108,177 research outputs found

    Degree Sequence Index Strategy

    Full text link
    We introduce a procedure, called the Degree Sequence Index Strategy (DSI), by which to bound graph invariants by certain indices in the ordered degree sequence. As an illustration of the DSI strategy, we show how it can be used to give new upper and lower bounds on the kk-independence and the kk-domination numbers. These include, among other things, a double generalization of the annihilation number, a recently introduced upper bound on the independence number. Next, we use the DSI strategy in conjunction with planarity, to generalize some results of Caro and Roddity about independence number in planar graphs. Lastly, for claw-free and K1,rK_{1,r}-free graphs, we use DSI to generalize some results of Faudree, Gould, Jacobson, Lesniak and Lindquester

    Relative Fractional Independence Number and Its Applications

    Full text link
    We define the relative fractional independence number of two graphs, GG and HH, as α∗(G∣H)=max⁥Wα(G⊠W)α(H⊠W),\alpha^*(G|H)=\max_{W}\frac{\alpha(G\boxtimes W)}{\alpha(H\boxtimes W)}, where the maximum is taken over all graphs WW, G⊠WG\boxtimes W is the strong product of GG and WW, and α\alpha denotes the independence number. We give a non-trivial linear program to compute α∗(G∣H)\alpha^*(G|H) and discuss some of its properties. We show that α∗(G∣H)≄X(G)X(H),\alpha^*(G|H)\geq \frac{X(G)}{X(H)}, where X(G)X(G) can be the independence number, the zero-error Shannon capacity, the fractional independence number, the Lov'{a}sz number, or the Schrijver's or Szegedy's variants of the Lov'{a}sz number of a graph GG. This inequality is the first explicit non-trivial upper bound on the ratio of the invariants of two arbitrary graphs, as mentioned earlier, which can also be used to obtain upper or lower bounds for these invariants. As explicit applications, we present new upper bounds for the ratio of the zero-error Shannon capacity of two Cayley graphs and compute new lower bounds on the Shannon capacity of certain Johnson graphs (yielding the exact value of their Haemers number). Moreover, we show that the relative fractional independence number can be used to present a stronger version of the well-known No-Homomorphism Lemma. The No-Homomorphism Lemma is widely used to show the non-existence of a homomorphism between two graphs and is also used to give an upper bound on the independence number of a graph. Our extension of the No-Homomorphism Lemma is computationally more accessible than its original version

    On the Signed 22-independence Number of Graphs

    Full text link
    In this paper, we study the signed 2-independence number in graphs and give new sharp upper and lower bounds on the signed 2-independence number of a graph by a simple uniform approach. In this way, we can improve and generalize some known results in this area

    Graph-theoretical Bounds on the Entangled Value of Non-local Games

    Get PDF
    We introduce a novel technique to give bounds to the entangled value of non-local games. The technique is based on a class of graphs used by Cabello, Severini and Winter in 2010. The upper bound uses the famous Lov\'asz theta number and is efficiently computable; the lower one is based on the quantum independence number, which is a quantity used in the study of entanglement-assisted channel capacities and graph homomorphism games.Comment: 10 pages, submission to the 9th Conference on the Theory of Quantum Computation, Communication, and Cryptography (TQC 2014

    Bounds for the independence number of a graph

    Get PDF
    The independence number of a graph is the maximum number of vertices from the vertex set of the graph such that no two vertices are adjacent. We systematically examine a collection of upper bounds for the independence number to determine graphs for which each upper bound is better than any other upper bound considered. A similar investigation follows for lower bounds. In several instances a graph cannot be found. We also include graphs for which no bound equals α\alpha and bounds which do not apply to general graphs

    Counting independent sets in cubic graphs of given girth

    Get PDF
    We prove a tight upper bound on the independence polynomial (and total number of independent sets) of cubic graphs of girth at least 5. The bound is achieved by unions of the Heawood graph, the point/line incidence graph of the Fano plane. We also give a tight lower bound on the total number of independent sets of triangle-free cubic graphs. This bound is achieved by unions of the Petersen graph. We conjecture that in fact all Moore graphs are extremal for the scaled number of independent sets in regular graphs of a given minimum girth, maximizing this quantity if their girth is even and minimizing if odd. The Heawood and Petersen graphs are instances of this conjecture, along with complete graphs, complete bipartite graphs, and cycles.Postprint (author's final draft
    • 

    corecore