18,146 research outputs found

    Genetic Algorithms for Stochastic Flow Shop No Wait Scheduling

    Get PDF
    ln this paper we present Genetic Algorithms - evolutionary algorithms based on an analogy with natural selection and survival of the fittest - applied to an NP Complete combinatorial optimization problem: minimizing the makespan of a Stochastic Flow Shop No Wait (FSNW) schedule. This is an important optimization criteria in real-world situations and the problem itself is of practical significance. We restrict our applications to the three machine flow shop no wait problem which is known to be NP complete. The stochastic hypothesis is that the processing times of jobs are described by normally distributed random variables. We discuss how this problem may be translated into a TSP problem by using the start interval concept. Genetic algorithms, both sequential and parallel are then applied to search the solution space and we present the algorithms and empirical results

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Job-shop scheduling with limited capacity buffers

    Get PDF
    In this paper we investigate job-shop problems where limited capacity buffers to store jobs in non-processing periods are present. In such a problem setting, after finishing processing on a machine, a job either directly has to be processed on the following machine or it has to be stored in a prespecified buffer. If the buffer is completely occupied the job may wait on its current machine but blocks this machine for other jobs. Besides a general buffer model, also specific configurations are considered. The aim of this paper is to find a compact representation of solutions for the job-shop problem with buffers. In contrast to the classical job-shop problem, where a solution may be given by the sequences of the jobs on the machines, now also the buffers have to be incorporated in the solution representation. In a first part, two such representations are proposed, one which is achieved by adapting the alternative graph model and a second which is based on the disjunctive graph model. In a second part, it is investigated whether the given solution representation can be simplified for specific buffer configurations. For the general buffer configuration it is shown that an incorporation of the buffers in the solution representation is necessary, whereas for specific buffer configurations possible simplifications are presented

    Scheduling Bidirectional Traffic on a Path

    Full text link
    We study the fundamental problem of scheduling bidirectional traffic along a path composed of multiple segments. The main feature of the problem is that jobs traveling in the same direction can be scheduled in quick succession on a segment, while jobs in opposing directions cannot cross a segment at the same time. We show that this tradeoff makes the problem significantly harder than the related flow shop problem, by proving that it is NP-hard even for identical jobs. We complement this result with a PTAS for a single segment and non-identical jobs. If we allow some pairs of jobs traveling in different directions to cross a segment concurrently, the problem becomes APX-hard even on a single segment and with identical jobs. We give polynomial algorithms for the setting with restricted compatibilities between jobs on a single and any constant number of segments, respectively

    Asymptotically Optimal Approximation Algorithms for Coflow Scheduling

    Full text link
    Many modern datacenter applications involve large-scale computations composed of multiple data flows that need to be completed over a shared set of distributed resources. Such a computation completes when all of its flows complete. A useful abstraction for modeling such scenarios is a {\em coflow}, which is a collection of flows (e.g., tasks, packets, data transmissions) that all share the same performance goal. In this paper, we present the first approximation algorithms for scheduling coflows over general network topologies with the objective of minimizing total weighted completion time. We consider two different models for coflows based on the nature of individual flows: circuits, and packets. We design constant-factor polynomial-time approximation algorithms for scheduling packet-based coflows with or without given flow paths, and circuit-based coflows with given flow paths. Furthermore, we give an O(logn/loglogn)O(\log n/\log \log n)-approximation polynomial time algorithm for scheduling circuit-based coflows where flow paths are not given (here nn is the number of network edges). We obtain our results by developing a general framework for coflow schedules, based on interval-indexed linear programs, which may extend to other coflow models and objective functions and may also yield improved approximation bounds for specific network scenarios. We also present an experimental evaluation of our approach for circuit-based coflows that show a performance improvement of at least 22% on average over competing heuristics.Comment: Fixed minor typo

    Dynamic scheduling in a multi-product manufacturing system

    Get PDF
    To remain competitive in global marketplace, manufacturing companies need to improve their operational practices. One of the methods to increase competitiveness in manufacturing is by implementing proper scheduling system. This is important to enable job orders to be completed on time, minimize waiting time and maximize utilization of equipment and machineries. The dynamics of real manufacturing system are very complex in nature. Schedules developed based on deterministic algorithms are unable to effectively deal with uncertainties in demand and capacity. Significant differences can be found between planned schedules and actual schedule implementation. This study attempted to develop a scheduling system that is able to react quickly and reliably for accommodating changes in product demand and manufacturing capacity. A case study, 6 by 6 job shop scheduling problem was adapted with uncertainty elements added to the data sets. A simulation model was designed and implemented using ARENA simulation package to generate various job shop scheduling scenarios. Their performances were evaluated using scheduling rules, namely, first-in-first-out (FIFO), earliest due date (EDD), and shortest processing time (SPT). An artificial neural network (ANN) model was developed and trained using various scheduling scenarios generated by ARENA simulation. The experimental results suggest that the ANN scheduling model can provided moderately reliable prediction results for limited scenarios when predicting the number completed jobs, maximum flowtime, average machine utilization, and average length of queue. This study has provided better understanding on the effects of changes in demand and capacity on the job shop schedules. Areas for further study includes: (i) Fine tune the proposed ANN scheduling model (ii) Consider more variety of job shop environment (iii) Incorporate an expert system for interpretation of results. The theoretical framework proposed in this study can be used as a basis for further investigation

    Benders decomposition for the mixed no-idle permutation flowshop scheduling problem

    Get PDF
    [EN] The mixed no-idle flowshop scheduling problem arises in modern industries including integrated circuits, ceramic frit and steel production, among others, and where some machines are not allowed to remain idle between jobs. This paper describes an exact algorithm that uses Benders decomposition with a simple yet effective enhancement mechanism that entails the generation of additional cuts by using a referenced local search to help speed up convergence. Using only a single additional optimality cut at each iteration, and combined with combinatorial cuts, the algorithm can optimally solve instances with up to 500 jobs and 15 machines that are otherwise not within the reach of off-the-shelf optimization software, and can easily surpass ad-hoc existing metaheuristics. To the best of the authors' knowledge, the algorithm described here is the only exact method for solving the mixed no-idle permutation flowshop scheduling problem.This research project was partially supported by the Scientific and Technological Research Council of Turkey (TuBITAK) under Grant 1059B191600107. While writing this paper, Dr Hamzaday was a visiting researcher at the Southampton Business School at the University of Southampton. Ruben Ruiz is supported by the Spanish Ministry of Science, Innovation and Universities, under the Project 'OPTEP-Port Terminal Operations Optimization' (No. RTI2018-094940-B-I00) financed with FEDER funds. Thanks are due to two anonymous reviewers for their careful reading of the paper and helpful suggestions.Bektas, T.; Hamzadayi, A.; Ruiz García, R. (2020). Benders decomposition for the mixed no-idle permutation flowshop scheduling problem. Journal of Scheduling. 23(4):513-523. https://doi.org/10.1007/s10951-020-00637-8S513523234Adiri, I., & Pohoryles, D. (1982). Flowshop no-idle or no-wait scheduling to minimize the sum of completion times. Naval Research Logistics, 29(3), 495–504.Baker, K. R. (1974). Introduction to sequencing and scheduling. New York: Wiley.Baptiste, P., & Hguny, L. K. (1997). A branch and bound algorithm for the FF/no-idle/CmaxC_{max}. In Proceedings of the international conference on industrial engineering and production management, IEPM’97, Lyon, France (Vol. 1, pp. 429–438).Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.Cordeau, J. F., Pasin, F., & Solomon, M. (2006). An integrated model for logistics network design. Annals of Operations Research, 144(1), 59–82.Costa, A. M., Cordeau, J. F., Gendron, B., & Laporte, G. (2012). Accelerating benders decomposition with heuristic master problem solutions. Pesquisa Operacional, 32(1), 3–20.Deng, G., & Gu, X. (2012). A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion. Computers & Operations Research, 39(9), 2152–2160.Goncharov, Y., & Sevastyanov, S. (2009). The flow shop problem with no-idle constraints: A review and approximation. European Journal of Operational Research, 196(2), 450–456.Kalczynski, P. J., & Kamburowski, J. (2005). A heuristic for minimizing the makespan in no-idle permutation flow shops. Computers & Industrial Engineering, 49(1), 146–154.Magnanti, T. L., & Wong, R. T. (1981). Accelerating benders decomposition: Algorithmic enhancement and model selection criteria. Operations Research, 29(3), 464–484.Pan, Q. K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle flowshop scheduling problem. Omega, 44(1), 41–50.Pan, Q. K., Tasgetiren, M. F., & Liang, Y. C. (2008). A discrete differential evolution algorithm for the permutation flowshop scheduling problem. Computers & Industrial Engineering, 55(4), 795–816.Pan, Q. K., & Wang, L. (2008a). No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm. International Journal of Advanced Manufacturing Technology, 39(7–8), 796–807.Pan, Q. K., & Wang, L. (2008b). A novel differential evolution algorithm for no-idle permutation flow-shop scheduling problems. European Journal of Industrial Engineering, 2(3), 279–297.Papadakos, N. (2008). Practical enhancements to the Magnanti–Wong method. Operations Research Letters, 36(4), 444–449.Röck, H. (1984). The three-machine no-wait flow shop is NP-complete. Journal of the Association for Computing Machinery, 31(2), 336–345.Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research, 165(2), 479–494.Ruiz, R., Vallada, E., & Fernández-Martínez, C. (2009). Scheduling in flowshops with no-idle machines. In U. Chakraborty (Ed.), Computational intelligence in flow shop and job shop scheduling, chap 2 (pp. 21–51). New York: Springer.Saadani, N. E. H., Guinet, A., & Moalla, M. (2003). Three stage no-idle flow-shops. Computers & Industrial Engineering, 44(3), 425–434.Saharidis, G., & Ierapetritou, M. (2013). Speed-up Benders decomposition using maximum density cut (MDC) generation. Annals of Operations Research, 210, 101–123.Shao, W., Pi, D., & Shao, Z. (2017). Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan criterion. Applied Soft Computing, 54, 164–182.Tasgetiren, M. F., Buyukdagli, O., Pan, Q. K., & Suganthan, P. N. (2013). A general variable neighborhood search algorithm for the no-idle permutation flowshop scheduling problem. In B. K. Panigrahi, P. N. Suganthan, S. Das, & S. S. Dash (Eds.), Swarm, evolutionary, and memetic computing (pp. 24–34). Cham: Springer.Vachajitpan, P. (1982). Job sequencing with continuous machine operation. Computers & Industrial Engineering, 6(3), 255–259
    corecore