1,185 research outputs found

    Fully Distributed Cooperative Spectrum Sensing for Cognitive Radio Networks

    Get PDF
    Cognitive radio networks (CRN) sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. The detection capability of a radio system can be enhanced if the sensing process is performed jointly by a group of nodes so that the effects of wireless fading and shadowing can be minimized. However, taking a collaborative approach poses new security threats to the system as nodes can report false sensing data to force a wrong decision. Providing security to the sensing process is also complex, as it usually involves introducing limitations to the CRN applications. The most common limitation is the need for a static trusted node that is able to authenticate and merge the reports of all CRN nodes. This paper overcomes this limitation by presenting a protocol that is suitable for fully distributed scenarios, where there is no static trusted node

    RADIS: Remote Attestation of Distributed IoT Services

    Get PDF
    Remote attestation is a security technique through which a remote trusted party (i.e., Verifier) checks the trustworthiness of a potentially untrusted device (i.e., Prover). In the Internet of Things (IoT) systems, the existing remote attestation protocols propose various approaches to detect the modified software and physical tampering attacks. However, in an interoperable IoT system, in which IoT devices interact autonomously among themselves, an additional problem arises: a compromised IoT service can influence the genuine operation of other invoked service, without changing the software of the latter. In this paper, we propose a protocol for Remote Attestation of Distributed IoT Services (RADIS), which verifies the trustworthiness of distributed IoT services. Instead of attesting the complete memory content of the entire interoperable IoT devices, RADIS attests only the services involved in performing a certain functionality. RADIS relies on a control-flow attestation technique to detect IoT services that perform an unexpected operation due to their interactions with a malicious remote service. Our experiments show the effectiveness of our protocol in validating the integrity status of a distributed IoT service.Comment: 21 pages, 10 figures, 2 table

    Efficient time synchronized one-time password scheme to provide secure wake-up authentication on wireless sensor networks

    Get PDF
    In this paper we propose Time Synchronized One-Time-Password scheme to provide secure wake up authentication. The main constraint of wireless sensor networks is their limited power resource that prevents us from using radio transmission over the network to transfer the passwords. On the other hand computation power consumption is insignificant when compared to the costs associated with the power needed for transmitting the right set of keys. In addition to prevent adversaries from reading and following the timeline of the network, we propose to encrypt the tokens using symmetric encryption to prevent replay attacks.Comment: International Journal Of Advanced Smart Sensor Network Systems (IJASSN), Vol 3, No.1, January 2013 http://airccse.org/journal/ijassn/papers/3113ijassn01.pd

    A Candour-based Trust and Reputation Management System for Mobile Ad Hoc Networks

    Get PDF
    The decentralized administrative controlled-nature of mobile ad hoc networks (MANETs) presents security vulnerabilities which can lead to attacks such as malicious modification of packets. To enhance security in MANETs, Trust and Reputation Management systems (TRM) have been developed to serve as measures in mitigating threats arising from unusual behaviours of nodes. In this paper we propose a candour-based trust and reputation system which measures and models reputation and trust propagation in MANETs. In the proposed model Dirichlet Probability Distribution is employed in modelling the individual reputation of nodes and the trust of each node is computed based on the node’s actual network performance and the quality of the recommendations it gives about other nodes. Cooperative nodes in our model will be rewarded for expanding their energy in forwarding packets for other nodes or for disseminating genuine recommenda-tions. Uncooperative nodes are isolated and denied the available network resources. We employed the Ruffle algorithm which will ensure that cooperative nodes are allowed to activate sleep mode when their service is not required in forwarding packets for its neighbouring trustworthy nodes. The proposed TRM system enshrines fairness in its mode of operation as well as creating an enabling environment free from bias. It will also ensure a connected and capacity preserving network of trustworthy node

    SECURE AND OPTIMIZED METHOD OF PROVIDING TRUSTWORTHINESS FOR IOT SENSORS IN LOW-POWER WAN DEPLOYMENTS

    Get PDF
    Currently there are multiple ways of verifying the identity and integrity of Internet of Things (IoT) sensors based on, for example, the Trusted Computing Group’s (TCG’s) Guidance for Securing Network Equipment, software-centered approaches such as using a checksum, and using an in-band and out-of-band approaches for integrity validation. In each of these approaches, trustworthiness may be based on limited artifacts. As well, none of these approaches employ quantum resistant secure key exchange methods between a Long Range (LoRa) Wide Area Network (LoRa) (LoRaWAN) Gateway and sensors. To address these challenges techniques are presented herein that apply an attestation method to the Constrained Application Protocol (CoAP), which is used between a LoRa Gateway and sensors, to provide proof of integrity and freshness of proof of integrity (in other words, trustworthiness) to IoT sensor devices. An Attestation ID that is derived through an attestation method is shared in data traffic (i.e., in-band) securely using a Post-Quantum Cryptography (PQC) method
    • 

    corecore