ted features implemented with the K-NN

classifier using 110 points. The three spe-

cies are G. derjavinoides (d), G. salaris (s)

and G. truttae (r).

G. der G. sal G. tru Sum

G. der 25 0 0 25

G. sal 0 34 0 34

G. tru 1 3 5 9

Sum 26 37 5 68

Table 4.9: A confusion matrix of Gyrodactylus species

identification applied to the ASM extrac-

ted features implemented with the MLP

classifier using 110 points. The three spe-

cies are G. derjavinoides (d), G. salaris (s)

and G. truttae (r).

G. der G. sal G. tru Sum

G. der 25 0 0 25

G. sal 0 34 0 34

G. tru 1 0 8 9

Sum 26 34 8 68

Table 4.10: A confusion matrix of Gyrodactylus spe-

cies identification applied to the ASM

features implemented with the SVM clas-

sifier using 110 points. The three species

are G. derjavinoides (d), G. salaris (s) and

G. truttae (r).

G. der G. sal G. tru Sum

G. der 25 0 0 25

G. sal 0 34 0 34

G. tru 0 2 7 9

Sum 25 36 7 68
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The current study is based on a small set of higher quality SEM images, due to limitations

with the availability of data. Despite this, the average correct classification is higher (i.e.

98.53% using 45 points and 98.57 using 110 points) than that achieved using the LDA method

applied to the equivalent 25 point-to-point measurements manually extracted from light

micrographs of 557 specimens (i.e. 92.59%) [8]. This approach appears promising and will

be applied to hooks prepared for light microscopy hopefully with equal or better rates of

correct classification. The ASM as extraction tool and the machine learning classifiers based

approach applied to SEM images of the hook sickles of Gyrodactylus appears to outperform in

comparison to the manual measurement point to point feature extraction that was applied

previously. This application has been tested to identify and discriminate this species with

confidence. Classification has been demonstrated to have been successfully performed.

With these successful results for extraction and classification, the difficulties faced by domain

experts can be minimised. These difficulties include manual classification, a tedious and time

consuming process. Another challenge in the manual approach, inaccurate point to point

measurements, which results in inaccurate species identification, can also be overcome. Now,

with this newly applied combination of techniques, domain experts can use these methods for

feature measurement and species identification.

4.6 complex networks

Complex Networks can be described as the intersection between graph theory and statistical

mechanics, which confers a truly multidisciplinary nature to this research, since it integrates

computer science, mathematics and physics [15]. Nowadays, Complex Networks have become

a topic of great interest in many fields of science. The main reason for the popularity of

Complex Networks lies in their flexibility and generality to represent any given structure,

natural or discrete, including those undergoing dynamic changes of topology [29], [30].

The main idea of this concept is to represent a shape in terms of a Watt-Strogatz network

model [15], followed by analysing its topological and dynamic characteristics. This network

model presents what is called the small-world property, i.e., that all vertices can be reached

from any other through a small number of edges.
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The dynamic model of a small-world network is obtained artificially by sequential thresholds

on vertices of a shape model. It has been demonstrated that shape format is correlated with

small-world network structure on many stages of network growth. The study of its dynamical

properties (the metrics derived from the dynamics of the network growth, based on the

variation of the number of connected components) produce a shape signature, which can be

used for image analysis and classification processes [15].

Recently, Complex Network based shape representation has been shown to be effectively

and widely used in shape and image recognition and retrieval [15] [14], [16]. In general, this

method consists of the following two steps:

1. Shape representation with Complex Network model

First, G landmark (key) points should be extracted from the shape contour. Then,

with these landmark points, the construction of a Complex Network will be designed

T̂ =< V̂ , Ê >, where node V̂i ∈ Ê and edge (V̂i, V̂j) ∈ Ê denotes the pair of neighboring

vertices. Each landmark point is represented as a vertex in the network. For each pair of

vertices, there is an edge with the corresponding weight wef representing the Euclidean

distance between them. Therefore, the network can be represented by a G×G weight

matrix W, normalized into interval [0, 1] [15], [14].

2. Feature extraction

There are two main kinds of characteristics (measurements) that can be used to character-

ise topological connectivity of the Complex Network. One is static statistic measurement,

and the other is dynamic evolution [15], [14]. The five static measurements used in this

work are the maximum degree, average degree, average joint degree, average shortest

path length, and entropy. These measurements have been used to express the topological

features and their subsequent classification. The reason for this is that each Complex

Network has specific topological features that characterise connectivity.

Dynamic evolution is also an important characteristic for Complex Networks. In this

research, the evolution process was used as proposed in [15], [14]. By concatenating meas-

urements the network achieved at different instants from the same underlying dynamic, the

trajectories can be obtained and this value can provide more comprehensive characterization

with which to analyse and classify the network. In addition, considering measurements as
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a function of time, it would also be interesting to try to characterise classes of Complex

Networks by considering the dynamics of the respectively defined feature space [30].Figure

4.3 shows the Complex Network representation and its dynamic evolution process.

Figure 4.3: Shape representation and the dynamic evolution process of a Complex Network.

4.6.1 Degree

The method to describe the characteristic of vertices is degree. From the measurement of

degree, other types of measurements can be carried out. k̂i of node i is the number of edges

directly connected to node, and it is defined in terms of the adjacency matrix Â as

k̂max =
max

i
k̂i (4.1)

and the average degree

k̂avg =
1

N

N∑
i=1

k̂i (4.2)

where k̂i is the degree of node i.

To calculate the amount of order, disorder and chaos in a system, an entropy has been

applied. It is defines as

ĥ =

k̂max∑
k̂=1

p(k̂)logp(k̂) (4.3)

where p(k̂) is the degree of distribution.
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4.6.2 Joint degree

Once the average degree has been defined, then the correlation between degree of two

vertices are quantified. Correlation is a consequential role in many properties of structural

and dynamic networks. This can represented by the joint degree distribution p(k̂, k̂ ′), i.e., the

probability that an edge connects to a vertex of degree k̂ with a vertex of degree k̂ ′. Here,

consider the case in which k̂ = k̂ ′, where they have same degree. Predicted on the joint degree

probability, various measurements can be extracted such as entropy, energy and the average

joint degree.

The entropy for the joint degree distribution is defined as

ĥd = −

k̂max∑
k̂,k̂ ′=1

p(k̂, k̂ ′)logp(k̂, k̂ ′) (4.4)

The enegy for the joint degree distribution is defined as

Ê =

k̂max∑
k̂,k̂ ′=1

p(k̂, k̂ ′) (4.5)

4.6.3 Shortest path

The other measurement is distance. This is defined by computing the mean value of geodesic

distance for each pair of vertices as

dĜ =
1

N(N− 1)

∑
i 6=j
dij (4.6)

where dij is the geodesic distance between vertex i and vertex j.

4.6.4 Feature Extraction using Active Shape Model and Complex Network Model

This section describes feature extraction algorithm using ASM combined with a Complex

Network model. A Complex Network is considered as a feature extraction tool because of

their successful use in extracting and classifying an object, as reported in [15] [14], [16]. In this

proposed method, the ASM method is used to plot the landmark point in order to get the

contour of an image. ASM was found to be a successful technique to use for segmentation
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of an image. As explain previously, the SEM images of the Gyrodactylus species are difficult

to segment due to the tissue surrounding the focused object. Instead of using PCA as the

extraction tool, a Complex Network based on graph theory is used.

The proposed feature extraction algorithm consists of the segmentation of an object, feature

extraction, and classification. Fig. 4.4 shows the process involved in extracting the features

from SEM images of multiple species of Gyrodactylus. The attributes of the framework are:

(1) Segmentation. The segmentation has to be performed correctly in order to provide a

clean and clear representation of the focused object. As discussed before, the SEM images

are considered difficult images to work on, since they are often surrounded with tissue. For

that reason, the ASM model was used to segment the images using the plotting of landmark

points. Using the ASM method, the contour of the images can be produced.

(2) Feature extraction. Feature extraction is required to be performed after segmentation.

Feature extraction is therefore executed to produce data that can be used for classification and

identification purposes. A complex model based on graph theory has been decided to be used

for extracting informative features for classification.

(3) Classification. In a similar manner to other experiments, four machine learning classifiers

were tested to measure the feature extraction approach. The four machine learning classifiers

are LDA, K-NN, MLP, and SVM.

The entire process, from image segmentation using ASM to final classification, is presented

in Fig. 4.4 and is described in detail as follows:

1. Given G = g1h1, ...,grhr, where gshs are the coordinate points.

2. Perform image segmentation using the ASM method. Then, produce the set of landmark

points as Ĝ = G1,G2, ...,Gs.

a) Construct the ASM model.

b) Fit the model.

3. Once the SEM images are ready for feature extraction, the contour images are then

processed using the Complex Network model. The Complex Network method is used

for extracting feature information for the purpose of species identification.
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Figure 4.4: The methodological approach used for extracting the features from the marginal hook. The

images were pre-processed before being subjected to an Active Shape Model and Complex

Network for the feature extraction step. These features were used to train 4 classifiers (K-NN,

LDA, MLP, SVM) and separate the three species of Gyrodactylus, which includes the notifiable

pathogen, G. salaris. Abbreviations: K-NN, K Nearest Neighbors; LDA, Linear Discriminant

Analysis; MLP, Multi-Layer Perceptron; SVM, Support Vector Machine.
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a) Shape representation, where a Complex Network model is designed so that T̂ =<

V̂ , Ê >.

b) Feature extraction. The dynamic evolution process [15] has been selected to be used

for feature extraction for the Complex Network model.

4. Classification can only be performed when the features are available. Four machine

learning classifiers are used to evaluate the feature extraction strategy. These four

machine learning classifiers are:

a) Linear Discriminant Analysis (LDA)

N̂i =W0 +Wi1D1 +Wi2D2 + ... +WinDn

b) K-Nearest Neighbor (K-NN)

(Xt,Xu) =
√∑m

mm=1(X
mm
t −Xmmu )2

c) Multi-layer perceptron (MLP)

R̂j(Xp) = ϕR̆
(∑z

s=0 Vrsϕs
(∑zz

c=0 VscDcn
))

d) Support vector machine (SVM)

Ŝ
∑ii
i=1 Y

iK̆(Xi,X) + b̆

5. The results of the classification are analysed and the classifier performance is measured.

Three species from 68 specimens of Gyrodactylus species are used for identification.

These are: G. derjavinoides, G. salaris and G. truttae.

4.6.5 Results and discussion

This section contains the results obtained by classifying 68 SEM images of Gyrodactylus speci-

mens using the ASM - CN method using linear and non-linear machine learning classifiers.

The experiment strategy for the implementation of ASM - CN feature extraction to the SEM

images of Gyrodactylus species is very similar to the experiments presented in section 4.5.

The only difference is the method used for feature extraction. In this experiment, the same

number of images are considered, with the same number of landmark points. The objective of

the implementation of Complex Network model as a feature extraction tool is to apply the

ASM method together with Complex Network model in order to extract and correctly classify
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multiple species of Gyrodactylus. The results of the implementation of the combined ASM and

Complex Network model are produced by the following parameters, as shown in Table 4.11.

Table 4.11: The parameter settings for Complex Network model feature extraction.

Parameter Name Value

Initial threshold 0.025

Final threshold 0.5

Separation 0.075

Number of points 45 / 110

Table 4.12 presents the average classification rate with standard deviation of three species

of Gyrodactylus using 10-fold cross validation for the training and testing strategy. The four

selected machine learning classifiers are LDA, K-NN, MLP and SVM. The results in Table 4.12

show a comparison of classification performance of machine learning classifiers applied to

different numbers of feature extraction landmark points. Using the 45 landmark points, the

SVM classifier has achieved the highest accuracy (97.06%), followed by the MLP classifier at

94.12%. On the other hand, when considering 110 landmark points, the highest performance

was found with the MLP classifier. These results conclude that the selection of the number

of landmark points plays an important role in considering the method of extraction and

classification.

Using the 45 landmark points, the SVM classifier improved upon the classification of G.

salaris specimens with all being correctly classified (Table 4.16), while two more species remain

misclassified; such as G. salaris specimen being misallocated as G. truttae and G. truttae being

Table 4.12: The average classification rate of Gyrodactylus species; performance with Linear (i.e. LDA and

K-NN) and non-linear (i.e. MLP and SVM) machine learning classifiers from the hooks of

each parasite, extracted using ASM and Complex Network approaches.

Feature set / Classifier LDA KNN MLP SVM

45 points 86.19 ±11.49 90.00 ±15.13 94.12 ±7.35 97.06 ±6.09

110 points 83.57 ±14.57 92.80 ±10.20 98.36 ±4.71 95.59 ±8.87
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Table 4.13: A confusion matrix of the 45 points of

ASM - CN feature extraction implemen-

ted to the SEM Gyrodactylus images using

LDA classifier.

G. der G. sal G. tru Sum

G. der 25 0 0 25

G. sal 4 28 2 34

G. tru 0 2 7 9

Sum 29 30 9 68

Table 4.14: A confusion matrix of the 45 points of

ASM - CN feature extraction implemen-

ted with the SEM Gyrodactylus images

using the K-NN classifier.

G. der G. sal G. tru Sum

G. der 22 1 2 25

G. sal 1 33 0 34

G. tru 3 0 6 9

Sum 26 34 8 68

misclassified as G. salaris. Other classifier model results are shown for LDA (Table 4.13), K-NN

(Table 4.14) and MLP (Table 4.15).

In addition to the 45 landmark points considered for extracting the features for classification,

110 points were also considered. The objective is to see if there is any improvement in

classification if the number of landmark points increased. With the increment in the number

of points, more features are therefore added. Amongst all the classifiers considered, the MLP

classifier(Table 4.19) has performed well, with only one specimen misclassified as G. truttae.

Other confusion matrixes of different classifiers have been presented in Table 4.17, Table 4.18

and Table 4.20.

This performance is same as that obtained using ASM-PCA presented by Ali et al. [9],

and this is better than the 25 point-to-point measurements manually extracted from light

micrographs of 557 specimens (i.e. 92.59%) [8], this approach appears promising and will in

future, be applied to hooks prepared for light microscopy with the expectation of equal or

better rates of correct classification. The ASM and Complex Network based approach applied

to SEM images of the hook sickles of Gyrodactylus appears to outperform or equal other

methods that have been tested to identify this species with confidence.
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Table 4.15: A confusion matrix of the 45 points of

ASM - CN feature extraction implemen-

ted with the SEM Gyrodactylus images

using the MLP classifier.

G. der G. sal G. tru Sum

d 25 0 0 25

s 0 32 2 34

t 0 2 7 9

Sum 25 34 9 68

Table 4.16: A confusion matrix of the 45 points of

ASM - CN feature extraction implemen-

ted with the SEM Gyrodactylus images

using the SVM classifier.

G. der G. sal G. tru Sum

d 25 0 0 25

s 0 33 1 34

t 0 1 8 9

Sum 25 34 8 68

Table 4.17: A confusion matrix of the 110 points of

ASM - CN feature extraction implemen-

ted with the SEM Gyrodactylus images

using the LDA classifier.

G. der G. sal G. tru Sum

d 24 0 1 25

s 1 28 5 34

t 0 2 7 9

Sum 25 30 13 68

Table 4.18: A confusion matrix of the 110 points of

ASM - CN feature extraction implemen-

ted with the SEM Gyrodactylus images

using the K-NN classifier.

G. der G. sal G. tru Sum

d 23 1 1 25

s 0 34 0 34

t 2 1 6 9

Sum 25 36 7 68
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Table 4.19: A confusion matrix of the 110 points of

ASM - CN feature extraction implemen-

ted with the SEM Gyrodactylus images

using the MLP classifier.

G. der G. sal G. tru Sum

d 25 0 0 25

s 0 33 1 34

t 0 0 9 9

Sum 25 33 10 68

Table 4.20: A confusion matrix of the 110 points of

ASM - CN feature extraction implemen-

ted with the SEM Gyrodactylus images

using the SVM classifier.

G. der G. sal G. tru Sum

G. der 25 0 0 25

G. sal 0 32 2 34

G. tru 0 1 8 9

Sum 25 33 7 68

Referring to the experimental results of the previously discussed ASM-PCA approach, there

is not a large difference in the accuracy of classification, either using only ASM as the feature

extraction tool, or a combined ASM and Complex Network model. In the case of extracting the

SEM Gyrodactylus species images, the ASM approach was determined to be the best method

for segmentation of the images. Other approaches [95], [83], [92], [123] are not suitable due to

the physical appearance of the SEM images, that have additional tissue surrounding the object

of interest (the attachment hook). In addition, the integration of a ASM and Complex Network

to create a new feature extraction method appears to produce promising initial results that

will be expanded upon in future work.

Backes et al. [16] used different parameters to those that were used in this study, where the

direct images were used in the feature extraction procedure instead of the landmark points.

In the case of Gyrodactylus species, using the SEM images directly is not possible because

the target object is surrounded with the tissue. Another segmentation approach is needed

to remove these noises. Otherwise, the main object is not accurately analysed. As discussed

before, even though the classification performance is slightly poorer (0.17% different) than

using the ASM-PCA technique discussed earlier, the combination of ASM and Complex

Network model represents an improvement in terms of image segmentation. Backes et al.
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[16] has introduced a method that applies a Complex Network to extract images using black

(background) and white (contour). However, this method is not fully relevant to the problem

of Gyrodactylus. This can be seen in figure 4.5, which shows the two images of the same

subject. The segmentation of the images is incorrect as the images also include the noise

(tissue) present in the SEM images. This will naturally lead to poor performance with regard

to prediction of the true species.

In addition, in work by Tang et al. [137], they apply a Complex Network to model the graph

structure. In order to model this graph structure, they extract the topological and dynamic

characteristics of the Complex Network. To conclude, this work focuses on representation

of the images rather than image extraction, while our focus is on extraction of the valuable

features for the purpose of classification of multiple species.

Figure 4.5: Original image (left) and segmentation of image (right).

The combination of ASM with a Complex Network model has created significant potential

for improving the functionality and performance of the Complex Network model approach.

As discussed before, in a Complex Network model, there is no function to segment the images

before the feature extraction process. Conventionally, this step will be performed manually.

As discussed previously, when the process is performed manually, it can very easily lead to

inaccuracy in segmentation. An additional drawback is if there are many images that require

segmentation, which means that this process will therefore take a significant time period to

complete. The combination of the two approaches for successfully extracting the SEM images

of multiple species of Gyrodactylus has been shown to be feasible, and allows for a reliable

and automatic feature extraction process, rather than being reliant on a time consuming

and labour intensive manual feature extraction approach. With the combination of ASM and

a Complex Network, the issue of segmentation is solved. The current limitation with this

approach is that the accuracy of this combined method is slightly less when compared to the

ASM-PCA approach (0.17%), but the drop in performance is very small, and the convenience
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of this approach, and the potential for future improvement, makes this approach viable and

promising.

4.7 conclusions

In this chapter, research into image analysis and processing has been discussed and presented.

While many linear and non-linear machine learning classifiers have previously been demon-

strated to successfully classify multiple species of Gyrodactylus, this chapter demonstrated

Gyrodactylus species identification using two different numbers of point sets, generated by a

new application of ASM feature extraction to this domain, linked with machine learning clas-

sification. The primary aim of this research was the determination of which input information

is required to produce robust species discrimination.

Extraction methods based on statistical models, such as ASM, have been shown to obtain

good results in many applications [106], [85], [136]. With those successful results taken into

account, and other options being considered to be less well suited to this problem domain,

the ASM method was chosen to be applied for extracting the SEM Gyrodactylus images. There

are three species that were tested for correct identification. These are G. derjavinoides (n = 25),

G. salaris (n = 34) and G. truttae (n =9). The experiments presented in this chapter showed that

the approach presented here was successful and efficient with regard to extracting features

and accurately classifying multiple species of fish parasite.

To the knowledge of the author, this is the first computer-based classification of ectoparasite

of genus monogenea Gyrodactylus species that has been successfully demonstrated through

the application of pattern recognition techniques of marginal hook pattern SEM images. ASM

applied to 68 SEM images of the marginal hook sickle were able to overcome the limitations

and difficulties of extracting feature information from the hooks. The best approach, which

used 110 points and was identified to be the LDA method, was able to improve upon the

performance of previous manual point to point measurement approaches (i.e. 98.57% cf.

92.59% using an LDA-based classifier applied to manually extracted morphometric data).

In this chapter, we also explored the utility of a novel combined ASM and Complex Network

based approach in extracting and thus classifying the ectoparasites of genus Gyrodactylus
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species. A novel ASM and Complex Network model was applied to the 68 SEM images of the

marginal hook sickle, and was able to overcome the limitation and difficulties in extracting

feature information from the hooks. The result indicates that the best classifier in identification

of these multiple species is the MLP classifier with 110 landmark points. It was decided to

integrate a Complex Network with the ASM method because Complex Network models have

much potential for future use and are a novel subject of interest in the image processing

research domain.

Although the combination of ASM and Complex Network does not improve the clas-

sification performance significantly, (i.e. ASM-PCA has achieved competative accuracy of

classification performance between 98.57% and ASM-Complex Network has achieved 98.36%),

there is the opportunity to improve the performance further. The chief benefit of our new

combined approach is that the segmentation of the images for the purpose of feature extraction

has been improved. Before, the segmentation was required to take place manually, which was

time consuming and prone to human error. In this work, the ASM was used as segmentation

by providing the landmark points, then a Complex Network was used to extract the features.

The final chapter concludes the thesis as a whole, providing an overview of the research

and the original contributions presented in this work, and outlining some proposed future

research directions.
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5
C O N C L U S I O N S

5.1 summary

In this research, a number of intelligent approaches have been proposed for the identification

of multiple monogenean parasites of genus Gyrodactylus, whose members are a common

fish ectoparasite within aquaculture and wild capture fisheries, with more than 409 species

identified to date [61]. The newly designed ensemble classification and signal image processing

research for Gyrodactylus specimens presented in this thesis was motivated by several factors.

Firstly, as an industry, aquaculture continues to expand worldwide, but this expansion has

been accompanied by increased disease problems including those associated with ectoparasite

monogenean worms. A second motivational factor was that the discrimination of pathogenic

from non-pathogenic species is a key current requirement in order to allow for control and

management of pathogens of wild and farmed fish at domain expert, industry and government

level. However, a shortage of taxonomic experts and the shortcomings of molecular methods

often make this requirement difficult to achieve in practice. Another significant motivation

was the desire to make use of a novel combination within this research domain of an

intelligent ensemble model and signal image processing, including techniques that have been

nominally described as AI, to provide the opportunity to develop state-of-the-art automated

or semi-automated models (including more intelligent models) for pathogen recognition. The

state-of-the-art combination of these techniques will allow for rapid, consistent and secure

initial identification of pathogens by field workers and non-expert users.

Based on the motivations described above, the goal of the research reported in this thesis

was primarily to develop an ensemble based majority voting method by combining a number

of successful classifiers and a combination of different feature sets, and also applying a number

of advanced state-of-the-art image processing techniques. These have been investigated and
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evaluated in this research project for providing the basis for the extraction of features that

contribute to a rapid, secure and accurate recognition of species. The novel proof of concept

framework presented in this thesis can be divided into two parts, as due to limitations with

availability, two separate and distinct datasets have been used. As a consequence of these data

limitations, resulting in a smaller number of SEM images available, it was found that a full and

comprehensive demonstration of the whole framework was not possible, and so the evaluation

was divided into a number of sections to take account of the strongest data availability. The

first part of the final evaluation is the ensemble based majority voting, which is applied to the

557 Gyrodactylus images. The second stage of the evaluation process focuses on the feature

extraction methodology, and is applied to the 68 SEM Gyrodactylus images. Both of these

evaluations share the same objective, to provide a consistent and accurate classification and

identification of the Gyrodactylus species.

In this thesis, chapter 2 presented the background to the inter-discplinary research problem.

As described, the aim of this advanced research is to provide a novel mechanism for predicting

the correct class of Gyrodactylus species, making use of state-of-the-art technology. This chapter

summarised the background to the problem, focusing initially on introducing and providing

a full description of the Gyrodactylus species. This chapter also discussed the spread of

the species and the significant global impact in terms of both food supply and economic

consequences.

After discussing the motivation and the background to this thesis, chapter 3 presented

an original contribution of this thesis. This chapter presented an initial solution to the issue

of identifying the multiple species considered in this project, using artificial intelligence

techniques. In this chapter, a number of machine learning classifiers and feature selection

methods have been reviewed and applied to evaluate their suitability with regard to solving

the target problem. To evaluate these approaches, 557 specimen of nine different species of

Gyrodactylus have been used. The results showed the benefits of the different classification

approaches, which to the best knowledge of the author, have not been applied to this research

problem previously. The conventional method used for extracting features for this morpho-

metric dataset was based on point-to-point measurements, which is labour extensive and time

consuming. For this reason, it was decided that it would be appropriate for intelligent signal
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image processing to be explored, to investigate if applying this technology for assisting the

domain expert in making quick and accurate identification of the species was viable.

The initial limitation of the preliminary experimental results was identified to be the misclas-

sification errors present. Investigation of other state-of-the-art research approaches influenced

development of a refined ensemble based majority voting approach, and also improvement

of the feature extraction method. The ensemble-based model proposed and implemented

in chapter 3 is designed to allow for rapid, consistent and secure initial identification of

pathogens by field workers and non-expert users. To construct an ensemble model, two types

of classifiers (i.e. LDA and K-NN) and three sets of features (i.e. 25 features, 21 features and

20 features) were used as components in the system. These were augmented by the use of a

majority voting method as part of an ensemble strategy to combine these methods and pro-

duce an improved output. New experimental results presented in this chapter demonstrated

that by using an ensemble approach, performance accuracy was increased and the number of

misclassification errors was minimised, representing a further refinement of the initial results

presented previously.

Chapter 4 presented another original contribution. In this chapter, a number of intelligent

image processing techniques have been reviewed by focusing on feature extraction. The chapter

demonstrates the application of intelligent image processing applied to feature extraction. For

this, ASM based processing was applied to the 68 SEM images of three different species. Unlike

the morphometric features, for SEM images, only features from the marginal hook sickle have

been considered rather than the addition of both the hamuli and ventral bar features. ASMs

applied to SEM images of the marginal hook sickle were able to overcome the limitations

and difficulties of extracting feature information from the hooks, and demonstrated that this

approach can be used successfully. The same classifiers as discussed in chapter 3 were used for

measuring the success of the ASM method. The best approach, which used 110 feature points

and was identified to be the LDA classifier method, was able to improve upon the performance

of previous manual point-to-point measurement approaches (i.e. 98.57%, compared to 92.59%

using a LDA-based classifier applied to manually extracted morphometric data). With this

improvement, it was shown in this research that it is possible to apply ASMs to assist the

domain expert with regards to feature extraction, and thus, successfully performing speech
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classification. As an additional point of investigation, to assist the domain expert in analysis

of SEM images, a refined approach for image processing was also explored. The initial ASM

model was refined by integrating a Complex Network. This was implemented in a similar way

to the ASM based method also presented in chapter 4, except that in this research, the ASM

has been used only for identification of the landmark points. After this initial identification,

the Complex Network was then used to extract the features, which to the knowledge of the

author, was the first integration of these techniques to solve this research problem. The initial

ground-breaking results indicate that it is possible to achieve good classification results using

this novel method.

Overall, this thesis presents an investigation of novel state-of-the-art ensemble classification

and image processing for classification of the genus Gyrodactylus (Monogenean). Although

two separate datasets have been used due to data availability limitations outwith the control

of the author, the overall objective of the thesis is achieved. These are, the combination of

different models for classification and identification through the ensemble method, and feature

extraction using ASM with the novel integration of a Complex Network model. A number of

classification techniques were investigated, and these were then paired with state-of-the-art

image processing approaches. These were combined with an ensemble approach, which used

majority voting to produce improved performance compared to using individual classifiers or

feature points.

5.2 conclusions

There are a number of key conclusions that can be drawn from this research:

1. The 557 image morphometric dataset discussed in this research has been successfully

used for classification and identification using machine learning classifiers and feature

selection techniques. This dataset consisted of images from nine different sub-species

of Gyrodactylus. These were G. arcuatus, G. derjavinoides, G. gasterostei, G. kherulensis, G.

salaris, G. sommervillae, G. thymalli, G. truttae and G. cichilidarum. The results of carrying

out classification using this data were assessed using LDA, K-NN, MLP and SVM. In

addition to the classification, four feature sets have also been evaluated. These consisted
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of the original 25 features, 21 selected features using SFS, the 20 features identified using

the SBS method, and seven features that were found by using the SFFS method. The

highest classification result using this dataset was found to be 97.67% accuracy, obtained

by using the MLP classifier and the full set of 25 features.

2. One issue that this research identified was that when applying a single classification

technique, the misclassification rate was generally found to be high and therefore,

arguably, there could be a lack of confidence in the accuracy of the final result. To

resolve this issue, an ensemble-based majority voting system was proposed. In this

proposed algorithm, two classifiers (LDA and K-NN) together with three sets of features

(the set of 25, 21, and 20 features respectively) have been combined into an integrated

classification system, with majority voting applied to make the final classification

decision by considering all of these variables rather than one single approach. In this

work it was decided to make use of LDA and K-NN because when comparing these

approaches to the MLP and SVM techniques, the misclassification errors were found

to be similar, meaning there was little additional value from the integration of all four

classifiers. The principle of ensemble system is the combination of the models must have

independent errors, so that the ensemble system can perform better.

3. In addition to the morphometric dataset, the use of an image processing dataset has also

been explored in this research. The contents of this dataset were taken from SEM images.

Only the marginal hook or contour information of each Gyrodactylus was used to extract

the features required in order to perform species identification. To extract these features,

a combination of two techniques were applied to each image in the dataset. The first

technique to be applied was the ASM approach. ASM was used to segment the images

by taking into account only the shape of the object. This is a critical task, since the target

image (the hook) is surrounded by tissue, which may act as noise in any classification

using the raw images. Only then, after the successful removal of the additional tissue

and the extraction of only the relevant object, was the second method applied, the

Complex Network model. The Complex Network Model was used to extract the features

for classification and prediction of the species class. This novel application was found to

successfully assist scientific research in the Aquaculture domain to accurately identify
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the ectoparasite species in a shorter time, than taking the time consuming measurements

required otherwise. In addition to this, in the computer science domain, the proposed

combined application of ASM and the Complex Network model has a great deal of

potential, as it allows the segmentation process to be integrated within the Complex

Network model for extracting feature information. This is an exciting area of future

research.

5.3 future work

There are a number of potential future research directions that can follow on from the research

presented in this thesis. These include:

1. The number of images within the dataset could be increased. This would make it

possible for further application of the complex models. Currently, the SEM image dataset

only consists of 68 images from three different species. Once an increased quantity of

images becomes available, additional research and a considerably more detailed and

comprehensive, including statistical, evaluation can be performed, a benchmarked

against a range of state-of-the-art signal image processing approaches that were not

employed in this thesis.

2. Other than the ensemble methodology, there are a number of other techniques that could

be explored in order to extract the most informative features. One potential technique

that could be explored is skeleton graph matching [17]. In this method, a skeleton graph

is matched by comparing the geodesic paths between skeleton endpoints. The main idea

is that it will identify matches based on the similarity of the shortest paths between

each pair of endpoints. It could be possible to apply this method in the case of SEM

Gyrodactylus images used in the research presented in this thesis, where the images have

varieties of scale affected by variations in temperature, even though the original shape

remains the same for similar species. One example of this is the case of G. salaris from

Norway and G. salaris from Italy. The size of these two may be slightly different, but the

shape remains the same for both.
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3. Further enhancements need to be explored to the novel combined ASM and Complex

Network based feature extraction algorithm proposed in this thesis. In addition, al-

ternative unsupervised machine learning based approaches, such as novel incremental,

slow feature analysis [96] and manifold-based machine learning algorithms (including

newly developed locally optimised laplacian eigenmap and globally optimised isometric

projection algorithms [97], Malik et al. [98]) can be used for simultaneous invariant fea-

ture extraction, dimensionality reduction, and real-time clustering and visualization (in

appropriately projected low-dimensional latent space). Newly developed unsupervised

canonical correlation based machine learning methods [100] could also be employed, to

identify features that maximise correlations, and hence determine similarities between

the extracted features and their cumulative effects on the classification outcomes. A

newly developed, cognitively-inspired graph theory-based real-time clustering technique

[3] could be employed to analyse and extract any connected clusters of features that

may otherwise go undetected with traditional cluster extraction techniques.

4. For more enhanced prediction and classification, other state-of-the-art techniques in

addition to ensemble based majority voting employed in this study, could be applied

in future research. These would enable an investigation into the possibility of further

improvements in the classification results, and thus a reduction in misclassification

errors. The current problem that is not fully solved is that certain classifiers are very

good at classifying certain species, while performing poorly with other species. To solve

this issue, it could be possible to implement the recently proposed approach termed

multi-target regression with rule ensembles [6]. The rule ensemble approach is used to

ensemble decision trees into a large collection of rules. An optimization approach is then

used to select the best subset of these rules and to determine their respective weights.

5. As noted earlier, a detailed comparative performance-complexity trade-off analysis

needs to be carried out of the various classifiers employed in this study, in order to op-

timise the developed ensemble based classifier approach. Further, other state-of-the-art

supervised machine learning based classifiers could also be employed and comparat-

ively evaluated as part of ensemble or multi-stage classifiers, including feedforward

neural networks such as adaptively regularized multi-class logistic regression models
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[103], incremental linear discriminative analysis with extreme learning machines [99]

and temporal recurrent neural network models [96], [100]. A range of state-of-the-art

unsupervised machine learning based classifiers can also be employed and comparative

evaluated in the future.

6. Finally, the versatility and flexibility of the work presented in this thesis can be investig-

ated. This can be accomplished by evaluating whether the groundbreaking integrated

model, which combines state-of-the-art feature extraction, a range of classification tech-

niques, all integrated with an ensemble method to successfully identify Gyrodactylus can

be successfully applied to identify data from a different species of Monogenea, such as

Dactylogylus.
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